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Abstract— This paper describes the implementation of a 
platform based on reconfigurable architecture and on 
concepts of virtual instrumentation and its application to 
the hands-free driving problem. The novelty of this 
approach is the use of both reconfigurable systems (for 
developing the car’s controller) and virtual instrumentation 
issues for developing a high-level abstraction testing and 
simulation environment. The implemented platform permits 
(a) to control directly the real vehicle using control 
commands that are sent using a keyboard and (b) to 
simulate the control process in a virtual environment, using 
a virtual instrumentation approach.  The car control system 
was developed in a microcontroller with several peripheral 
embedded in a Field Programmable Gate Array (FPGA). 
The communication between the FPGA-based control 
system and the car is accomplished through an electronic 
module, which comprises several insulating and power 
circuit boards.  The virtual instrumentation approach (for 
simulation and controller design objectives) was used for 
implementing a high-level abstraction simulation 
environment in LabVIEW tool, which allows representing 
the movement of the car in real time. The communication 
between the simulator and the controller is accomplished 
through a serial interface in which a RS-232 based protocol 
was implemented.  The user can send commands to the 
control system through a keyboard with a PS2 interface.   
This approach opens a great variety of possibilities to 
validate and simulate solutions for several problems in 
robotic and mechatronic areas. The tests and initial overall 
system validation were accomplished in the simulator 
environment. Then, the simulation results were compared 
with the movement variables of the real car, which were 
gathered in real time. This approach makes possible to test 
and to validate the control system with low cost and more 
safety.   

Index Terms— Reconfigurable Computing, Embedded 
Processors, Virtual Instrumentation. 

I. INTRODUCTION

This paper describes a new design flow for the design 
of complex systems, which involves the application of 
reconfigurable devices (for implementing the electronic 
control modules) and virtual instrumentation issues. 

The great complexity of the current systems, involving 
mechanical, electromechanical, electronic and 
computational parts, stimulates the introduction of new 

design methodologies.   An important point is that the 
design methodologies must offer high abstraction level 
for verification/simulation tasks during the overall 
design. Several hardware manufacturers offer design 
tools, allowing verification/simulation of the electronics 
system on a high abstraction level. Similar methodologies 
can be applied for the design of mechanical or software 
modules of a complex system. The problem becomes 
difficult for testing, validating or verifying the whole 
system. In this case it is possible to use the virtual 
instrumentation approach in order to represent the overall 
system (or part of it) on a high abstraction level.  

Virtual instrumentation tools (LabVIEW tool, for 
instance) allow to represent in real time several system’s 
parts such as instruments, displacement, kinematics 
behavior of the objects (as robots or vehicles), 
mathematical operations over the signals (digital and/or 
analogical), among others.  The signals coming from a 
controller can be routed to the virtual environment via 
data acquisition boards  and, in the same way, the 
simulator/emulator can send electronic  control signals in 
such a way to represent the current status of different 
virtual objects (such as electronic or mechanical parts, 
among others). Virtual instrumentation combines 
mainstream commercial technologies such as the PCs, 
with flexible software, and a wide variety of 
measurement and control hardware. Then, engineers and 
scientists can create user-defined systems, which meet 
their exact application needs. 

The complexity-increasing evolution can be observed 
in different areas of the design of complex system. In the 
case of digital design area, the use of reconfigurable 
architectures allowed the implementation of more flexible 
systems   based on FPGA (Field Programmable Gate 
Array) platforms. FPGAs provide an array of logical cells 
that can be configured to perform a given function by 
means of configuration bitstream. This bitstream is 
generated by a software tool, and it usually contains the 
configuration information for all components. An FPGA 
can have its behavior redefined in such a way that it can 
implement different digital systems on the same chip. 
Fine grain FPGAs allow the user to define a circuit at 
gate level, working with bit wide operators. This kind of 
architecture provides a lot of flexibility, but takes more 
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time to reconfigure than coarse grain reconfigurable 
platforms rDPAs ( reconfigurable Data Path Arrays or 
arrays) of rDPUs (reconfigurable Data Path Units) [2]. In 
coarse grain reconfigurable platforms, the user does not 
provide details at gate level but specify the configuration 
in terms of word wide operations; in other words, a 
functional unit is configured to operate over n-bit data, 
and the configuration just specifies one among a set of 
available operations. The amount of configuration bits in 
this case is much less than in the fine grain FPGAs.  
Some FPGAs allow for performing PR (Partial 
Reconfiguration), such that a reduced bitstream 
reconfigures only a given subset of internal components.  
FPGA devices have been used for automation and control 
system rapid prototyping and they make possible to 
develop high performance systems in short periods of 
time. Besides, it is possible to have a smaller number of 
devices at reasonable costs. 

Many current digital systems are based on the use of 
processors (based on the von Neumann Model), which 
are embedded in FPGAs, jointly with several hardware 
parts, described through HDL (Hardware Description 
Language) languages. The term SoC (System on Chip) 
[3] and [15] has been widely used in automation/control 
system design, communications systems, among others, 
which involves the use or implementation of different IPs 
(Intellectual Properties), and a full integration on the 
FPGA component. The SoC concept describes the fact 
that the whole functionality of the system is placed on a 
single chip. The structure of SoC devices with FPGA is 
fully flexible and can easily respond to changes in the 
control system logic. The capability of modifying the 
logic enables the control system to implement future 
additions with ease. Complex systems embedded into the 
FPGA, (eg. DSP, Soft/Hard processors among others), 
have been widely used in the industrial world.   

