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Abstract—The tobacco distribution in China is organized by 
the tobacco company in the unit of city. The distribution 
cycle is commonly a week with five fixed distribution 
districts started from the center depot, and the routes in 
each district are fixed for the vehicles and drivers. This 
method with low efficiency and high cost has continued for 
several decades because of the poor technology and 
economic reasons. In this paper, we propose a feasible and 
optimal method for the tobacco distribution partition 
balance problem (TDPBP) by breaking the fixed partitions. 
An immune co-evolutionary algorithm (ICEA) is proposed 
to search the optimal partitions. Moreover, the decision 
support system (DSS) for partition balance is designed. 
Linfen city in China as a real-world case is proved that the 
DSS can discover the efficient distribution planning. The 
comparisons among three solutions, ‘Fixed’, ‘the DSS’ and 
‘Pure VRP’, further prove that the DSS is an effective 
decision support tool for TDPBP. 
 
Index Terms—decision support system, partition 
optimization, vehicle routing problem, immune co-
evolutionary algorithm, Geographic Information System  
 

I.  INTRODUCTION 

In this study we focus on a DSS aiming at TDPBP in 
China. TDPBP with Chinese specific characters is seldom 
studied before. In China, most cities still adopt fixed 
districts and fixed routes to organize tobacco distribution. 
The distribution cycle is five workdays of a week hence 
the region of city is correspondingly divided into 5 
districts. Although the old method dealing with fixed 
districts is convenient and simple, the efficiency is low 
and the distribution cost is high because of unbalanced 
workload. It is urgent to break the fixed districts by 
optimized partitioning methods. The proposed DSS helps 
the decision makers (DMs) to build optimal balanced 
partitions. 

In logistics system, partitioning is also a technique for 
vehicle routing problem (VRP) to choose targets for a 
single tour. A lot of attention has been given to the 
problem of determining efficient routes within a given 
district. However, more significant long-term savings can 
be achieved if the borders of the districts are optimally 
determined. Although VRP is widely studied, the studies 
are limited to the ideal parameters and the objectives. In 
particular, it is assumed that all parameters are given and 
the objectives are concrete, such as the total cost. And the 
VRP scheduling methods produce different routes 

passing though different customers for every execution. 
‘Pure VRP’ increases the cost to organize the 
transportation and delivery. Therefore, a periodic 
balanced partition is a better choice. For each districts, 
the vehicles, distance and time are minimized and 
balanced. Moreover, the district should form a better 
geographical shape without overlapping by each other.  

The remaining sections are organized as follows. In 
Section II, the background knowledge including related 
literatures and the problem is introduced. In Section III, 
the architecture of the DSS is proposed. In Section IV, 
Linfen city is studied to show the decision processes and 
the comparison shows the effectiveness of the DSS. 
Finally, conclusions and future researches are discussed 
in Section V. 

 

II.  BACKGROUND 

A.  Literature Review 
a.  Partitioning optimization 

Partitioning process divides a region into districts or 
assigns the detailers to different clusters to achieve some 
minimal/maximal objectives and balance the workload. 
Over the last four decades, some researchers from 
different fields have developed models, algorithms and 
applications concerning the techniques to group the 
elementary units of territory into larger districts. Typical  
literatures are summarized as follows: electoral or 
political districts definition in a country [1-4]; School 
districting [5, 6]; defining electrical power zones [7]; jails 
location districting [8]; waste collection districting and 
routing [9]; areas definition in metropolitan Internet 
networks for installing hubs [10]; areas definition for 
manufactured and consumer goods [11]; districting of salt 
spreading operations [12]; districting for home care [13] 
and urban emergency services [14].  

 
b.  Vehicle routing problem 

The common areas for routing optimization are the 
traveling salesman problem (TSP) [15] and the vehicle 
routing problem (VRP) [16-18]. They consider similar 
factors, such as minimizing transmitting distance, time or 
cost. Algorithm ‘inver-over’ [19] is reported to be an very 
effective method for TSP. Algorithm ‘sweep’ [20] is a 
popular and fast heuristic algorithms for VRP. 
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c.  Immune algorithm 

