
A Control Design Approach for Controlling an
Autonomous Vehicle with FPGAs

Anderson Pereira Correia, Carlos Humberto Llanos; Rodrigo Willians de Carvalho and Sadek A. Alfaro
Departamento de Engenharia Mecânica, UNB - Universidade de Brasília

Email: {Anderson, llanos, willians, sadek}@unb.br

Carla Koike
Departamento de Ciência da Computação, UNB -

Universidade de Brasília
koike@unb.br

Edward David Moreno
DCOMP/UFS - Departamento de Ciência da Computação

– Universidade Federal de Sergipe
edwdavid@gmail.com

Abstract— This paper describes the implementation of a
platform based on reconfigurable architecture and on
concepts of virtual instrumentation and its application to
the hands-free driving problem. The novelty of this
approach is the use of both reconfigurable systems (for
developing the car’s controller) and virtual instrumentation
issues for developing a high-level abstraction testing and
simulation environment. The implemented platform permits
(a) to control directly the real vehicle using control
commands that are sent using a keyboard and (b) to
simulate the control process in a virtual environment, using
a virtual instrumentation approach. The car control system
was developed in a microcontroller with several peripheral
embedded in a Field Programmable Gate Array (FPGA).
The communication between the FPGA-based control
system and the car is accomplished through an electronic
module, which comprises several insulating and power
circuit boards. The virtual instrumentation approach (for
simulation and controller design objectives) was used for
implementing a high-level abstraction simulation
environment in LabVIEW tool, which allows representing
the movement of the car in real time. The communication
between the simulator and the controller is accomplished
through a serial interface in which a RS-232 based protocol
was implemented. The user can send commands to the
control system through a keyboard with a PS2 interface.
This approach opens a great variety of possibilities to
validate and simulate solutions for several problems in
robotic and mechatronic areas. The tests and initial overall
system validation were accomplished in the simulator
environment. Then, the simulation results were compared
with the movement variables of the real car, which were
gathered in real time. This approach makes possible to test
and to validate the control system with low cost and more
safety.

Index Terms— Reconfigurable Computing, Embedded
Processors, Virtual Instrumentation.

I. INTRODUCTION

This paper describes a new design flow for the design
of complex systems, which involves the application of
reconfigurable devices (for implementing the electronic
control modules) and virtual instrumentation issues.

The great complexity of the current systems, involving
mechanical, electromechanical, electronic and
computational parts, stimulates the introduction of new

design methodologies. An important point is that the
design methodologies must offer high abstraction level
for verification/simulation tasks during the overall
design. Several hardware manufacturers offer design
tools, allowing verification/simulation of the electronics
system on a high abstraction level. Similar methodologies
can be applied for the design of mechanical or software
modules of a complex system. The problem becomes
difficult for testing, validating or verifying the whole
system. In this case it is possible to use the virtual
instrumentation approach in order to represent the overall
system (or part of it) on a high abstraction level.

Virtual instrumentation tools (LabVIEW tool, for
instance) allow to represent in real time several system’s
parts such as instruments, displacement, kinematics
behavior of the objects (as robots or vehicles),
mathematical operations over the signals (digital and/or
analogical), among others. The signals coming from a
controller can be routed to the virtual environment via
data acquisition boards and, in the same way, the
simulator/emulator can send electronic control signals in
such a way to represent the current status of different
virtual objects (such as electronic or mechanical parts,
among others). Virtual instrumentation combines
mainstream commercial technologies such as the PCs,
with flexible software, and a wide variety of
measurement and control hardware. Then, engineers and
scientists can create user-defined systems, which meet
their exact application needs.