We applied our reconfigurable system technique (used 
to implement the car controller) and virtual 
instrumentation based design methodology to the hands-
free driving problem. Several research works are being 
developed on vehicle control design as well as CLMR 
(Car-Like Mobile Robot) [8], applying a variety of 
techniques based on complex mathematical models [10], 
neural networks [11] [13], genetic algorithms, fuzzy 
logic, to cite only a few. Steering a car is constrained by 
restrictions in the car's capability mechanism and the 
environment. Due to these reasons, it is very difficult to 
design a continuously global controller for a car in order 
to perform all the maneuvering behaviors. Over the years, 
numerous systems have been developed to provide 
automatic control for the hands-free driving problem of 
automobiles [6]. These systems automate either steering 
control (related to as lateral control), throttle and/or brake 
control (related to longitudinal control), and the clutch 
control. When the automobile control involves all partial 
control systems, it is called AHS (Automated Highway 
System) [12].   

Some researchers have reported the use of FPGA and 
LabVIEW applied to the either CLMR or hands-free 
driving problems. A FPGA implementation of a FGPC 

(Fuzzy Garage Parking Control) is discussed in [12]. The 
use of FPGA and LabVIEW is discussed in [9] for an 
accelerator control system design.   It is clear that the 
solution for this kind of problems is far from 
straightforward and requires multidisciplinary knowledge 
of the fields of control, automation, robotics and 
hardware and software design (see section 2). In the work  
of Petko [11] and Zhao [16], several partial results about 
a controller design (based on reconfigurable 
architectures) and a simulator (implemented on 
LabVIEW) were presented.  In this approach the 
developed simulator environment (based in virtual 
instrumentation) is used for simulation/verification tasks 
of the control system. Once the system is validated, the 
FPGA embedded control system can directly operate over 
the real vehicle.  

In section 2 the related work about vehicular 
automation are discussed. In section 3, the overall 
architecture of the system proposed here is described, it 
presents basic concepts of the proposed embedded 
architectural system in the FPGA and discusses the 
defined command set for the control system. Section 4 
describes the virtual environment for simulating the 
vehicle motion. Section 5 describes the communication 
protocol, which was defined for the simulation system 
environment.  Before concluding, sections 6 and 7 
describe our results and conclusions. 

II.  RELATED WORKS IN VEHICULAR
AUTOMATION 

There are two main tendencies in the vehicular 
automation area. In the first case, several vehicle 
automation systems have been proposed, which involves 
several developments allowing automatic vehicle 
maneuvers using both sensor systems and/or the 
trajectory planning applied for solving the vehicle 
automatic parking problem, among others. In the second 
case, several systems have been proposed and 
implemented for developing driver assistance systems for 
helping the driver for parking maneuvering and/or 
roadway guidance.  

In the work of Gu and Hu [7], a vehicular automatic 
parallel parking system was adapted for installation either 
as a factory option or as a retrofit kit. A microprocessor-
based controller exercises control over a hydraulic system 
for controlling vehicle's power steering cylinder. The 
system only controls the steering wheel and does not act 
over the clutch, brake, throttle and gear systems.  This 
work does not report information about HMI (Human-
Machine Interface) for monitoring the parking process. 
For parking task, sensors automatically provide inputs 
representative of the transverse and longitudinal 
relationships between the driven vehicle and the parked 
vehicle. The developed PSS (Parking Sensor System) is 
based on ultrasonic sensors.  

In the work of Shimazaqui [24] a parking assistance 
system is shown, providing a driver with guidance on a 
driving operation in lateral parking. The system provides 
a camera mounted for monitoring a backward movement 
and a HMI for driving assistance during lateral parking 
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maneuver.  Otherwise, the approach does not implement 
a real control system for steering wheel, clutch, throttle 
and gear systems.  

In the work of Tanaka et al. [25] a parking assistant 
system is reported that comprises a camera for capturing 
the rear view, a steering wheel position/speed sensors for 
monitoring  the current status and a controller, which is 
implemented via a embedded computer in the vehicle.  
The control system acts over the steering wheel, brake 
and   throttle systems but the control over the clutch is not 
reported.  

In the work of [17] the concepts of AVC (Automatic 
Vehicle Control) are applied in the implementation of the 
PATH system (Program on Advanced Technology for 
Highway). In this approach a control program was 
developed for both lateral and longitudinal (spacing and 
speed) control and it is only applied in automated 
roadways. Lateral control maintains the vehicle in the 
center of the lane (lane-keeping maneuver) and steers the 
vehicle to an adjacent lane (lane-change maneuver), 
while maintaining good passenger comfort at all times. 
The lateral control work is focused on the concept of 
cooperation between the vehicle and the roadway, with 
an intelligent vehicle receiving much of the information it 
needs from special elements installed in the roadway (for 
instance, magnetic markers embedded under the roadway 
for lateral guidance). Longitudinal control involves 
regulating the vehicle speed to keep proper spacing 
between vehicles. Then, a longitudinal spacing control 
system is developed, which involves sensors and 
mathematical models for the power-train (including 
internal combustion engine dynamics and tire/road 
frictional interface).  