Artificial immune system (AIS) is a computational 
intelligence paradigm inspired by the biological immune 
system, and has been applied successfully to a variety of 
optimization problems [21-25]. Most of them are 
implemented based on three immune principles, the 
clonal selection [26], negative selection [21] and immune 
network [27]. Immune inspired co-evolutionary models 
are new mechanisms for algorithm design [28].  

 
d.  Co-evolutionary algorithm 

Co-evolutionary algorithm is believed as the 
development of traditional evolutionary algorithms, 
which behaves in a complicated and counterintuitive 
ways [29]. Many inspirations from biology, physics, 
chemistry, economics, sociology, anthropology, 
psychology and others are adopted as co-evolutionary 
mechanisms [29]. And the application areas vary in an 
adequate broad range [28, 30, 31]. It appears to have 
advantages over traditional evolutionary methods in 
dealing with the larger searching space, non-intrinsic or 
complex objective measures and searching space with 
complex structures.  

 
e.  Multi-criteria decision making 

A general MCDM model with competing objectives 
defined as functions of decision variable set x , can be 
represented as Eq. (1): 

Minimize: ( ) ( ) ( )( )1 1, , , kf f x f x f x Y= ∈L  (1) 
Subject to: ( ) 0, 1,2, ,ig x i m≤ = L   

 ( ) 0, 1,2, ,ih x i p= = L   
 , 1,2, ,L U

i i ix x x i n≤ ≤ = L   
Where, ( )1 2, , , nx x x x X= ∈L  is the decision vector, 

( )f x  is the objective vector, X  denotes the decision space 
and Y  the objective space. MCDM uses the concept of 
domination referred as Pareto optimality. For the problem 
defined in Eq. (1), considering two decision vectors, 

,a b X∈ , a  dominates b  (denoted as a bp , or else 
denoted as ca bp ) if and only if Eq. (2) is satisfied:  

( ) ( ) ( )( ) ( ) ( ) ( )( )i i i ii f a f b i f a f b∀ ≤ ∧ ∃ <  (2) 
A decision vector which is not dominated by any 

other decision vector is called Non-Dominated or Pareto 
Optimal. The family of all non-dominated solutions is 
denoted as Pareto-Optimal Set (Pareto set) or Pareto-
Optimal Front.  

 

B.  The TDPBP in China 
a.  The current situations 

In most cities of China, the tobacco distribution is 
organized in the unit of city and the city area is divided 
into five districts. The districts are fixed and partitioned 
by political districts because of poor transportation 
condition and unavailable GIS technology.  

Another situation is that a few companies have been 
set up VRP algorithms based systems for distribution 

scheduling. However the solution fails to solve the 
problem and the DMs fail to control the distribution time 
and managerial cost. The disadvantages of ‘real time 
VRP’ are prominent: (1) the ultimate ‘dynamic’ 
scheduling increase the time to find routes and locate 
detailers for drivers so that the real working time exceeds 
greatly the eight hours standard; (2) the managerial cost is 
increased; (3) the service quality to detailers is decreased. 

Therefore, both the “fixed” approach and the “dynamic 
VRP” scheduling fail to solve the problem optimally, 
hence the balanced partition method is proposed as a 
solution. 

 
b.  Multi-criteria decision making 

TDPBP must take into account the different constraints 
and objectives. In TDPBP, three important criteria must 
be optimized: (1) number of routes; (2) traveling distance 
of all routes; (3) working time of all routes. And four 
balance objectives among districts must be satisfied: (1) 
routes number; (2) traveling distance of all routes; (3) 
working time of all routes; (4) total tobacco demands. 

In another aspect, the balanced districts should support 
effective routing, which is measured by number of tours, 
traveling distance and time, and complied with capacity 
and time restrictions, etc.. In the managerial and 
operational view the districts should be ‘geographically’ 
compact and not overlapped with each other. 

Although the partition approach breaks the fix districts 
and routes, it should not change them too frequently. The 
balanced districts should be so robust that each district 
can resist minor changes of the number of detailers, the 
requirements and other operational principles or 
elements. 

