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Abstract—A new four-dimensional system is proposed in 
this paper, which is named modified Lorenz-Stenflo (MLS) 
system. The system is constructed by replacing one of 
quadratic nonlinear terms of Lorenz-Stenflo system with a 
piecewise linear (PWL) function. The simple structure 
makes the MLS system much easier to be implemented with 
electronic circuits. Based on adaptive control and sliding 
mode control methods, an adaptive sliding mode controller 
is derived to synchronize two MLS chaotic systems. 
Meanwhile the uncertain parameters in response system are 
identified. The error systems are deduced by backstepping 
method. Numerical simulations are used to verify the 
effectiveness of the proposed controller. 
 
Index Terms—modified Lorenz-Stenflo (MLS) chaotic 
system, synchronization control, sliding mode control, 
backstepping control 

I.  INTRODUCTION 

The well-known Lorenz chaotic attractor [1] was 
discovered in a three-dimensional autonomous system in 
1963. Another famous chaotic attractor is Rössler [2], 
which is found in 1976. Then in 1996, Lennart Stenflo 
constructed the Lorenz-Stenflo (LS) system [3] based on 
Lorenz system. In 1999 the Chen system [4] was 
constructed via a state feedback controller to the Lorenz 
system. Later, the Lorenz system family and the 
generalized Lorenz canonical form were presented [5-8].  

During the study on the chaotic control and 
synchronization, scientists find it is hard to build simple 
electronic circuits for these nonlinear systems since they 
have many quadratic nonlinear terms. Much work has 
been done to simplify these quadratic nonlinear terms 
without losing their chaotic behaviors. One of the 
effective methods is to replace these nonlinear terms with 
the piecewise linear (PWL) functions [9]. In 2002, Lü 
found a new PWL chaotic system [10]. In 2004 Zheng 
proposed a novel method for simultaneously creating two 
symmetrical chaotic attractors in a three-dimensional 
linear autonomous system [11]. Then modified Chen’s 

system, modified Lü system and unified PWL chaotic 
family were generated in [12-14]. 

In this paper, a new four-dimensional chaotic system, 
named the modified Lorenz-Stenflo (MLS) system, is 
constructed by replacing one of quadratic nonlinear terms 
of LS system with a PWL function. The PWL function is 
mainly composed of standard sign function. The new 
chaotic system is slightly different from LS system in 
structures, but the shape of the new chaotic attractors is 
much larger than that of LS chaotic attractors. And the 
simple structure makes the MLS system much easier to 
be implemented with electronic circuits. 

In recent years, chaotic control and chaotic 
synchronization have attracted increasing attention due to 
their potential application in secure communication, etc. 
Many theories have been developed to achieve chaotic 
synchronization, such as feedback control [15], coupled 
control [16]. In fact, from the perspective of hardware 
implementation, the resistance and capacitors in 
transmitter circuit will always differ slightly from those 
in receiver circuit. Hence, the two chaotic circuits will not 
be identical due to the mismatch in the system’s 
parameters. So synchronization control of two chaotic 
systems with uncertain parameters is a critical issue.  

Besides adaptive control method [17,18], sliding mode 
control is a nonlinear control scheme widely used for 
controlling uncertain nonlinear systems [19,20]. In this 
paper, an adaptive sliding mode controller is derived to 
synchronize two MLS chaotic systems. The error system 
between two MLS chaotic systems is deduced using 
backstepping control theory [21]. 

This paper is organized as follows. In section 2 the 
MLS chaotic system is proposed and the chaotic 
behaviors are analyzed in detail. In section 3 the 
backstepping sliding mode controller is proposed to 
synchronize two MLS systems. In section 4 simulations 
show that this method can achieve synchronization 
effectively, meanwhile the uncertain parameters in 
response system are correctly identified. Section 5 is the 
conclusions. 
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Figure 1(a). The attractors of MLS system in three-dimensional view 
(variable x1-x2-x3). 
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Figure 1(b). The attractors of MLS system in three-dimensional view 
(variable x1-x2-x4). 