In the work of Wada et al. [19] a driver assistance 
system to aid in the vehicle parking process is proposed, 
which maintains the driver in the vehicle control loop. 
The system involves sensor devices and path planning 
algorithms for driver assistance issues, which also 
provides a HMI (Human-Machine Interface) for guiding 
the driver during the parking process in predefined 
parking bay.  

In the work of Han et al. [18] a reliable automated 
steering control system was developed for the PATH 
system, which attends several requirements. The control 
system requires road markers or any other kind of road 
indicators in order to define the road. Additionally, the 
implemented system requires sensors in the car, 
recognizing the road markers and intelligence in the 
controller for driving the steering actuators, which steer 
the wheels. 

The different related solutions can involve several 
levels of the automation issues. For example, neither the 
works of Wada et al. [19] nor [24] involve a development 
approach with regards to the automation of the steering 
wheel, the clutch, the brake or the throttle. Otherwise, the 
work of [7] only implements a hydraulic controller of the 
steering wheel. In contrast, the works of [19], [24] and 
[25] implement the HMI for the systems. In all works 
cited above, the control systems were developed for 
working with internal combustion engines except the 

work of [19], which can be adapted for other kind of 
engines. 
Recently, Amudha et al. [21] discuss the use of FPGAs 
and microcontrollers embedded in FPGAs for different 
applications and focuses on soft core processors. 
Murakami [22] designed the redundancy controller  in 
hardware for humanoid robot applications. Han et al. [23] 
has been implemented in a DSP-based embedded system 
to recognize five facial expressions on-line in real time 
for Robotic Emotion Recognition.  

Finally, all the systems use an embedded computer in 
the car for implementing the control system for their 
applications, without exploring reconfigurable 
architecture techniques. Additionally, none of the works 
report the development of environments for simulation 
and/or verification issues.  

III. THE PROPOSED EMBEDDED ARCHITECTURE 

The overall control system is composed of an 
embedded control system based on the soft-embedded-
processor Microblaze [14], which is implemented in a 
Spartan 3–based FPGA, and a virtual simulator 
environment implemented in LabVIEW. The architecture 
is shown in Figure 1, where a communication system is 
implemented using RS232 standard. Additionally, a 
keyboard is used for sending pre-defined commands to 
the control implemented in the FPGA. 

The embedded microprocessor implements the main 
control of car tasks in software functions, namely: brake, 
clutch, steering wheel, gear and throttle sub-systems of a 
real vehicle. Each function was written in C language in a 
structured software approach. Several hardware modules 
were incorporated to the hardware design during the 
project specification: RS232 interface, buttons, display 
using the EDK tool (Embedded Design Kit) options [5], 
and so on. Finally, a specific keyboard module described 
in the hardware description language VHDL was added 
to the controller design. 

Figure 1. The Overall System Architecture 

A simulator environment was developed in the 
LabVIEW system and it is connected to the controller 
through a RS-232 based interface. Additionally, a 
communication protocol was defined to achieve the 
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communication between the controller and the simulator. 
In this case, both simulator and the controller exchange 
information using a predefined data-package format. 
Figure 1 shows this approach, where the motion 
controller can be accessed using the operator interface, 
which includes a keyboard for editing control commands 
and a display for monitoring the status variables. The 
controller can interface with both the real car and the 
simulator tool that was implemented in LabVIEW. 

The control module was defined using the EDK tool 
[5], in which the Microblaze processor is the system core. 
This processor has a RISC architecture with 32-bit 
general purpose registers, an ALU (Arithmetic Logic 
Unit), a shift unit, interrupts, among other possible 
peripherals. The EDK tool is an embedded development 
environment that includes a library of peripheral IP cores, 
where the Xilinx Platform Studio tool is employed for 
intuitive hardware system creation. Additionally, a Built-
On Eclipse software development environment, GNU 
compiler and a debugger are also included. Figure 2 
depicts the system, which includes the embedded system 
in the FPGA, the user interface and the communication 
with the simulator environment. 

Figure 2. The embedded system and its interface 

A.  The hardware System of the Controller 

The architecture of the embedded motion controller 
system is shown in Figure 3, which was designed and 
synthesized using the EDK. The communication of the 
processor with peripheral devices is achieved by the OPB 
bus (On-chip Peripheral Bus). There are several hardware 
peripherals related to the FPGA-based board resources 
such as display, keyboard, RS232, push-buttons, dip-
switches and leds.  The processor controls the operation 
flow of the system by running different special designed 
software functions, which were written in C language and 
stored in the bRAM-block (see Figure 3). The leds, 
display and pushbutton modules were automatically 
generated by the EDK system. On the other hand, the 
keyboard module was first described in a VHDL (Very
High speed integrated circuit Hardware Description 
Language) file implementing the PS2 protocol and then 

included as a peripheral device in the overall design. The 
PWM blocks are responsible for generating modulated 
speed control signals of the DC-motors related to the 
throttle and gear devices. The PWM signals were 
implemented using Microblaze’s timers, which can be 
added to the design according to the system needs. In this 
case, only two PWM modules have been generated; 
further details can be found in [20]. 