III.  THE DECISION SUPPORT SYSTEM FOR TDPBP 

A.  The Multi-Criteria Decision Making Model 
The road map of the city is modeled as a graph from 

GIS. The partition problem is then to group road nodes 
into clusters, and each cluster is corresponding to a 
district. The elementary unit is therefore the vertex of the 
graph, while a pair of contiguous elementary units defines 
an edge of the graph or a road on the map. The basic 
information can be collected by GIS system.  

Only the vertices with associated detailers are 
considered. Therefore, the graph of original road map is 
simplified as ( , )G V E= , where { }0 1 2, , , ,

vPV v v v v= L  represents 
the set of vertices with associated detailers and 

{ }1 2, , ,
ePE e e e V V= ⊆ ×L  represents the set of edges, where 

,k i je v v=< >  represents two vertices iv and jv , ,i jv v V∈ , 
0v is the depot. { }1 2, , ,

vPQ q q q= L  represents the tobacco 
requirements of vertices summed from detailers. Another 
vector { }1 2, , ,

vPN n n n= L  is the number of detailers of vertex. 
The unloading time of each detailer is defined by unloadtP . 
On the arc set E , two property vectors are defined to 
represent the length and time of the arcs: { }1 2, , ,

ePL l l l= L  
and { }1 2, , ,

ePT t t t= L . 
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A cluster matrix is introduced to represent the relation 
between vertex and district. In the problem, the number 
of districts is 5dP = , and the districts is defined by 

{ }1 2, , ,
dPD d d d= L . Therefore, the cluster matrix can be 

defined as 
d v

ij P P
C c

×
⎡ ⎤= ⎣ ⎦ , where if jv  belongs to district id  , 

1ijc = , else 0ijc = . Every vertex belongs to only one 
cluster. Therefore, id  can be defined as a set of jv : 

{ }1, ,i j ij j ijd v c v V c C= = ∈ ∈ . 
For each district, the vehicle routing procedure is 

performed to get the distribution solutions. The capacity 
of the vehicles is uniform and defined by capacityP  and the 
working time limit of one tour is set to worktimeP . For each 
district, the optimized routes set is denoted as 

{ }1 2, ,i i
iR r r= L . For each route, the time on road, the 

unloading time, the served detailers, the route length and 
tour time can be computed by , , ,Q N L T  and unloadtP . ( )i

jQ r , 
( )i

jT r  and ( )i
jL r  represent the loading capacity, working 

time and tour distance. Therefore, for district id , the 
values can be defined and calculated: (1) the loaded 
tobacco ( ) ( )i

j i

i
i jr R

Q d Q r
∈

= ∑  is the total demands of the 
vertices; (2) the required vehicles or the number of routes 
( )i iR d R= ; (3) the working time ( ) ( )i

j i

i
i jr R

T d T r
∈

= ∑  is the work 
time of all routes including time on the road and 
unloading; (4) the total distance ( ) ( )i

j i

i
i jr R

L d L r
∈

= ∑  is the sum 
of all routes’ length. And the routes number, total 
traveling distance and work time of the partition D  are 
denoted by ( )R D , ( )L D  and ( )T D . 

Based on the above definitions, the partition balancing 
is defined as Eq. (3): 
 ( )1 2 7 , , ,Minimize f f f f= L  (3) 

(1) ( ) ( )1
i i

i id D d D
f R D R d R

∈ ∈
= = =∑ ∑  

(2) ( ) ( ) ( )2 i
i i j i

i
i jd D d D r R

f L D L d L r
∈ ∈ ∈

= = =∑ ∑ ∑  

(3) ( ) ( ) ( )3 i
i i j i

i
i jd D d D r R

f T D T d T r
∈ ∈ ∈

= = =∑ ∑ ∑  

(4) ( )( ) ( )( ) ( )4 i ii i id D d Df Std R d R d RStd Std∈ ∈
= = =

(5) ( )( ) ( )( ) ( )( )5 i
i i j i

i
i i jd D d D r R

f Std L d L d L rStd Std∈ ∈ ∈
= = = ∑

(6) 
( )( ) ( )( )