II.  THE MLS CHAOTIC SYSTEM 

In 1996, Lennart Stenflo studied the equations which 
govern atmospheric waves. By using a low-frequency and 
short-wavelength approximation, he managed to derive a 
set of simplified equations. He then used the same 
strategy to construct the Lorenz-Stenflo (LS) system 
[3,22]. The autonomous differential equations are 
described by: 

1 2 1 4

2 1 3 2

3 1 2 3

4 1 4

( )
( )

x a x x dx
x x c x x
x x x bx
x x ax

= − +⎧
⎪ = − −⎪
⎨ = −⎪
⎪ = − −⎩

&

&

&

&

.   (1) 

where 1, 0.7, 26,a b c d=  =  =  = 1.5 . The Lorenz system 
and this LS system share the same basic foundation. The 
LS system has three stationary points: 

( )
0

2 2 2

(0,0,0,0),

( ) (1 / ), (1 / ), , ( )s s s s

S

S bz d a bz d a z bz d a±

=  

= ± +  ± +   +m
 

where 21 /sz c d a= − − .  
The LS system is similar to the famous Lorenz 

equation, but differ from it in the new control parameter 
d  and the new state variable 4x . Some dynamical 
behaviors of the LS equation, including the familiar 
period-doubling route to chaos, are reported in [3,21]. 

By replacing a quadratic-nonlinear term 1 2x x  in the 
third equation with a PWL function, a new four-
dimensional chaotic system is generated and named 
modified Lorenz-Stenflo (MLS) system. The system has 
the following form: 

1 2 1 4

2 1 3 2

3 2 1 3

4 1 4

( )
( )

( )

x a x x dx
x x c x x
x sign x x bx
x x ax

= − +⎧
⎪ = − −⎪
⎨ = ⋅ −⎪
⎪ = − −⎩

&

&

&

&

.  (2) 

where ( )sign ⋅  denotes the standard sign function, and 
, , ,a b c d R   ∈  are constant parameters. When 1,a =   

0.7, 26, 1.5b c d=  =  = , the chaotic attractors are shown 
in Fig.1(a) and 1(b). 

 
From the MLS system (2), we obtain: 

31 2 4

1 2 3 4

(2 1)
xx x x

V a b
x x x x

∂∂ ∂ ∂
∇ = + + + = − + +

∂ ∂ ∂ ∂
&& & &

 

When (2 1) 0a b+ + > , V∇  is negative. Obviously 
system (2) is a dissipative system, and an exponential 
contraction of system (2) is: 

(2 1)/ a bdV dt e− + +=  
Then, we discuss the equilibria of the MLS system. Let: 

( ) 0
( ) 0

( ) 0
0

a y x dw
x c z y
sign y x bz

x aw

− + =⎧
⎪ − − =⎪
⎨ ⋅ − =⎪
⎪− − =⎩

 

The system (2) has three equilibrium points, which are 
respectively described as follows: 

0

2 2

(0, 0, , 0),

, ,

S

bp bp d p bpS a
a a aa a±

=   0   

⎛ ⎞⎛ ⎞= ±  ± + ,  ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

m
 

where dp ac a
a

= − − . 

The MLS system is invariant under the transformation 
of 1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x→ − − − . Therefore, if 

1 2 3 4( , , , )x x x x  is a solution of system (2), 

1 2 3 4( , , , )x x x x− − −  is also a solution of system (2) and all 
these solutions exist in pairs. 

We consider the condition of 1, 0.7, 26,a b c=  =  =  
1.5d = . For equilibrium 0 (0, 0, , 0)S =   0  , system (2) is 

linear and the Jacobian matrix is defined as: 

0
2

0 1 1 0 1.5
1 0 26 1 0 0

( ) 0 0 0 0 0.7 0
1 0 0 1 0 0 1

a a d
c z x

J
sign x b

a

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

The eigenvalues of matrix 0J  are: 

1 2 3 40.7, 1, 3.9497, 5.9497λ λ λ λ= −  = −  =  = −  (3) 
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Figure 2. Spectrum of four variables in MLS system. 

In formula (3) 3 3.9497 0λ = > , which implies that the 
equilibrium 0S  is unstable. 

System (2) is linearized at equilibrium points S± . 
When 1, 0.7, 26,a b c d=  =  =  =1.5 , ( 16.45,S± = ±   

41.125, 23.5, 16.45)±   m . The Jacobian matrices of S±  are: 

3 1

2

0 1 1 0 1.5
1 0 2.5 1 16.45 0

( ) 0 0 1 0 0.7 0
1 0 0 1 0 0 1

a a d
c x x

J
sign x b

a

±

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− ± −
⎢ ⎥ ⎢ ⎥

− − − −⎣ ⎦ ⎣ ⎦

m
 

Matrices J+  and J−  have the same eigenvalues as 
follows: 

1 2 3,43.5878, 1, 0.4439 2.0948iλ λ λ= −  = −  = ±  (4) 
Results show that 1λ  and 2λ  are negative, 3λ  and 4λ  

form a complex conjugate pair and their real parts are 
positive. So equilibriums S±  are saddle-focus points, and 
these equilibriums are unstable. 