Figure 3. The Motion Controller System on the Spartan 3 based board  

B.  The Software Modules of the Controller 

Once the processor system was configured and your 
peripherals were defined, all programming was made in 
standard C language, compiled and tested inside of the 
EDK environment. The module descriptions are the 
following (see figure 4):  

  

Figure 4: Software Project of the Control  

a)The brake.c module:  it receives a defined command 
to operate the car-brake (see section 3.C). The 
module verifies the current position of the brake and 
it gives the proper direction to the actuator. A PWM 
(Pulse-Width Modulation) signal is used to control 
the actuator-speed. 

b)The clutch.c module: it receives commands from the 
user (see section 4) and verifies the current position 
of the clutch, executing a special procedure to drive 
the pneumatic-system. This module has an alternative 
way to execute the clutch control by a stepper-motor.  

c)The steering.c wheel module: it receives defined 
commands (see section 3.C) to achieve a user-
defined position. The module verifies the current 
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position and it gives the proper direction to the wheel 
actuator.  

d)The throttle.c module: It works in two stages: the 
first one works for controlling the butterfly valve 
position, which is measured by a potentiometer.  The 
second one executes a control strategy, where a 
rotation reference is set by the user. Then, the system 
controls the position until the required rotation is 
accomplished. A PWM signal is used to control the 
actuator-speed.  

e)The gear.c module: this module receives the 
command of the operator (see section 4) and verifies 
the current position for changing the gear-position. 
This is achieved by two DC-motors, which move the 
gear-lever in the X and Y axis in a predefined way. 
The DC-motor’s speed is controlled by two PWM-
signals.  

Fig. 5 shows the C code of the gear module (the gear 
function). The gear position is defined in the x, y axis, 
which represent columns and rows respectively. The 
definition of the new-gear position is defined in lines 3 to 
21 (see Figure 5), where the first, second, third, fourth, 
neutral and reverse gears are identified. 

Figure 5. The C code of the Gear Module 

The state variables pos_x_gear and pos_y_gear are 
used for representing the current gear-position. In the real 
car the positions are measured by means of two 
potentiometers (for x and y axis). The potentiometer 
sensors (adapted in the real car) send values, which are 
compared with predefined constants, namely POS1X, 
POS2X, POS3X, POS1Y, POS2Y and POS3Y. For 
instance, lines 3 to 8 identify if the current gear is the 
first-gear. The other gears are identified in lines 9 to 21 
(including the reverse and unknown gears).  When the 
new gear position is defined the system starts the process 
in order to achieve the new gear position. Lines 28 to 35 
show the process to accomplish the first gear where the 
adjust_pwm_gear function is called with parameter “Y” 
for controlling the corresponding DC motor, sending an 
appropriated PWM signal (see line 33). The same 
program also tests if the current position is equal to the 
desired one, which is indicated by the new_gear variable 
(see line 22). In this case the adjust_pwm_gear function 
is called for stopping the DC motor movement, using the 
“P” parameter (see line 23). 

C. The Commands for Interface Control System 

Several commands were defined in order to control the 
car and their definitions, whose specific syntax and 
semantics are described in table I and II. The commands 
are organized into two sets, describing both automatic 
and manual modes (see tables I and II, respectively). 

The first mode defines commands for debugging 
actions, including arrow keys for increasing/reducing the 
current positing of steering wheel, clutch and engine 
rotation, among others. The second mode defines 
commands for using either via keyboard or into a C 
program. In this case each command was implemented in 
a dedicated C function, using two parameters (x and y, 
see table I). For example, the command related to the 
clutch (EBxy) can have the parameter x defined as A, B
and C, indicating three different semantics: press the 
clutch, fast disable of the clutch, and disable the clutch 
until y % of the final position, respectively (see table I). 
The parameter y is only valid for the third case (EBCy, 
see table I), where the y parameter represents the final 
position that the clutch will reach. 

The commands are sent by the user using the keyboard 
and then the Microblaze identifies and processes them, 
before sending the appropriate control signals (to the 
actuators) using the RS232-base protocol for the 
simulator environment. For the real car the signals are 
directly sent in parallel, using the expander connectors of 
the FPGA-based board. 

IV. THE SIMULATOR ENVIRONMENT 

The main task of the simulator environment is to 
simulate the kinematics and general behavior of the 
vehicle in normal situations. The concepts of Virtual 
Instrumentation, by programming in LabVIEW 
environment, were applied in order to generate the 

1 void gear(Xuint8 gear) {
2 current_columm = 0; 
3 if(pos_x_gear == POS1X)  
                     { // init the gear-position identification process 
4    if(pos_y_gear == POS3Y) new_gear = 1;    
                     // the first gear 
5    else if(pos_y_gear == POS1Y) new_gear = 2;  
6    else new_gear = 'U'; // unknown gear 
7    current_columm = 1; 
8 } 
9 else if(pos_x_gear == POS2X) { 
10    current_columm = 2; 
11    if(pos_y_gear == POS3Y) new_gear = 3;  
12    else if(pos_y_gear == POS1Y) new_gear = 4;  
13    else if(pos_y_gear == POS2Y) new_gear = 'N';   
                  // the neutral gear  
14 } 
15 else if(pos_x_gear == POS3X) { 
16    current_columm = 3; 
17    if(pos_y_gear == POS3Y) new_gear = 5;  
18    else if(pos_y_gear == POS1Y) new_gear = 'R';  
19    else new_gear = 'U'; 
20 } 
21 else new_gear = 'U';    
                      // unknown gear 
22 if(gear == new_gear) {    
                        // the new position was achieved 
23  adjust_pwm_gear('P'); 
24  • • • 