( )( )
6 i

i
i j i

i id D

i
jd D r R

f Std T d T d

T r

Std
Std

∈

∈ ∈

= =

= ∑
 

(7) 
( )( ) ( )( )

( )( )
7 i

i
i j i

i id D

i
jd D r R

f Std Q d Q d

Q r

Std
Std

∈

∈ ∈

= =

= ∑
 

 Subject to 

(1) 

{ }0 1 2, , , ,
vPV v v v v= L , 

{ }1 2, , ,
vPN n n n= L , 

{ }1 2 1, , , PQ q q q= L  

(2) 

{ }1 2, , ,
ePE e e e V V= ⊆ ×L , 

{ }1 2, , ,
ePL l l l= L , 

{ }1 2, , ,
ePT t t t= L  

(3) 
d v

ij P P
C c

×
⎡ ⎤= ⎣ ⎦

, 1,
i

ij jd D
c v V

∈
= ∈∑  

(4) { }1 2, , ,
dPD d d d= L , { }1, ,i j ij j ijd v c v V c C= = ∈ ∈  

(5) ( ) , ,i i
j capacity j i iQ r p r R d D≤ ∈ ∈  

(6) ( ) , ,i i
j worktime j i iT r p r R d D≤ ∈ ∈  

 

B.  ICEA Based Optimization Approach 
The model in the previous section is a multi-

objective optimization problem (MOOP). We design 
ICEA for TDPBP. Through native functions and the 
cooperative cytokine networks, the immune system is 
dynamically stabilized. In the following, the native 
function models including clonal selection, negative 
selection and immune memory, the cooperative searching 
techniques including cooperative variation, balanced 
variation, and cooperative communication techniques 
including feedback model are designed in the proposed 
algorithm. 
 
a.  General framework of ICEA for TDPBP 

The general framework of ICEA for TDPBP is 
defined in Algorithm 1, which shows two main stages: 
the construction of initial partitions (Step 1 and Step 2) 
and the cooperative searching among districts (Step 3~7). 
Algorithm 1. ICEA for TDPBP 
Step 1: Generated balanced sample point for each 

district; 
Step 2: Cooperative construction of districts with 

balanced demand; 
Step 3: Perform clonal selection on superior partition 

solutions; 
Step 4: Proliferate to generate new partition; 

Perform variance by affinity measures on the 
districts; 

Step 5: Deal with the new solution: elimination or 
accepted by immune memory; 

Step 6: Use feedback: if Pareto optimal solution is 
produced, Goto Step 4 

Step 7: If termination conditions are not satisfied, 
Goto Step 3. 

 
b.  Construction of balanced initial partitions 

In this stage, the initial balanced district partition set 
( PiSET ) is generated. The set size is set: initsetsP . The element 
in the set is { }1 2, , ,

dPi PD d d d= L , where 1id = , id  contains 
one vertex, called sample point of the district. For only 
one vertex in id , idv  is used to represent the vertex in id . 
Then, on id  a measure ( )iS d  is defined by 
( ) ( )min

d di jj i
i v vd d

S d l
≠

= . ( )iS d  is the shorted distance from id  to 
other components in PiD . The balance of the sample 
points is defined by the maximization and balance of 
distance among them. The distance of PiD  is 
( ) ( )

Pi
Pi d D

L D S d
∈

= ∑ , and the balance of distance is 
measured by ( ) ( )( )

Pi
Pi d DB D S dSTD ∈

= .  
Then, the left vertices are chosen to add to the initial 

districts. Inspired by immune system, immune unit is 
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introduced and affinity between vertices is defined. In 
immune system, some immune cells will gather together 
to form a group to detect or destroy the antigen. As an 
intuitive rule, the passing vertices from the depot to the 
far vertex should be scheduled in the same route with the 
vertex. Then, the vertices in the same shortest path form 
the depot are defined to construct an immune unit. The 
affinity between the vertices in the unit is high and set 1. 
We define this type of affinity between vertices in the 
same unit as Unit Affinity. Then, a matrix is defined to 
present the Unit Affinity: 

v v
unit ij P P

A a
×

⎡ ⎤= ⎣ ⎦ , if iv  and jv  are in 
the shortest path from the depot 0v , 1ija = , else 0ija = . In 
another aspect, if two vertices positioned nearer tends to 
belong to the same district. Distance Affinity ( distanceA ) is 
defined to present this relation: 

