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Abstract—This paper considers the following backup 
scheme for a database system: a database is updated at a 
nonhomogeneous Poisson process and an amount of updated 
files accumulates additively. To ensure the safety of data, 
full backup are performed at time NT=L or when the 
database fails, whichever occurs first, and between them, 
incremental backups are made at periodic times iT (i=1, 
2, …, N-1) so as to make the backup efficiently. Using the 
theory of cumulative processes, the expected cost is obtained, 
and optimal numbers N* of incremental backup which 
minimizes it are analytically discussed when incremental 
backup interval T or full backup interval L is given. Finally, 
it is shown as examples that optimal numbers are 
numerically computed.  
 
Index Terms—database, incremental backup, cumulative 
damage model 
 

I.  INTRODUCTION 

In recent years, database in computer systems have 
become very important in the highly information-oriented 
society. The database is frequently updated by adding or 
deleting data files, and is stored in floppy disks or other 
secondary media. Even high reliable computers might 
sometimes break down eventually by several errors due 
to noises, human errors and hardware faults. It would be 
possible to replace hardware and software when they fail, 
but it would be impossible to do a database. One of 
important things for using computers is to backup data 
files regularly, i.e., to copy all files in a secondary 
medium. Fukumoto et al. discussed optimal checkpoint 
generations for a database recovery mechanism [1]. 

Cumulative damage models in reliability theory, where 
a system suffers damage due to shocks and fails when the 
total amount of damage exceeds a failure level K, 
generate a cumulative process [2].  Some aspects of 
damage models from reliability viewpoints were 
discussed by Esary et al. [3]. It is of great interest that a 
system is replaced before failure as preventive 
maintenance. The replacement policies where a system is 
replaced before failure at time T  [4,5], at shock N  [6,7], 
or at damage Z  [5,8,9] were considered. Nakagawa and 
Kijima [10] applied the periodic replacement with 
minimal repair [11] at failure to a cumulative damage 

model and obtained optimal values T* , N*  and Z*  
which minimize the expected cost. Satow et al. [12] 
applied the cumulative damage model to garbage 
collection policies for a database system. Qian et al. 
[5,13-17] successfully obtained the optimal Full and 
Cumulative Backup policies for a database by using 
cumulative damage models. 

In this paper, we apply the cumulative damage model 
to the backup of files for database media failures, by 
putting shock by update and damage by updated files: a 
database is updated at a nonhomogeneous Poisson 
process and an amount of updated files accumulates 
additively. To lessen the overhead of backup processing, 
incremental backups with small overhead are adopted 
between full backups. The expected costs are derived, 
using the theory of cumulative processes. Further, an 
optimal number of incremental backup which minimizes 
the expected cost is analytically derived. Finally, it is 
shown as examples that optimal numbers are numerically 
computed when incremental backup interval or full 
backup interval is given.  

II.  FULL BACKUP AND INCREMENTAL BACKUP 

Backup frequencies of a database would usually 
depend on the factors such as its size and availability, and 
sometimes frequency in use and criticality of data. The 
simplest and most indispensable method to ensure the 
safety of data would be always to shut down a database, 
and to make the backup copies of all data, log and control 
files in other places, and to take them out immediately 
when some date in the original secondary media are 
corrupted. This is called the total backup. But, such 
backup has to be made while a database is off-line and 
unavailable to its users, and would take more hours and 
costs as data become larger.  

To overcome these disadvantages, export backup has 
been developed because only a small percentage changes 
in most applications between successive backups [14,18]. 
The total backup is a physical backup scheme which 
copies all files. On the other hand, export backup is a 
logical backup scheme which copies the data and the 
definition of the database where they are stored in the 
operating system in binary notation. The export backup 
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Figure 1.  Full backup and incremental backups. 

makes the copies of only files which have changed or are 
new since a prior backup. The resources required for such 
backup are proportional to the transactional activities 
which have taken place in a database, and not to its size. 
This can shorten backup times and can decrease the 
required resources, and would be more useful for larger 
databases. This approach is generally classified into three 
schemes: incremental backup, cumulative backup and full 
backup. 