25                                 • • • 

26                                 • • • 

27 } 
28 // First_gear Treatment 
29 else if(gear== 1) {      
                         // to accomplish the new position 
30         if((current_columm == 1 && pos_y_gear < POS3Y) 
                                         || 
                               (current_columm>1 && pos_y_gear< POS2Y)) { 
31         if(current_columm == 1) 
                                      dif = POS3Y – pos_y_gear; 
32         else dif = POS2Y – pos_y_gear; 
33                     adjust_pwm_gear('Y'); 
34   • • • 

35  } 
36               • • • 

37 } 
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appropriated signals, according to the control and status 
variables.  

TABLE I 

COMMAND-LINES FOR THE CONTROLLER 

Syntax 
Parameter 

1  
(x) 

Parameter 
2  

(y) 
Semantics 

DIxy D, E or C 
integer of 
0 to 60 

Turn the front-wheels 
right in x degrees (x = D), 
or turn the front-wheels 
left in x degrees (x = E), 
or align the front-wheels 
(x = C). 

FRExy 0 or 1 - 
FRE‘1’:  press the brake 
or   FRE‘0’ –  release the 
brake  

ACxy B or R 

0 - 100  
If x = b. 

0 – 9999 
 If x = r 

ACBy:  put the throttle 
butterfly valve at y% of 
the maximum position.   

ACRy: activate the 
throttle butterfly valve 
until the rotation reaches 
a y value 

CABxy 0  to  6 - 
CABx: put the gearshift 
at x position. 

EBxy A, R or C 
0 – 100 
if  x =  C 

EBA: press the clutch. 

EBR: execute a fast 
disable of the clutch. 

EBCy: disable the clutch 
until y % of the final 
position. 

Cxy  or 
Fxy 

A, C or F  

0 - 100  
for Cx 

1 – 9999 
 for Fx 

Cxy: modify PWM duty 
cycle at y% for:  a) the 
brake (x = F), b) the 
throttle valve (x = A) and 
c) the gear (x = C). 

Fxy: modify the PWM 
frequency for:  
a) the brake (x = F). 
b) the throttle valve (x 

=A).  
c) the gear (x = C). 

The frequency is 
modified for y KHz 
(LabVIEW or the 
real car). 

Pxy A or R 
positive  
integer  

PAy: rotate the clutch 
steeper motor actuator y
steeps in the up direction.  

PRy: rotate the clutch 
steeper motor actuator y
steeps in the reverse 
direction. 

The general structure of the simulator environment 

system is depicted in Figure 6. The architecture is defined 
by the global-variable-module, the serial-module, the 
signal-variable-module and the trajectory-module (see 
Figure 6). 

TABLE II 

MANUAL COMMANDS 

Syntax Semantics 

↑ Increase the engine rotation 

↓ Reduces the engine rotation 

← Rotate the  front-wheels to the left 

→ Rotate the front-wheels  to the right 

W Move the gearshift to the up side 

S Move the gearshift to the down side 

A Turn the gearshift to the left 

D Turn the gearshift to the right 

Space  press/release the brake 

E press the clutch  

Q Fast release  of the clutch 

1 Put the first gear position 

N Put the neutral gear position 

R Put the reverse gear position 

The global-variable-module allows the communication 
among the all other modules, representing the status 
variables in 8-bits words.  The serial-module performs 
the communication though the serial based protocol, 
allowing the user to configure several parameter such as 
bits per character, start/stop bits, parity and bit rates for 
transmission.   Data are transmitted in a RS-232 interface 
and the receiving bytes are separated and interpreted by 
the module following the defined protocol (see sec. V).   

The communication process executes four steps in 
sequence: open-serial-port, receiving-data, separating-
bytes and close-serial-port (Figure 7 shows these steps). 
Whenever the close-serial-port steep is executed the 
module executes the open-serial-port steep again. 

Where: 
• φ is the angle of the wheels; 
• θ is the vehicle angle with regard to the X axis; 
• is the distance between the vehicle center to the Y

axis 
• y  is the distance between the vehicle center to the X 

axis; 
• l the distance between the vehicle’s wheels; 
• v is the vehicle speed. 

Some parts of the trajectory-module were directly 
implemented in C language in order to represent the 
canonical equations.  

( ) ( )
.

.cos .cosx v θ φ=
               (1) 

( ) ( )
.

.sin .cosy v θ φ=
                 (2)  

. sin
.v

l

φ
θ =

                          (3) 
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Figure 6. The general architecture of the simulator environment 

Figure 7. The internal structure of the simulator 

Fig. 9 shows the LabVIEW   sub-module of the throttle 
control in the virtual car, where a C code was embedded 
in the LabVIEW VI (Virtual Instrumentation). 