( )1 1
v v v v

distance ij ijP P P P
A a l

× ×
⎡ ⎤⎡ ⎤= = +⎣ ⎦ ⎣ ⎦ . The two affinity measures are 

adopted for cooperative district construction, as shown in 
Algorithm 2. 
Algorithm 2. Construction of balanced initial districts 
Step1: Generated balanced sample point for each 

district for 
geniP  times; 

 While 
Pi initsetsSET p<  and less than 

geniP  times 
   Randomly generate a new 

{ }1 2, , , , 1
dPi P iD d d d d= =L ; 

   If ( ) ( )( ),Pi PiL D B D  is a Pareto optimal solution 

to 
PiD SET∈  

 
Pi PiD SET→ ,

PiD  is added to 
PiSET ; 

 Eliminate the existing dominated ones; 
   End 
 End 
Step2: Cooperative construction of districts with 

balanced demands. 
 For each 

Pi PiD SET∈  
 While there is undistracted vertex 
   Computer ( )iQ d  on 

PiD  and choose district d  
with the lowest value; 

   Choose the vertex v  with the highest 
distanceA  

to d ; 
   v d→ : Add v  to d ; 
   Add the vertices 'v  with ( )( ) ( ), ' 1 'unitA v v v D= ∧ ∉  

to d ; 
 End 

 
c.  Cooperative searching among districts 

In the first stage, the initial districts with balanced 
demands are constructed, whereas other objectives 
(

1 7~f f ) are not optimized. In the second stage, all 

objectives and constraints are considered to generate 
Pareto optimal solution.  

Several concepts and procedures inspired by 
immune system are employed to design the cooperative 
searching algorithm in Algorithm 3. The partition 
solutions initialized from the first stages are used to 
construct the partition reservoir, denoted as P PiSET SET←  

(Immune Memory). The superior partitions generated 
later are added to it. And the procedure of immune clonal 
selection is performed on the superior ones in PSET  to 
generate new ones. The ratio of clonal proliferation is 

clonalP . The new superior ones update PSET . The 
proliferation is followed by immune variation to change 
the cell structure, the components of the partition. District 
Affinity ( districtA ) is defined to present the relation between 
one vertex and the district: 

( ) ( ) ( )( ), , ' , 'district distance unitv' V
A v d A v v A v v

∈
= +∑ . The vertex with 

lower districtA  has the higher probability 
( ( ) ( )( ), 1 1 ,exclude districtP v d A v d= + ) to be excluded. The districts 
cooperate to achieve the optimal balance status. Whereas 
there are three criteria to be minimized and four to be 
balanced, these criteria compete to further the 
optimization process. If a vertex with lower districtA  is 
excluded from a district and absorbed by another district, 
the relation between new partition ( n ) and original (o ) 
has three types: (1) n of fp , the new partition dominates 
the original one; (2) o nf fp , the original one dominates 
the new one; (3) c

n of fp , the un-dominated solution is 
generated. Correspondingly, there are three strategies. 
Algorithm 3. Cooperative searching among districts 
Step 1: Clonal Selection for 

gensP  times 
 Choose a Pareto optimal partition solution from 

PSET  
Step 2: Proliferation and variance for 

clonalP  times: 
Step 2.1: Randomly choose the objective { }, 1,2, ,7if i∈ L ; 
Step 2.1: Choose the district d +  with highest value on 

if ; 
Step 2.3: Choose the v d +∈  with the highest 

excludeP ; 
Step 2.4: Choose another d −  with the higher 

excludeA  to v ; 
Step 2.5: Move v  from d +  to d −  to construct a new 

partition; 
Step 2.6: If 

n of fp : the new partition replace the original 
one; Goto Step 1; 