The complexity-increasing evolution can be observed
in different areas of the design of complex system. In the
case of digital design area, the use of reconfigurable
architectures allowed the implementation of more flexible
systems based on FPGA (Field Programmable Gate
Array) platforms. FPGAs provide an array of logical cells
that can be configured to perform a given function by
means of configuration bitstream. This bitstream is
generated by a software tool, and it usually contains the
configuration information for all components. An FPGA
can have its behavior redefined in such a way that it can
implement different digital systems on the same chip.
Fine grain FPGAs allow the user to define a circuit at
gate level, working with bit wide operators. This kind of
architecture provides a lot of flexibility, but takes more

360 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.3.360-371

time to reconfigure than coarse grain reconfigurable
platforms rDPAs (reconfigurable Data Path Arrays or
arrays) of rDPUs (reconfigurable Data Path Units) [2]. In
coarse grain reconfigurable platforms, the user does not
provide details at gate level but specify the configuration
in terms of word wide operations; in other words, a
functional unit is configured to operate over n-bit data,
and the configuration just specifies one among a set of
available operations. The amount of configuration bits in
this case is much less than in the fine grain FPGAs.
Some FPGAs allow for performing PR (Partial
Reconfiguration), such that a reduced bitstream
reconfigures only a given subset of internal components.
FPGA devices have been used for automation and control
system rapid prototyping and they make possible to
develop high performance systems in short periods of
time. Besides, it is possible to have a smaller number of
devices at reasonable costs.

Many current digital systems are based on the use of
processors (based on the von Neumann Model), which
are embedded in FPGAs, jointly with several hardware
parts, described through HDL (Hardware Description
Language) languages. The term SoC (System on Chip)
[3] and [15] has been widely used in automation/control
system design, communications systems, among others,
which involves the use or implementation of different IPs
(Intellectual Properties), and a full integration on the
FPGA component. The SoC concept describes the fact
that the whole functionality of the system is placed on a
single chip. The structure of SoC devices with FPGA is
fully flexible and can easily respond to changes in the
control system logic. The capability of modifying the
logic enables the control system to implement future
additions with ease. Complex systems embedded into the
FPGA, (eg. DSP, Soft/Hard processors among others),
have been widely used in the industrial world.

We applied our reconfigurable system technique (used
to implement the car controller) and virtual
instrumentation based design methodology to the hands-
free driving problem. Several research works are being
developed on vehicle control design as well as CLMR
(Car-Like Mobile Robot) [8], applying a variety of
techniques based on complex mathematical models [10],
neural networks [11] [13], genetic algorithms, fuzzy
logic, to cite only a few. Steering a car is constrained by
restrictions in the car's capability mechanism and the
environment. Due to these reasons, it is very difficult to
design a continuously global controller for a car in order
to perform all the maneuvering behaviors. Over the years,
numerous systems have been developed to provide
automatic control for the hands-free driving problem of
automobiles [6]. These systems automate either steering
control (related to as lateral control), throttle and/or brake
control (related to longitudinal control), and the clutch
control. When the automobile control involves all partial
control systems, it is called AHS (Automated Highway
System) [12].

Some researchers have reported the use of FPGA and
LabVIEW applied to the either CLMR or hands-free
driving problems. A FPGA implementation of a FGPC

(Fuzzy Garage Parking Control) is discussed in [12]. The
use of FPGA and LabVIEW is discussed in [9] for an
accelerator control system design. It is clear that the
solution for this kind of problems is far from
straightforward and requires multidisciplinary knowledge
of the fields of control, automation, robotics and
hardware and software design (see section 2). In the work
of Petko [11] and Zhao [16], several partial results about
a controller design (based on reconfigurable
architectures) and a simulator (implemented on
LabVIEW) were presented. In this approach the
developed simulator environment (based in virtual
instrumentation) is used for simulation/verification tasks
of the control system. Once the system is validated, the
FPGA embedded control system can directly operate over
the real vehicle.

In section 2 the related work about vehicular
automation are discussed. In section 3, the overall
architecture of the system proposed here is described, it
presents basic concepts of the proposed embedded
architectural system in the FPGA and discusses the
defined command set for the control system. Section 4
describes the virtual environment for simulating the
vehicle motion. Section 5 describes the communication
protocol, which was defined for the simulation system
environment. Before concluding, sections 6 and 7
describe our results and conclusions.

II. RELATED WORKS IN VEHICULAR
AUTOMATION

There are two main tendencies in the vehicular
automation area. In the first case, several vehicle
automation systems have been proposed, which involves
several developments allowing automatic vehicle
maneuvers using both sensor systems and/or the
trajectory planning applied for solving the vehicle
automatic parking problem, among others. In the second
case, several systems have been proposed and
implemented for developing driver assistance systems for
helping the driver for parking maneuvering and/or
roadway guidance.