As is well known, the Lyapunov exponents can 
measure the exponential rates of divergence or 
convergence of nearby trajectories in phase space. When 

1, 0.7, 26, 1.5a b c d=  =  =  = , the largest positive 
Lyapunov exponents of the MLS system is calculated as 

max 13.1Lλ = . 
The spectrum of MLS system (2) is also shown in 

Fig.3. 
As is well known, the Lyapunov exponents can 

measure the exponential rates of divergence or 
convergence of nearby trajectories in phase space. When 

1, 0.7, 26, 1.5a b c d=  =  =  = , the largest positive 

Lyapunov exponents of the MLS system is calculated as 
max 13.1Lλ = . The spectrum of MLS system (2) is also 

shown in Fig.2. 
 In MLS system (2), the shape of chaotic attractor is 

changed with the variation of parameters , , ,a b c d . 
Several simulations have been carried out. Findings are 
summarized as follows: 

1) Let 0.7, 26, 1.5b c d=  =  = . 

a) When 10a = , the eigenvalues of J±  for S±  are: 

1 2 3,411.512, 10.696, 0.254 3.76iλ λ λ= −  = −  = ± . The attractors 
in three-dimensional view are shown in Fig. 3(a) and 
3(b). 

b) When 22.02a = , the eigenvalues of J±  for S±  are: 

1,2 3,44.0252 , 22.87 0.787i iλ λ= ±   = − ± . The attractors in 
three-dimensional view are shown in Fig. 3(c) and 3(d). 

2) Let 1, 26, 1.5a c d=  =  = . 
a) When 5b = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 7.6874, 0.344 3.894iλ λ λ= −  = −   = ± . 
The attractors in three-dimensional view are shown in 

Fig. 4(a) and 4(b). 
b) When 9.75b = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 11.75, 4.416iλ λ λ= −  = −   = ± . The attractors in three-
dimensional view are shown in Fig. 4(c) and 4(d). 

c) When 15b = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 16.478, 0.261 4.618iλ λ λ= −  = −   = − ± . The attractors in 
three-dimensional view are shown in Fig. 4(e) and 4(f). 

3) Let 1, 0.7, 1.5a b d=  =  = . 
a) When 7.9c = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 2.7, 1.183iλ λ λ= −  = −   = ± . The attractors in three-
dimensional view are shown in Fig. 5(a) and 5(b). 

b) When 18c = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 3.281, 0.291 1.795iλ λ λ= −  = −   = ± . The attractors in 
three-dimensional view are shown in Fig. 5(c) and 5(d). 

4) Let 1, 26a b c=  = 0.7, = . 
a) When 5d = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 3.4631, 0.382 1.974iλ λ λ= −  = −   = ± . The attractors in 
three-dimensional view are shown in Fig. 6(a) and 6(b). 

b) When 19.6d = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 2.7, 1.1832iλ λ λ= −  = −   = ± . The attractors in three-
dimensional view are shown in Fig. 6(c) and 6(d). 

c) When 22d = , the eigenvalues of J±  for S±  are: 

1 2 3,41, 2.477, 0.112 0.914iλ λ λ= −  = −   = − ± . The attractors in 
three-dimensional view are shown in Fig. 6(e) and 6(f). 

III.  BACKSTEPPING SYNCHRONIZATION CONTROL OF MLS 
SYSTEM 

Based on the backstepping control method, we 
consider using adaptive sliding mode control technique to 
obtain synchronization. This controller is robust to the 
parameter uncertainty and guarantees the synchronization 
of the drive-response MLS chaotic systems. Considering 
system (2) as drive system, the response system is 
designed as: 

1 2 1 4 1

2 1 3 2 2

3 2 1 3 3

4 1 4 4

( )
( ' )

( ) '

y a y y dy u
y y c y y u
y sign y y b y u
y y ay u

= − + +⎧
⎪ = − − +⎪
⎨ = ⋅ − +⎪
⎪ = − − +⎩

&

&

&

&

  (5) 
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Fig.3.  The attractors of MLS system in three-dimensional view when 0.7, 26, 1.5b c d=  =  = (a)(b) 10a = , (c)(d) 22.05a =  

 

0
50

100
150

200

-200
0

200
400

0

10

20

30

40

x

(a) x-y-z (b=5)

y

z

              
0

50
100

150
200

-500

0

500

1000
-140

-120

-100

-80

-60

x

(b) x-y-w (b=5)

y

z

 