 If 
o nf fp : the new partition is discarded; Goto 

Step 2; 
 If c

n of fp : the new partition is added to 
PSET ; 

Goto Step 3; 
Step 3 Clonal elimination: find the dominated solutions 

in PSET  and eliminate them 
Step 4: If the termination condition is not satisfied, 

Goto Step 1
 

C.  Architecture of the DSS 
The solution is based on the historical sales data and 

a professional GIS based system. The problem is model 
as a MCDM model and its Pareto optimal solutions are 
searched by ICEA. DMs use the GIS based system to 
choose the optimal partitions and make decisions. 
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Figure 1. The architecture of the DSS 
The DSS is composed of six main procedures, as 

shown in Figure 1. 
(1) Topology Generator loads the road layers by the 

GIS engine and then attracts roads to generate crossing 
nodes and road segments.  

(2) Shortest Path Generator generates roads between 
all pairs of road nodes at a single run based on the faster 
shortest path algorithms (e.g. ‘Floyd’).  

(3) Graph Model Generator generates a graph based 
on three types of data: road map, detailers and sales data.  

(4) ICEA is used to solve the MCDM model.  
(5) VRP Scheduler is implemented based on the 

algorithm ‘sweep’, the result of which is then improved 
by a TSP algorithm ‘inver-over’.  

(6) GIS Based Partition Analyzer represents the 
generated balanced partitions to DMs.  

In the implementation of the DSS, the trivial version 
of MapInfo Xtreme 2005 for Windows is used as the GIS 
Map engine.  

IV.  REAL-WORD CASE STUDY 

A.  Case Description and the Problem Scale 
As a demonstration, eight political districts of 

Linfen city in China distributed from the center depot 
were divided into five districts. The tobacco distribution 
center owned 30 vehicles with the capacity of 4500 to 
delivery about 500,000 tobaccos to more than 10,000 
detailers through the fixed districts and routes in every 
week. However, the loading ratio of the vehicles was 
lower than 75%. And the demands of districts were not 
balanced so that the workload in a week waved in a wide 
range. The working time of the drivers was hard to 
control varying from 3 to 12 hours. The pre-processing 
and statistic results representing the scale of the problem 
are summarized in Table 1.  

TABLE 1. PRE-PROCESSING AND STATISTIC RESULTS 
Pre-processing or statistic items Results 

Radius (center is the depot) (km) 130 
Road segments (arcs) 3026 
road crossing nodes (vertices) 2184 

vP : Road crossing nodes associated with detailers 814 
( )N D : Detailers number 10080 
( )Q D : Average tobacco demand/Week 472509 

 

B.  Parameters Setting 
The parameters are summarized in Table 2. 

Corresponding to five workdays of a week, the city areas 

are planed to be partitioned into five balanced districts. 
All vertices are connected bi-directionally. For a partition, 
VRP scheduling for every district of the partition solution 
is done by the fast ‘sweep’ algorithm [20] followed by an 
effective TSP optimization algorithm [19] for each 
generated tour. These two basic algorithms show 
promising performance and indeed ensure the entire 
performance of partition balancing. 

TABLE 2. THE PARAMETERS SETTING 
Parameter Corresponding value 

dP : the number of districts 5 

vP : numbers of vertices 814 

eP : number of arcs 661782 

capacityP : capacity of vehicle 4500 

worktimeP : working time limit for a tour (hour) 8 

unloadtp : unloading time per detailer (minute) 3 

initsetsP : size of the initial balanced partition 

set, DSi  
10 

geniP : generations for initial partitions 

searching 
1000 

gensP : generations for clonal selection and 

proliferation 
2000 

clonalP : proliferation copies 7 

VRP scheduling approach ‘Sweep’ algorithm 
TSP improvement method ‘Inver-over’ 

algorithm 
 

C.  Multi-Criteria Decision Making Processes 
a.  Pareto optimal partitions generation 

The Pareto optimal partitions are generated by ICEA, 
which can be separated into two stages: (1) initialization: 
cooperative search of initial partitions with only five 
sample points; (2) immune searching: cooperative search 
for Pareto optimal partitions.  