The loops in each module are executed with a rate of 
1KHz, allowing the user to define speed parameter for the 
virtual actuators. For instance, if the user needs to 

increment the throttle variable in 50 units per second then 
the variable is increasing at 0.05 units per execution 
cycle. The user's interface of the simulator environment is 
shown in Figure 10 and it represents the car position and 
several blocks for monitoring the current engine rotation, 
gear position, throttle, among others. 
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Figure 8. The Kinematics Variables using the three canonical equations 

Figure 9. Software Structure of the Virtual Simulator Environment – 
The Throttle Control 

Figure 10. The user interface in the LabVIEW 

V. THE COMMUNICATION PROTOCOL FOR THE 
SIMULATOR SYSTEM 

A communication protocol was defined in order to 
implement a full-duplex communication between the 
control module (FPGA) and the LabVIEW program. The 
controller sends to the LabVIEW a 3-bytes package, 
where the first one represents a specific car state-variable, 
encoded in 4 bits (namely, front-wheel_1, front-wheel_2, 
x-position of the gear, y-position of the gear, brake-
position and clutch-position) (see  Figure 11). The second 
byte represents the information for controlling the clutch, 
in which the 4-most-significant bits are used for the 
stepper-motor signals and the other bits for electro-valve 
system control.  

The last byte is used for generating and sending PWM 
signals for the throttle (2-bits), steering wheel (2-bits) and 
brake (2-bits). In this case, the first bit of the throttle is 
used to represent the direction and the second is used for 
generate the properly PWM signal.  Given that the 
packages are sent in a sequence, the simulation 
environment program is capable to rebuild the PWM 
signal using only one bit in the serial communication.  

On the other hand, the information coming from the 
simulation program (the feedback of the state variables) 
is encoded using two bytes (see Figure 12). The first byte 
is used to encode a specific state variable (front-wheel_1, 
front-wheel_2, x-position of the gear, y-position of the 
gear, brake-position, and clutch-position), using the 3-
most significant bits. The second byte represents the 
current value of the corresponding state variable (for 
example, the clutch variable). In this case, the program 
responds to the controller about the required state 
information. 

VI.  RESULTS FROM SIMULATION AND REAL
TESTS 

The results obtained with the implementation of the 
system were distributed in four topics:  FPGA synthesis 
results, testing car results, simulator environment results 
and simulator-results vs. real-car-results.  

A.  The FPGA Synthesis Results 

The FPGA synthesis results were obtained in the EDK 
project report [14]. The results are shown in Tab. 3 for 
the main modules of the control system, where a Spartan 
3 device (xc3s200ft256-4) was employed for the 
hardware implementation of the controller.  

The main resources consumption is related to the 
Microblaze implementation. The clock frequency is 
shown for each implemented device. The results (in 
percentage of the total of resources available in Spartan 3 
device) are related to slices, slices-flip-flops, LUTs, IOB, 
Ram-Blocks (Bram). 

There are also timing results for each hardware 
modules (for instance, microprocessor and PWM 
modules). 
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Figure 11. The protocol structure to send data from Microblaze to the simulator 
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Figure 12. The protocol structure to send data from the simulator to the Microblaze 

In this case, the critical frequency (the lowest 
operation frequency) is for the 7-segment driver (about 
68 MHz, see line 6, column 7), representing the global 
timing constraint for the overall system.  Given that the 
used FPGA based board works at 50 MHz, this critical 
frequency has not impact in the control device and does 
not represents a bottleneck in the overall control system 
performance. Table III depicts only a peripheral 
implementation for one PWM signal, but additional 
PWM devices can be easily added in the design 
depending on the requirements.  

TABLE III 

SYNTHESIS RESULTS IN THE EDK TOOL 

Module 
Slices 
(%) 

Slices 
flip-
flops 
(%) 

LUT
s 

(%) 
IOB 

BRAM 
(%) 

Max 
Freq 

(MHz) 

Microblaze 43 14 29 751 0 91.128 

BRAM-
block 0 0 0 119 66 203.707 

DIP-
Switches – 

8 bits 
2 1 0 119 0 135.612 

Push_Butto
ns – 3 bits 

2 1 2 64 0 138.927 

Interface_I/
O 10 8 2 285 0 134.953 

Opb_7 
segled_0 

9 4 5 69 0 68.362 

Ps2_Keybo
ard_0 2 1 1 64 0 100.120 

PWM_I/O 2 1 0 98 0 138.658 

PWM_time
r_0 

13 8 7 67 0 98.348 

B.  The Simulation Environment Results 

The simulator environment results are shown in Figure 
13 as a sequence of illustrations demonstrating the 
vehicle movement controlled by the same commands 
shown in tables I and II. Figures 13.a to 13.h show the car 
in the simulation environment, moving through the 

window area. A command sequence was sent through the 
keyboard in order to simulate a parking maneuver. Figure 
13.h shows the final position of the car. All the 
commands were executed in the manual-mode set (see 
table II). 