150
200

250
300

400

600

800
20

22

24

26

28

x

(c) x-y-z (b=9.75)

y

z

              
150

200
250

300

400

600

800
-235

-230

-225

-220

-215

xx

(d) x-y-w (b=9.75)

y

w

 

0
200

400
600

0

500

1000

1500
0

10

20

30

40

x

(e) x-y-z (b=15)

y

z

                
200

300
400

500

0

500

1000

1500
-400

-300

-200

-100

0

x

(f) x-y-w (b=15)

y

w

 
Fig.4.  The attractors of MLS system in three-dimensional view when 1, 26, 1.5a c d=  =  =  (a)(b) 5b = , (c)(d) 9.75b = , (e)(f) 15b =  
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Fig.5.  The attractors of MLS system in three-dimensional view when 1, 0.7, 1.5a b d=  =  =  (a)(b) 7.9c = , (c)(d) 18c =  
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Fig.6.  The attractors of MLS system in three-dimensional view when 1, 26a b c=  = 0.7, =  (a)(b) 5d = , (c)(d) 19.6d = , (e)(f) 22d =  
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We set: ( 1 ~ 4), ' , 'i i i b ce y x i e b b e c c= −  =  = −  = − , the 
error system is constructed as: 

2 1 4 11

1 2 1 3 1 3 1 22

3 3 2 1 2 1 3 3

4 1 4 4

( )

( ) ( )
c

b

a e e de ue
ce e y y x x e y ue

e be sign y y sign x x e y u
e e ae u

− + +⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ − − + + +⎢ ⎥⎢ ⎥ =
⎢ ⎥⎢ ⎥ − + ⋅ − ⋅ − +
⎢ ⎥⎢ ⎥
− − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

&

&

&

&

 (6) 
From error system (6), we find there is not any 

uncertain parameters in 1e  and 4e . In order to simplify 
the structures of controllers, we set 4 0u = . 

Theorem 1: If the sliding mode controllers satisfy: 
1 4

2 3 1 1 1

3 2 1 2 1 2 2

3 3

2 1

( ) ( )
( ) ( ) ( )

b

c

u de
u x c e m sign s
u sign x x sign y y m sign s
e e y
e e y

= −⎧
⎪ = − −⎪⎪ = ⋅ − ⋅ −⎨
⎪ =⎪
⎪ = −⎩

&

&

 (7) 

the error system (6) will be gradually stable and the 
uncertain parameters are identified. In formula (7), 

1 2, 0m m >  and the switching surfaces are 1 2 2 3,s e s e=  = . 
Proof: Backstepping control method is applied to 

prove theorem 1. 
1) Set: 1 4w e= , so 1 1 4 4w e ae u= − − +& . Given 

Lyapunov function 2
1 1 / 2V w= , we get: 

2
1 1 1 4 1 4V w w ae e e= = − −& &    (8) 

1 1( )wα  is considered as virtual control to 1e . When 

1 1 1( ) 0w eα = = , 2
1 4 0V ae= − ≤& , so 4e  is gradually stable. 

2) Set: 2 1 1 1( )w e wα= − , which is the error of virtual 
control 1 1( )wα  and 1e . So 2 2 1 4 1( )w a e e de u= − + +& . 
There is not any uncertain parameters in 2w& , so we set 

2
2 1 2 / 2V V w= + , then: 

2 1 1 2 1 4 1
2 2
4 1 1 2 4 1

[ ( ) ]

[ ]

V V e a e e de u

ae ae e ae de u

= + − + +

= − − + + +

&

  (9) 
If 1 4u de= − , 2 2

2 4 1 1 2V ae ae ae e= − − +& . Then 2 1 2( , )w wα  
is considered as virtual control to 2e . When 

2 1 2 2( , ) 0w w eα = = , 2 2
2 4 1 0V ae ae= − − ≤& , so 1 4,e e  are 

gradually stable. 
3) Set: 3 2 2 1 2( , )w e w wα= − , which is the error of virtual 

control 2 1 2( , )w wα  and 2e . We get 3 1 2 1 3w ce e y e= − −&  

1 3 1 2ce x e y u− + + . Let 2 2
3 2 3( ) / 2cV V w e= + + , then: 

2 2 2
3 4 1 2

2 3 1 1 3 1 2[( ) ]c c c

V ae ae e
e c x e y e e y u e e

= − − − +

       − − + + +

&

&

 (10) 
If 2 3 1 1 1 2 1( ) ( ), cu x c e m sign s e e y= − −  = −&  and the 

switching surface is 1 2s e= , we will obtain: 
2 2 2

3 4 1 2 1 2 2 1 3( )V ae ae ae m e sign e y e= − − − − −&  
Now 3 1 2 3( , , )w w wα  is considered as virtual control to 

3e . When 2 4 2 3( , ) 0e w eα = = , we get 1 3 0y e = , so 

2 2 2 2 2 2
2 4 1 2 2 2 2 4 1 2( )V ae ae e m e sign e ae ae e= − − − − ≤ − − −&

1 2| | 0 0m e− ≤ ≤ . That is to say, 1 2, 4,e e e   are gradually 
stable. 