Full backup exports all files, and by this backup, the 
attributes of archives are updated, that is, a database 
system returns to an initial state. When full backup copies 
are made frequently, all images of a database can be 
secured, but its operation cost is greatly increased. Thus, 
the scheme of incremental or cumulative backup is 
usually adopted and is suitably executed between the 
operations of full backup. 

Incremental backup exports only files which have 
changed or are new since the last incremental or full 
backup, and updates the attributes of archives (see Figure 
1). On the other hand, cumulative backup exports only 
modified files since the last full backup, however, does 
not update the attributes of archives. For most failures, a 
database can recover from these points by log files and 
restore a consistent state by importing files of all 
incremental backups and the full backup for the 
incremental backup scheme, and by importing files of the 
last cumulative backups and the full backup for the 
cumulative backup scheme. i.e., the incremental backup 
or cumulative backup cannot take the place of full backup; 
however, it can reduce the frequency of full backup 
which is required. From the above point of view, we can 
reduce the frequency of full backup by incremental 
backups or cumulative backups.  

An important problem in actual backup schemes is 
when to create the full backup. The full backup with large 
overhead is done at long intervals and the incremental or 
cumulative backup with small overhead is done at short 
intervals. We want to lessen the number of full backups 
with large overhead. However, the overhead of 
cumulative backup is increasing with the number of 
newly updated trucks, because the list of modified files is 
growing up each day until the next full backup which will 

clear all attributes of archives. For the incremental 
backup scheme, the amount of data transfer is constant 
approximately. However, the overhead of recovery which 
imports files of all incremental and the full backups is 
remarkably increased with the number of incremental 
backups, when some errors have occurred in storage 
media. That is, both overheads of cumulative backup and 
recovery of incremental backup increase adaptively with 
the amount of newly updated trucks. From this point of 
view, we should decide the full backup interval, by 
comparing two overheads of backup and recovery.  

Chandy, et al. and Reutr considered some recovery 
techniques for database failures [19,20]. The optimal 
checkpoint intervals of such models which minimize the 
total overhead were studied by many authors: Young [21], 
Gelenbe [22] and Dohi, et al. [23]. Further, Sandoh, et al. 
[24] discussed optimal backup policies for hard disks. 

In this paper, we apply the cumulative damage model 
to backup policy for a database system with periodic 
incremental backup scheme and derive an optimal full 
backup interval and incremental backup interval. We 
have to pay only attention to the matter what are essential 
laws of governing systems, and take a grasp of updated 
processes and try to formulate it simply, avoiding small 
points. In other words, it would be necessary to form 
mathematical models of backup schemes which outline 
the observational and theoretical features of complex 
phenomena. 

Suppose that a database in secondary media fails 
according to a general distribution ( )F t  and full backup 
is performed when the database fails. The incremental 
backups are performed at periodic times iT  

, , ,i 1 2 N 1= −（ ）, and export only updated files which 
have changed or are new since the last full backup or 
incremental backup. In order to enhance reliability of the 
series system of incremental backups, full backup is 
performed at time NT L= . 

Taking the above considerations into account, we 
formulate the following stochastic model of the backup 
policy for a database system: suppose that a database is 
updated at a nonhomogeneous Poisson process with an 
intensity function ( )tλ  and a mean-value function ( )R t ,  
i.e.,  

( ) ( )d
t

0
R t u uλ≡ ∫ .                                (1) 

Then, the probability that the j -th update occurs 
, , ,j 0 1 2=（ ）exactly during ( , ]u v  is  

[ ] [ ]( ) ( )( ) ( )
( , )

!

j
R v R u

j

R v R u
H u v e

j
− −−

≡            (2) 

where ( )R 0 0≡  and ( )R ∞ ≡ ∞ . 
Further, let jY  denote an amount of files, which 

changes or is new at the j -th update. It is assumed that 
each jY   has an identical probability distribution 