In these two stages, the variances of the initial 
partitions and Pareto partitions show the evolutionary 
processes of the algorithm. After the searching, only the 
non-dominated partitions are left, which is “Pareto 
selection”. In the real application, the Pareto partitions 
are also abundant, the parameters of previous processes 
are readjusted or additional rules are employed to reduce 
the solutions for the final purpose of decision supporting. 
In this study, these rules are employed: (1) the shape of 
the districts and the routes, (2) the relations between 
districts and routes, and the geography conditions 
including valleys, rivers and hills. The process by 
heuristic rules and GIS based rules is named by 
“Reduction by Domain Knowledge”. Finally, in the 
“interactive decision” (see Section IV.C.c), the system 
assists the DMs to include or exclude the solutions. In 
Figure 2 the varying of partitions and Pareto partitions are 
shown based on a 30 times test. In the ‘Initialization’ 
state, about 1000 partitions only with sample points are 
generated to search the optimal 10 solutions. In the 
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‘Immune searching’ stage, because of the 2000 clonal 
proliferation generations and the 7 clonal copies settings, 
more than 10,000 non-dominated partitions are generated, 
whereas most of them are dominated by the new ones 
except about 3,000 partitions as a average. At the end of 
co-evolutionary searching, only about 1,000 Pareto 
optimal partitions are left for interactive decision. After 
“Reduction by Domain Knowledge”, about 20 partitions 
are chosen for the final decision. After the final 
interactive decision only one balanced partition is left. 

900

10

10087

3040

0

1141

0

21

0

1

Initialization Immune
Searching

Pareto
Selection

Interactive
Decision

The 
Result

Partitions

Pareto
Partitions

Reduction by
Domain Knowledge

Figure 2. Partitions in different stages 
The main body of the proposed algorithm is the 

second stage. A large number of partitions are generated 
by cooperative searching among districts of superior 
partitions. In Figure 3, the varying curves of the five 
objectives are shown. The other two objective including 
the total and standard deviation of tours number have 
little prominent varying. In order to show the tendencies 
in one figure, the value of 2f , 3f  and 6f  are adjusted by 
multiplying constants so that the curve shapes are kept 
but more apparent. All the five objectives endure a un-
restrict decreasing curve to achieve better solutions. The 
curve of  STD  of demand drops apparently because in the 
initiation stage the unitA  is utilized for vertices 
agglutination. The varying of time and length is not so 
synchronous for the different speed of roads. From Figure 
3 it can be drawn that the proposed method is an effective 
solution for the multi-criteria partition balancing problem. 
In Table 3, the final Pareto partitions are shown with 
seven objectives. 

 
b.  Interactive decision making 

Although ICEA can produce Pareto optimal 
partitions as many as possible, most of them can not 
satisfy the DMs and at last only one partition is chosen. 
In this problem, there are rules can help DMs to make 
decision: (1) district, routes, vertices and detailers 
presenting tools; (2) queries between districts and other 
map layers; (3) interactive detail adjusting tools (e.g. 
moving of specific detailers or vertices between districts), 
etc.. 

In Figure 4, a chosen balanced partition (see Figure 
4(b)) is compared with the original fix partition (see 
Figure 4(a)).  
 
c.  The DSS via pure VRP scheduling 

Why not use the VRP scheduling method directly 
for whole area? The reasons includes: (1) the real 
distribution work is organized by the unit of five 
workdays of a week; (2) the “real time” VRP scheduling 
method generates different solutions for every time so 
that the drivers take more time to locate the detailers and 
to find the roads; (3) the “absolutely” dynamic solutions 
increase the managerial cost for cooperation among 

departments. In fact, the “dynamic VRP” scheduling 
method is a previous fail solution in the real case. 
Therefore, the periodic partition balance method is 
proposed to solve the problem. In the real application, the 
optimal partition solution and the routes of each district 
will be fixed for 3~5 months. The new detailers are 
associated to the nearest vertices. When the capacity of a 
route exceeds the limit, the detailers of the vertex with 
lower affinity to the route (defined like districtA ) will be 
moved to another route, and as a second solution a ‘free’ 
vehicle is set to deal with the excessive demands.  
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Figure 3. Co-evolutionary process of the partition set PSET  
TABLE 3. PARETO OPTIMAL PARTITIONS 

No. 
 