4) Set: 4 3 3 1 2 3( , , )w e w w wα= − , which is the error of 
virtual control 3 1 2 3( , , )w w wα  and 3e . We get 

4 3 2 1 2 1 3 3( ) ( ) bw be sign y y sign x x e y u= − + ⋅ − ⋅ − +& . Let 
2 2

4 3 4( ) / 2bV V w e= + + , then: 
2

4 3 3 3 2 1 2 1

3 3

[ ( ) ( )
]b b b

V V be e sign y y sign x x
e y u e e

= − + ⋅ − ⋅

       − + +

&

&

 (11) 
If 3 2 1 2 1 2 2 3 3( ) ( ) ( ), bu sign x x sign y y m sign s e e y= ⋅ − ⋅ −  =&  

and the switching surface is 2 3s e= , we obtain: 
2 2 2 2

4 4 1 2 3 1 2 2

2 3 3
2 2 2 2
4 1 2 3 1 2 2 3

( )
( )

| | | |
0

V ae ae e be m e sign e
m e sign e

ae ae e be m e m e

= − − − − −

−

    ≤ − − − − − −

≤

&

 

From the formulas (8)~(11), we can conclude the error 
system (6) is gradually stable under the control of 
formula (7). That is to say, system (2) and system (5) 
achieve complete synchronization. □ 

IV.  SIMULATIONS 

Considering MLS system (2) as the drive system and 
system (5) as the response system, we use formula (7) as 
the synchronization controller in simulations. The state 
initial values of two MLS systems are set as (2,4,6,8) and 
(9,7,5,3). In drive systems (2), the parameters are 

1, 0.7, 26, 1.5a b c d=  =  =  = . The response system (5) 
has two uncertain parameters and their initial values are 
set as ' 1, ' 20b c=  = . The function of Runge-Kutta 
algorithm in MATLAB is applied with the unit step of 
0.01. 

Firstly, the two MLS chaotic systems achieve complete 
synchronization when the proportion parameters are set 
as 1 21, 1m m=  = . Fig.7 shows that error systems of two 
MLS systems turn to zero gradually in about five seconds. 
Meanwhile the uncertain parameters 'b  and 'c  are 
identified to be 0.7 and 26 in Fig.8, which are same with 
those of drive system (2). 

Secondly, in order to increase the synchronization 
speed, we set 2 6m = . Other parameters and simulation 
speed are unchanged. Obviously, from Fig.9, the 
synchronization speed is faster than that of the previous 
simulation. The error 2e  turns to zero and parameter 'c  
is identified to 26 only in two seconds. 

Then we set 1 2 0m m= = , which means the switching 
surfaces of sliding mode control are omitted from the 
controllers. The simulation results are shown in Fig.10 
and Fig.11. Contrasting to Fig.8~11, two MLS systems 
are hardly to synchronize each other and parameter 'c  
can not be stabled to 26 without the sliding mode control. 
The contrasts indicate the importance and effectiveness of 
sliding mode control. 
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Figure 7. The plots of error systems when m1=m2=1. 
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Figure 8. The plots of uncertain parameters when m1=m2=1. 
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Figure 9. The plots of error systems and uncertain parameters when 

m2=6 
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Figure 10. The plots of error without sliding mode control. 
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Figure 11. The plots of uncertain parameters without sliding mode 
control 

  

V.  CONCLUSIONS 

A new modified Lorenz-Stenflo (MLS) system is 
proposed in this paper. Dynamical analysis shows the 
MLS chaotic system has the different chaotic behaviors 
from LS system and Lorenz system. Compared with the 
original LS system, the MLS system can be more easily 
implemented in electronic circuits and more practicable 
applied in secure communication.  

Based on adaptive control and sliding mode control 
methods, an adaptive sliding mode controller is derived to 
synchronize two MLS chaotic systems with uncertain 
parameters. The error system between two MLS chaotic 
systems is deduced using backstepping control theory. 
Numerical simulations are used to verify the effectiveness 
of the obtained controller. 
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