( ) Pr{ }jG x Y x≡ ≤  ( 1, 2, )j = . Then, the total amount 
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Figure 2.  Process for database updated. 
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Figure 3.  Periodic incremental backup model. 

of updated files 
1

j
j ii

Z Y
=

≡ ∑  up to the j -th update 

where 0Z 0≡  has a distribution [25,26] 
( )Pr{ } ( )j

jZ x G x≤ =   ( 0,1, 2, )j = ,              (3) 
which is the j -fold Stieltjes convolution of the 
distribution ( )G x  of itself, i.e., 

( ) ( )( ) ( )d ( )
xj j 1

0
G x G x u G u−≡ −∫                  (4) 

with and ( ) ( ) 10G x ≡  for x 0≥ , and ( ) ( ) ( )1G x G x= . 

 Let ( )Z t  be the total amount of updated files at time 
t  (see Figure 2). Then, the distribution of ( )Z t  [3] is 

( )Pr{ ( ) } ( ) ( )j
j

j 0

Z t x H t G x
∞

=

≤ = ∑                  (5) 

where ( ) ( , )j jH t H 0 t≡ , and  

( )Pr{ ( ) ( ) } ( ) ( )j
j

j 0

Z v Z u x H u,v G x
∞

=

− ≤ = ∑ .        (6) 

III.  OPTIMAL FULL BACKUP INTERVAL 

A.  Expected Cost 
We discuss optimal full backup interval ( )L* T N*T=  

for fixed incremental backup periodic time T , e.g., daily 
or weekly(see Figure 3).  

Let us introduce the following costs: cost Fc  is 
suffered for the full backup; cost ( )D 0c c x+  is suffered 
for the incremental backup when the amount of export 
files  at the backup time is x , and ( )0c x  is increasing 
with x ; cost ( )FF FD 0c jc c x+ +  is suffered for recovery if 
database fails when the total amount of import files at the 
latest incremental backup time is x  , where FDjc  denotes 
recovery cost of incremental backups when the number of 
incremental backups is j , FFc  denotes recovery cost of 
the last full backup.  

Then, the expected cost of incremental backup, when it 
is performed at time iT  ( 1,2, , 1)i N= − , is 

( , ) [ ( )]d Pr{ ( ) ( }ED D 00
C i T c c x Z iT Z i 1 T x

∞
≡ + − ≤∫ ( - ) ) , 

and hence, 

( , ) (( ) , )ED j
j 0

C i T H i 1 T iT
∞

=

≡ −∑  

( )[ ( )]d ( )j
D 00

c c x G x
∞

× +∫ .            (7) 

Further, if the database fails during [ ( 1) ]iT, i+ T , then the 
expected recovery cost till time iT  is (see Figure 3) 

( , ) ( )EF j
j 0

C i T H iT
∞

=

≡ ∑  

( )[ ( )]d ( )j
FF FD 00

c ic +c x G x
∞

× +∫ .            (8) 

We define time between two full backups is one cycle, 
then mean time to full backup is 

( ) ( ) d ( )
NT

0
E N NTF NT t F t≡ + ∫  

( ) d
NT

0
F t t= ∫ .                                 (9) 

From (7), the total expected backup cost of one cycle is 
1

1

( ) (( 1) ) ( , )
N

B F ED
m

C N c F N- T C m T
−

=

≡ + ∑  

             
1 1

2 1

[ ( ) (( 1) )] ( , )
N i

ED
i m

F iT -F i T C m T
− −

= =

+ −∑ ∑  

1

1
( , ) ( )

N

F ED
i

=c C i T F iT
−

=

+∑                               (10) 

and from (8), the total expected recovery cost of one 
cycle is 

1

( ) [ ( ) (( 1) )] ( 1, )
N

R EF
i

C N F iT -F i T C i- T
=

≡ −∑ .         (11) 

Therefore, the expected cost per unit time in the 
steady-state is 

( ) ( )
( )

( )
B RC N C N

C N
E N
+

≡ .                     (12) 
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B.  Optimal Policy 
We discuss optimal value N* which minimize the 

expected cost ( )C N  in (12).  
Suppose that the database is updated at a homogeneous 