C.  The Testing Car Results 

Tests of car movement control were accomplished 
with the objective of validating the movement controller 
and evaluated the feasibility of the system. The vehicle 
was controlled through commands sent through the 
keyboard. Figure 14 shows a sequence of images of the 
film of the car movement test. In Figure 14.a the car is 
stopped whereas Figure 14.b shows the car beginning the 
movement (the processes to accomplish the first-gear was 
already finished). Several maneuvers are shown in 
Figures 14.c to 14.h, which imply the use of the clutch, 
the steering wheel and the brake. All the commands were 
sent to the FPGA embedded controller through the 
keyboard.  

D.  Simulator-results/Real-car-result (comparing the 

results) 

Fig. 15 allows the performance comparison between 
the real car and the simulator environment for a specific 
case. Figure 15.a shows the position signal of the throttle 
transducer (using a mathematical model of a real 
transducer), obtained in the simulator environment.  
The throttle position was changed through the time and 
the maximal acceleration was obtained between 100 and 
125 seconds after the throttle position change. On the 
other hand, Figure 15.b shows the real signal coming 
from the throttle transducer (the real throttle 
potentiometer). Notice that acceleration and deceleration 
curves are very similar. Both signal amplitudes (from the 
simulator and the car) were obtained using 8-bits 
resolution (the value of maximal acceleration signal is 
255). 
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Figure 13. The Simulator Environment Results 

Figure 14. Results of Car Test 
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(a) The throttle signal in the simulator                        (b)The throttle signal in the car 

Figure 15. Comparing throttle behavior of real car and the simulated car 

VII.  CONCLUSIONS 

A completed car control system was implemented 
using a FPGA-embedded processor. The implemented car 
motion system comprises the steering wheel, clutch, gear, 
brake and throttle subsystems. To accomplish the 
controller’s implementation, specific commands (whose 
syntax and semantics were defined in this work) allow 
the maneuvering of the car. The commands can be also 
used into the control program running in the embedded 
microcontroller. That is, the commands are really specific 
functions that are implemented in C language and allow 
the implementation of the automation strategies of the 
car. This approach permits to use the commands in order 
to follow a previously defined trajectory, which is 
fundamental for automatic parking maneuvering issues 
and to solve the hands-free driving problem. Regarding 
HMI, the implemented controller provides monitoring 
facilities for the different status variables (for steering-
wheel, the throttle, the clutch, the brake and the gear) in 
both cases: the real car and the simulator in a similar way 
as reported in [19] and [25]. One important and original 
contribution of this work is that it implements the whole 
automation of a normal car, even with a mechanical gear. 
The results of this research can be easily applied in the 
case of people with disabilities, which need to drive 
adapted cars. 

The simulator allowed the overall system validation in 
a high abstraction level, very close to the real situations. 
Virtual instrumentation based in LabVIEW is a powerful 
tool for representing the reality, and to the best of our 
knowledge, no similar simulation system can be found in 
the literature that allows the validation of a complex 
control system on this abstraction level. 

Additionally, a RS-232 based protocol was defined 
and tested to allow the user to send the commands to the 
controller (by typing in a keyboard). The same protocol 
allows the controller sends predefined data packages to 
the LabVIEW environment in order to update the current 
status of the virtual car in real time.   

The tests in the simulator and in the real car have 
shown the suitability of this design flow for validating 
complex mechatronic designs with a high reliability and 
safety. Several low level security strategies can be added 
to the current system for avoiding accident (e.g. collisions 
and critical situations) and these strategies can be also 
introduced into the simulator environment. 

Otherwise, FPGAs are very suitable devices for 
implementing several automation and control techniques 
due to the fact that allow for embedding both typical 
microprocessor such as ARM family [1] and DSPs. In the 
last case, DSPs allow the implementation of specific 
algorithm for digital signal processing using several 
embedded resources such as multipliers and adders. 
Hence, FPGA approach opens a wide variety of 
possibilities for implementing, validating and simulating 
solutions for several problems in the robotic and 
mechatronic areas. 

REFERENCES

[1] Altera, 2009. Available at http://www.altera.com. 
Accessed in May 2009. 

[2] Becker, J. and Hartenstein, R., 2003, “Configware and 
Morphware going mainstream”. J. Sys. Arch. 49: 
pp.127-142. 

[3] Donecker, S. M., Lasky, T. A., Ravani, B., 2003, “A 
Mechatronic Sensing System for Vehicle Guidance 
and Control”. IEEE-Transactions on Mechatronics, 
Vol.8, n.4, December, pp. 500 – 510 

[4] Dudek, G. and Jenkin, M., 2000, “Computational 
Principles of Mobile Robotics”. Cambridge 
University Press, Cambridge, UK. 

[5] EDK, 2009, “Platform Studio, User Guide”. Available 
at www.xilinx.com/ise/embedded/edk_docs.htm. 
Accessed in April 2009. 

[6] Giove, D., Martinis C. D., Mauri, M., 2004, 
“Reconfigurable Hardware Resource in Accelerator 
Control System”. EPAC, Lucerne, Switzerland, pp. 
701 – 703. 

370 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER



[7] Gu, D., Hu. H., 2002, “Neural Predictive Control for a 
Car-like Mobile Robot. International Journal of 
Robotics and Autonomous Systems”, Vol. 39, No. 2-
3, May,  pp. 1–15. 