Partition (D) 
 

Districts ( id ) 

1f  
2f 3f 4f  

5f  
6f 7f

R(D) L(D)  T(D)  R[i] L[i] T[i] Q[i] 
1 115 11911 198.5  0 244 5.96 718

2 115 11897 198.2  0 268 6.25 754

3 115 11911 198.5  0 244 5.88 899

4 115 11911 198.5  0 244 5.88 899

5 116 12219 203.6  0.4472 162 3.61 3714

6 115 11897 198.2  0 167 3.76 1524

7 115 11897 198.2  0 190 4.26 1403

8 117 12366 206.1  0.5477 98 2.41 2661

9 117 12366 206.1  0.5477 102 2.63 1507

10 115 12012 200.2  0 178 4.13 1379

11 115 11911 198.5  0 244 5.88 899

12 115 11911 198.5  0 244 5.88 899

13 115 11911 198.5  0 244 5.88 899

14 116 12234 203.9  0.4472 60 1.76 3354

15 118 12224 203.7  0.5477 64 1.91 6149

16 118 12224 203.7  0.5477 82 2.06 6067

17 118 12224 203.7  0.5477 76 2.2 5660

18 118 12224 203.7  0.5477 76 2.2 5660

19 118 12224 203.7  0.5477 96 2.73 4386

20 117 12655 210.9  0.5477 103 2.13 2891

21 117 11948 199.1  0.5477 95 2.13 2008
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Note: ( )( )[ ] , { , , , }iA i Std A d A S R T Q= ∈  
 

(a) Fixed partition: eight political districts are reorganized as 
five districts. 

(b) Balanced partition: the balanced districts break the fixed 
partition; every district looks like fan sector with the depot as 

the center. 
Figure 4. The fixed partition and balanced partition: the 

asterisk is the depot, little circle presents detailer, bold border 
surrounded region is district. 

In Table 4, three distribution methods are compared: 
(1) “Fixed”: fixed districts and routes; (2) “The DSS”: 
periodic balanced districts and routes; (3) “Pure VRP”: 
dynamic routes by VRP scheduling method as a whole. 
Another measure “adjust time” is introduced to represent 
the time induced by the new or closed detailers. The data 
in Table 4 are the summary of real runtime data. 
Although the “Pure VRP” method achieves the best 
performance in total routes, load ratio and total time, 
however the adjust time is five times of the “Fixed” 
method for the dynamic routes, which make the maximal 
tour time exceeds the regular working time greatly. “The 
DSS” balanced partition method improves the “Fixed” 
method and can satisfy the other constraints for its 

adaptive ability to the minor changes. In the managerial 
and administrative view, the periodic balanced partition 
does not increase the managerial and distribution cost, 
and it accelerates the optimization of other managerial 
goals. In this view, the proposed DSS for partition 
balance optimization is valid and effective. 

TABLE 4. COMPARISONS OF PLANNING METHODS 
Planning methods Fixed Periodic Dynamic 

Total routes 150 117 110 
Load ratio 70% 90% 95% 

Time on road (h) 310 221 190 
Adjust time (h) 54 107 300 
Tour time (h) 3~5.12~10 3~7.1~8 3~9.03~11.5 
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V.  CONCLUSION 

In this paper, we propose a DSS for TDPBP. The 
architecture of the DSS with six modules is studied in 
details. The partition balancing of Linfen city in Shanxi 
province for tobacco distribution as a real-world case is 
studied. The comparison studies show the effect of the 
proposed DSS.  

As for future suggestions, the study generates two 
important points. First, the simplification and 
approximation of the problem may help to achieve better 
performance and decrease the decision time. Second, the 
stochastic simulation method can be introduced for the 
next generation of the DSS. 
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