Poisson process with an intensity function ( )t pλ λ= , 
and it fails according to  distribution ( ) 1 -q tF t e λ= − , 
where 1p q+ = , further suppose that E{ } 1/jY μ=  and 

( )0 0c x c x= , then the expected cost in (12) is 
( ) ( )0

FF FD
c p TC N c c

q
λ

λ μ
= − −  

2

( )
1

0
D FD

q T

c p Tc c
C N

e λ

λ
μ

−

+ +
+ +

−
.         (13) 

where 

( )
1

0
F D

q NT

c p Tc c
C N

e λ

λ
μ

−

− −
≡

−
 

( )

1

q NT0
FD

q NT

c p Tc Ne

e

λ

λ

λ
μ

−

−

+
−

−
.    (14) 

From (13), we know that optimal *N  which 
minimizes the expected cost ( )C N  is equality to optimal 

*N  which minimizes ( )C N .  
From (14), we have 

( )
( )

1

q T0 0
F D FD

q T

c p T c p Tc c c e
C 1

e

λ

λ

λ λ
μ μ

−

−

− − − +
=

−
,  (15) 

( ) 0
F D

c p T
C c c

λ
μ

∞ = − − ,                                    (16) 

then exists a positive *N  ( * )1 N≤ ≤ ∞ which minimizes 

( )C N  in (14). 

From the inequality ( 1) ( )C N+ C N 0− ≥ , we have 

( 1)

0
F D

0
FD

c p Tc c
Q N+

c p Tc

λ
μ
λ
μ

− −
≥

+
                       (17) 

where 
1( )
1

q NT

q T

eQ N N
e

λ

λ

−

−

−
≡ −

−
.                      (18) 

Thus (1) 0Q = , ( 1) ( ) 1 q NTQ N+ Q N e 0λ−− = − >  and 
lim ( )
N

Q N
→∞

= ∞ , i.e., ( )Q N  is strictly increasing with N . 

Therefore, we have the following optimal policy: 

1. If ( )(1 )q T0 0
F D FD

c p T c p T
c c c e λλ λ

μ μ
−− > + − + , then 

there exists a finite and unique minimum *N  
( * )1 N< < ∞  satisfying (17), minimizes ( )C N , and 

*

*

( *) *( ) ( *)
1

q N T
0

FD q N T

c p T Q N N ec C N
e

λ

λ

λ
μ

−

−

−
+ <

−
 

*

*

( * 1) *( )
1

q N T
0

FD q N T

c p T Q N N ec
e

λ

λ

λ
μ

−

−

+ −
≤ +

−
.   (19) 

2. If ( )(1 )q T0 0
F D FD

c p T c p T
c c c e λλ λ

μ μ
−− ≤ + − + , then 

* 1N = , i.e., only full backup needs to be done, and the 
resulting cost is  

(1)
1

F
FF -q T

cC c
q e λλ

= +
−

.                        (20) 

C.  Numerical Example 
Suppose that /( / ) 2000F 0c c μ = , /( / ) 40D 0c c μ = , 

/( / ) 2400FF 0c c μ = , and /( / ) 50FD 0c c μ = . Then an *N  
is given by a finite and unique minimum such that 

( )1
1

q T N+1

q T

e 1910N
50 p Te

λ

λ λ

−

−

−
− ≥

+−
.                (21) 

Table I gives the optimal number *N  and the 
resulting cost ( *) /( / )0C N cλ μ  for 210q −= ， 310− ，

410−  and 200, 400,800,1000Tλ = .  Note that all costs 
are relative to cost /0c μ  and all times are relative to 
1/λ . In this case, it is evident that 
(50 )(1 ) 1960q Tp T e p T<λλ λ−+ − +  except for 210q −=  
and 1000Tλ = . It is shown from Table I that optimum 
number *N  decreases with both Tλ  and q , and 

( *) /C N qλ  decreases with Tλ , and conversely,  
increases with q . 