[8] Li, J. H, Lee, Li, P. M., 2005, “A Neural Network 
Adaptive Controller Design for Free-Pitch-Angle 
Diving Behavior of an Autonomous Underwater 
Vehicle”. Robotics and Autonomous Systems. 
Elsevier, 52, pp. 132 – 147. 

[9] National Instruments, 2009. Available at 
http://www.ni.com./labview/whatis/.  Accessed in 
May 2009. 

[10] Paromtchik I. E., Laugier C., Gusev. S. V., Sekhavat 
S., 1998, “Motion Control for Autonomous Car 
Maneuvering”. Available at 
http://citeseer.ist.psu.edu/184744.html. Accessed in 
April 2009. 

[11] Petko, M., Uhl, T., 2001, “Embedded controller 
design-mechatronic approach”. IEEE, Second 
Workshop on Robot Motion and Control, pp. 195 – 
200. 

[12] Tan, H.S., Guldner, J., Patwardhan, S., Chen, C., 
Bougler, B., 1999, “Development of an Automated 
Steering Vehicle Based on Roadway Magnets A 
Case Study of Mechatronic System Design”. 
IEEE/ASME Transactions on Mechatronics, Vol. 4, 
No. 3. pp.  258 – 271. 

[13] Tzuu-Hseng, S., Chang, S-J., Chen, Y-X., 2003, 
“Implementation of Autonomous Fuzzy Garage-
Parking Control by an FPGA-Based Car-Like Mobile 
Robot Using Infrared Sensors”. International 
Conference on Robotics & Automation, Taipei, 
Taiwan, September, pp. 3776 – 3781 

[14] Xilinx. Inc, 2009. Available at  
http://www.xilinx.com/. Accessed in May 2009. 

[15] Yang, E., Gu, D., Mita, T., Hu, H., 2004, “Nonlinear 
Tracking Control of A Car-Like-mobile Robot via 
Dynamic Feedback Linearization”. Control 2004, 
University of Bath, UK.  

[16] Zhao, Y., Collins, Jr. E.G., 2005, “Robust Automatic 
Parallel Parking in Tight Spaces via Fuzzy Logic”. 
Robotics and Autonomous Systems. Elsevier, 51, pp. 
111 – 127. 

[17] Shladover, S.E.; Desoer, C.A.; Hedrick, J.K.; 
Tomizuka, M.; Walrand, J.; Zhang, W.-B.; 
McMahon, D.H.; Peng, H.; Sheikholeslam, S.; 

McKeown, N., 1991, “Automated vehicle control 
developments in the PATH program”. IEEE 
Transaction on Vehicle Technology, Vol 40, No 1, 
Feb.. Pp. 114 –130 

[18] Han-Shue, T., Guldner, J., Patwardhan, S., Chen, C. 
and Bougler, B., (1999) “Development of an  
Automated Steering Vehicle Based on Roadway 
Magnets—A Case Study of Mechatronic System 
Design”. IEEE/ASME Transactions on 
Mechatronics, VOL. 4, NO. 3, September.  pp. 258 –
272.  

[19] Wada, M., Yoon, K. S, and Hashimoto, H., 2003, 
“Development of Advanced Parking Assistance 
System” IEEE  Trasactions on Industrial Electronics, 
Vol. 50, No. 1, February. pp 4 – 17. 

[20] Moreno, Edward D.; Penteado, C.G.; Rodrigues da 
Silva, A.C. Microcontrollers and FPGAs – 
Applications on Automation Area. Edit. NOVATEC 
www.novatec.com.br. ISBN 85-7522-079-9, p. 370, 
2005. 

[21] V. Amudha, B.Venkataramani, R. Vinoth kumar and 
S. Ravishankar. Software/Hardware Co-Design of 
HMM Based Isolated Digit Recognition System. In 
JCP – Journal of Computers, Vol.  4, No.  2, Feb. 
2009, Academy Publishers, 2009. 

[22] Murakami, Masayuki. Task-based Dynamic Fault 
Tolerance for Humanoid Robot Applications and Its 
Hardware Implementation. In JCP – Journal of 
Computers, Vol.  3, No.  8, Aug.. 2008, Academy 
Publishers, 2008. 

[23] Han, Meng-Ju; Hsu, Jing-Huai; Song, Kai-Tai; 
Chang, Fuh-Yu. A New Information Fusion Method 
for Bimodal Robotic Emotion Recognition. In JCP – 
Journal of Computers, Vol.  3, No.  7, July 2008, 
Academy Publishers, 2008. 

[24] Shimazaki Kazunori; Kimura Tomio; Yamada 
Satoshi (2004).: Parking assisting device – Patent No 
US 6711473 B2 - United States. 

[25] Tanaka Yuu; Iwata Yoshifumi; Satonaka Hisashi; 
Endo Tomohiko; Kubota Yuichi; Matsui Akira; 
Iwakiri Hideyuki; Sugiyama Toru; Kawakami Seiji; 
Iwazaki Katsuhiko; Kataoka Hiroaki (2006) .: 
Vehicle backward movement assist device and 
vehicle parking assist device - Patent No 7039504 –
United States. 

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 371

© 2010 ACADEMY PUBLISHER