.Ⅳ   OPTIMAL INCREMENTAL BACKUP INTERVAL 

A.  Expected Cost 
We discuss an optimal incremental backup interval  
( ) /T* L L N*=  for fixed full backup periodic time L .  

TABLE I.   
   OPTIMAL NUMBER *N  AND THE RESULTING COST 

( *) /( / )0C N cλ μ  FOR Tλ  AND q  WHEN   

/( / ) 2000F 0c c μ = , /( / ) 40D 0c c μ = , 

/( / ) 2400FF 0c c μ = , AND /( / ) 50FD 0c c μ =  

q  

10-2 10-3 10-4 

Tλ
N*

( *)

/0

C N

cλ μ
 

N*
( *)

/0

C N

cλ μ
 

N* 
( *)

/0

C N

cλ μ

200 8 44.7607 12 6.4879 29 2.1670 
400 3 44.1646 6 6.0945 14 1.9892 
800 2 44.0056 3 5.6392 6 1.8295 

1000 1 44.0009 2 5.4372 5 1.7658 
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It is assumed that a database in secondary media fails 
according to a general distribution ( )F t , and full backup 
is performed at time L  or when the database fails, 
whichever occurs first. A database returns to an initial 
state by full backups. Incremental backups are performed 
at periodic times iT  ( 1, 2, , 1)i N= − , where NT L= . 
In order to ensure point-in-time recovery after media 
failure, transaction log backups are made since the last 
full backup, its size depends on the amount of updated 
data in database.  

Let us introduce the following costs: cost Fc  is 
suffered for the full backup; cost Dc  is suffered for one 
incremental backup or cost suffered for importing by one 
incremental backup because of exporting and importing 
data are the reverse process ; cost Lc  is suffered for every 
transaction log backup; cost ( )Rc x  is suffered for 
reconstructing data by transaction logs when the amount 
of updated data in database is x , and RO CDc ic+  is 
suffered for recovery if database fails, where CDic  
denotes importing cost of incremental backups when the 
number of incremental backups is i , ROc  denotes 
importing cost of the last full backup. 

Then, the expected cost of incremental backups is 

1
1
[ ( ) (( 1) )]( 1)

N

D
i

C F iT F i T i c
=

≡ − − −∑  

( )( 1) D+F L N c−                                 (22) 
and the expected cost of transaction log backups is 

( ) d ( )
L

2 j L0
j 0

C jH t  c F t
∞

=

≡ ∑∫  

( ) ( )j L
j 0

+F L jH L c
∞

=
∑ .                    (23) 

    Further, if the database fails during [( 1) , ]i T iT− , 
then the expected recovery cost till time ( 1)i T−  is 

1
[ ( ) (( 1) )][ ( 1) ]

N

3 RO D
i

C F iT F i T c i c
=

≡ − − + −∑     (24) 

and the expected cost of reconstructing data by 
transaction logs till failure time is 

1
1

[( ) , ]d ( )
N iT

4 j(i- )T
i j 0

C H i 1 T t F t
∞

= =

≡ −∑∑∫  

( )( ) d ( )j
R0

c x G x
∞

×∫                   (25) 

Then the total expected backup and recovery cost 
during the interval L  is 

1
( )

4

F i
i

E C c C
=

≡ +∑ .                             (26) 

B.  Optimal Policy 
To discuss optimal values *( )T L L /N*=   which 

minimizes expected cost ( )E C  in (26) analytically , we 
suppose that the database is updated at a homogeneous 
Poisson process with an intensity function ( )t pλ λ= , 
and it fails according to distribution ( ) 1 -q tF t e λ= − , 

where 1p q+ = , further suppose that E{ } 1/jY μ=  and 
( )R Rc x c x= , then the expected cost in (26) is 

( ) ( ) ( )(1 )q T
F D L RO D

pE C c c c c c e
q

λ−≡ − + + − −  

( )Lp Lc C Nλ+ +                                               (27) 
where 

( )
( )

q L
q LD

Dq L
N

2c 1 e
C N Nc e

1 e

λ
λ

λ

−
−

−

−
≡ −

−
 

( )
q L

q LN
R R NpNc 1 e c p L

e
q

λ
λλ

μ μ

−
−−

+ −           (28) 

From (27), we know that optimal *N  which 
minimizes the expected cost ( )E C  is equality to optimal 

*N  which minimizes ( )C N .  
From (28), we know that 

( ) lim ( )NC C N→∞∞ ≡ = ∞ ,                                   (29) 

) ( )( )q LR R
D

pc p Lc
C(1 c 1 e

q
λλ

μ μ
−= + + −  

R
D

p Lc
c

λ
μ

+ − ,                                          (30) 

then there exists a finite number *N  ( * )1 N≤ < ∞  
which minimizes ( )C N .  

From the inequality ( ) ( )C N 1 C N 0+ − ≥ , we have 

( )
( )( )

q L q L
N 1 N

q L
D q L q L

N N 1

e e2c 1 e
1 e 1 e

λ λ

λ
λ λ

− −
+

−

− −
+

−
−

− −
 

( )( )
q L q L q L

R RN 1 N 1 Npc pc
e N q L e e

q q

λ λ λ

λ
μ μ

− − −
+ +− − + − −  

q L R
D

pc
c e

q
λ

μ
−≥ − .                                                 (31) 

It is very difficulty to discuss optimal analytic values 
*N  accurately. So we seek analytic values *N   

approximately. Optimal accurate numerical values will be 
given in numerical example and be compared with the 
approximate numerical values; error analysis will be 
given at last.  

Using two approximations that [27] 
q Le 1 q Lλ λ− ≈ − ,                            (32) 

and 
q L q L
N 1 N q L q Le e

N N+1

λ λ λ λ− −
+ − ≈ − .                     (33) 

thus (28) can be written 
( )

( ) ( )
2

R
D

c pq L
C N Nc 1 q L

N
λ

λ
μ

≡ + +              (34) 

and the inequality (31) is simplified as 

( )

2 2
R

D

pq L c
Q(N)

1 q L c
λ

μ λ
≥

+
                      (35) 

where 
( )Q(N) N 1 N≡ + .                            (36) 
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Then ( )Q 1 2= , lim ( )
N

Q N
→∞

= ∞  and ( )Q N  is strictly 

increasing with N . 
Therefore, we have the following optimal policy: 

1. If 
( )

2 2
R

D

pq L c
2

1 q L c
λ

μ λ
>

+
, there exists a unique optimal 

*N ( * )1 N< < ∞ satisfies (35) which minimizes ( )C N  
in (34), and 

( *)
( )D

C N2N 1 2N 1
c 1 q Lλ

− < ≤ +
+

.                  (37) 

2. If 
( )

2 2
R

D

pq L c
2

1 q L c
λ

μ λ
≤

+
, then *N 1= , i.e., only backup 

and log back need to be done, and the resulting cost is  
 ( *) ( )C N C 1= .                            (38) 

C.  Numerical Example 
Suppose that 1/ 1μ = . Table II gives the optimal 

approximate numerical values *N , optimal accurate 
numerical values *N  and the resulting costs  ( *)C N , 

( *)C N , ( *)C N  and ( *)C N  for 1000Lλ = , 2000, 3000, 
4000 when 100Dc = , 10Rc =  and 410q −= .  

Similarly, Table III gives optimal approximate 
numerical values *N , optimal accurate numerical values 

*N  and the resulting cost ( *)C N  for 410q −= , 42 10−× , 
42.5 10−× , 43 10−× , 5Rc = , 10, 15 and 100Dc = , 200, 

300 when 4000Lλ = . 
These indicate that both optimal numbers *N  and the 

expected costs ( *)C N  are increasing with Lλ , Rc  and 
q . Although optimal numbers *N  are decreasing when 

Dc  is increasing,  the expected costs ( *)C N  are 
increasing. 

The reason would be explained that the optimal 
incremental backup numbers *N  during time interval L  
are related to both costs suffered for incremental backups 

and costs suffered for reconstructing data by transaction 
logs:  

TABLE III.   

   OPTIMAL NUMBER *N , *N  AND THE RESULTING COST 

( *)C N ,  FOR Rc ,  Dc  AND q  WHEN 4000Lλ =  

q  Rc Dc *N  *N  *( )C N

100 6 8 1257.883

200 4 5 1785.1735 

300 3 4 2201.787

100 9 11 1776.383

200 6 8 2515.76610 

300 5 6 3084.363

100 11 13 2173.769

200 8 9 3082.193

10-4 

15 

300 6 8 3773.649

100 9 9 1728.258

200 6 7 2445.6915 

300 5 5 2999.491

100 13 13 2442.371

200 9 9 3456.51610 

300 7 8 4234.162

100 16 16 2989.919

200 11 12 4230.083

2×10-4 

15 

300 9 9 5184.774

100 10 10 1896.161

200 7 7 2683.5515 

300 5 6 3292.367

100 14 14 2680.863

200 10 10 3792.32210 

300 8 8 4645.394

18 17 3283.052

12 12 4644.213

2.5×10-4

15 

100 

200 

300 10 10 5688.484

100 11 10 2035.400

200 8 7 2882.5285 

300 6 6 3522.677

100 19 15 2878.965

200 11 10 4070.80110 

300 9 9 4956.040

100 20 18 3526.619

200 14 13 4987.885

3×10-4 

15 

300 11 10 6106.201
 

TABLE II.   

   OPTIMAL NUMBER *N , *N  AND THE RESULTING COSTS ( *)C N , 

( *)C N , ( *)C N  AND ( *)C N  FOR Lλ                               

WHEN 100Dc = , 10Rc =  AND 
410q −=   

Lλ  1000 2000 3000 4000 

*N  2 4 7 9 

*N  3 6 8 11 

( *)C N  451.075 899.456 1341.765 1776.383

( *)C N  472.086 940.590 1364.307 1818.864

( *)C N  719.950 1479.900 2195.586 3037.600

( *)C N  663.300 1386.600 2164.888 2994.400
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1. Incremental backup costs are increasing with *N  
and Log Backup costs are decreasing with *N , So if we 
want to minimize expected costs ( )C N , incremental 
backup numbers *N  should be decreasing with 
incremental backup cost Dc ;  

2. on the one hand, costs suffered for reconstructing 
data by transaction logs are related to Rc  and q , when 

Rc  and q  are increasing, reconstructing data costs are 
increasing if *N  is constant, so if we want to minimize 
expected costs ( )C N , incremental backup numbers *N  
should be increasing;  

3.  Lλ  denotes the frequency of updating of database, 
if Lλ  increases, the probability of database failure 
increases, so reconstructing data costs will increase, 
optimal incremental backup numbers *N  should be 
decreased to minimize the excepted costs. 

Table II and Table III also give approximate numerical 
values *N  using (35). Compared with optimal accurate 
numerical values *N , it is evident that *N  and *N  are 
not identical. It is interesting that *N  are almost the 
same with *N  when 42.5 10q −= × ; when 42.5 10q< −× , 

*N  are greater than or equal to *N , i.e., values of *N  
may be *N , * 1N −  or * 2N − ;  when 42.5 10q> −× , 

*N  are less than or equal to *N , i.e., values of *N  
may be *N , * 1N +  or * 2N + . So the approximate 
numbers *N  would be useful for seeking accurate 
numbers *N . 

Ⅴ.  CONCLUSIONS 

We have considered two schemes of full and 
incremental backup for a database system, and have 
analytically discussed optimal backup policies which 
minimize the expected cost, using theory of cumulative 
processes. It would be of interest that there must be 
optimal number of incremental backups minimizing the 
expected cost rate. This result would be applied to the 
backup of a database, by estimating the costs of two 
backups, recovery, the amount of updated file from actual 
data and the probability of database failure. However, 
backup schemes become very important and much 
complicated, as database systems have been largely used 
in most computer systems and information technologies 
have been greatly developed. These formulations and 
techniques used in this paper would be useful and helpful 
for analyzing such backup policies. 
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