In the work of Gu and Hu [7], a vehicular automatic
parallel parking system was adapted for installation either
as a factory option or as a retrofit kit. A microprocessor-
based controller exercises control over a hydraulic system
for controlling vehicle's power steering cylinder. The
system only controls the steering wheel and does not act
over the clutch, brake, throttle and gear systems. This
work does not report information about HMI (Human-
Machine Interface) for monitoring the parking process.
For parking task, sensors automatically provide inputs
representative of the transverse and longitudinal
relationships between the driven vehicle and the parked
vehicle. The developed PSS (Parking Sensor System) is
based on ultrasonic sensors.

In the work of Shimazaqui [24] a parking assistance
system is shown, providing a driver with guidance on a
driving operation in lateral parking. The system provides
a camera mounted for monitoring a backward movement
and a HMI for driving assistance during lateral parking

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 361

© 2010 ACADEMY PUBLISHER

maneuver. Otherwise, the approach does not implement
a real control system for steering wheel, clutch, throttle
and gear systems.

In the work of Tanaka et al. [25] a parking assistant
system is reported that comprises a camera for capturing
the rear view, a steering wheel position/speed sensors for
monitoring the current status and a controller, which is
implemented via a embedded computer in the vehicle.
The control system acts over the steering wheel, brake
and throttle systems but the control over the clutch is not
reported.

In the work of [17] the concepts of AVC (Automatic
Vehicle Control) are applied in the implementation of the
PATH system (Program on Advanced Technology for
Highway). In this approach a control program was
developed for both lateral and longitudinal (spacing and
speed) control and it is only applied in automated
roadways. Lateral control maintains the vehicle in the
center of the lane (lane-keeping maneuver) and steers the
vehicle to an adjacent lane (lane-change maneuver),
while maintaining good passenger comfort at all times.
The lateral control work is focused on the concept of
cooperation between the vehicle and the roadway, with
an intelligent vehicle receiving much of the information it
needs from special elements installed in the roadway (for
instance, magnetic markers embedded under the roadway
for lateral guidance). Longitudinal control involves
regulating the vehicle speed to keep proper spacing
between vehicles. Then, a longitudinal spacing control
system is developed, which involves sensors and
mathematical models for the power-train (including
internal combustion engine dynamics and tire/road
frictional interface).

In the work of Wada et al. [19] a driver assistance
system to aid in the vehicle parking process is proposed,
which maintains the driver in the vehicle control loop.
The system involves sensor devices and path planning
algorithms for driver assistance issues, which also
provides a HMI (Human-Machine Interface) for guiding
the driver during the parking process in predefined
parking bay.

In the work of Han et al. [18] a reliable automated
steering control system was developed for the PATH
system, which attends several requirements. The control
system requires road markers or any other kind of road
indicators in order to define the road. Additionally, the
implemented system requires sensors in the car,
recognizing the road markers and intelligence in the
controller for driving the steering actuators, which steer
the wheels.

The different related solutions can involve several
levels of the automation issues. For example, neither the
works of Wada et al. [19] nor [24] involve a development
approach with regards to the automation of the steering
wheel, the clutch, the brake or the throttle. Otherwise, the
work of [7] only implements a hydraulic controller of the
steering wheel. In contrast, the works of [19], [24] and
[25] implement the HMI for the systems. In all works
cited above, the control systems were developed for
working with internal combustion engines except the

work of [19], which can be adapted for other kind of
engines.
Recently, Amudha et al. [21] discuss the use of FPGAs
and microcontrollers embedded in FPGAs for different
applications and focuses on soft core processors.
Murakami [22] designed the redundancy controller in
hardware for humanoid robot applications. Han et al. [23]
has been implemented in a DSP-based embedded system
to recognize five facial expressions on-line in real time
for Robotic Emotion Recognition.

Finally, all the systems use an embedded computer in
the car for implementing the control system for their
applications, without exploring reconfigurable
architecture techniques. Additionally, none of the works
report the development of environments for simulation
and/or verification issues.

III. THE PROPOSED EMBEDDED ARCHITECTURE

The overall control system is composed of an
embedded control system based on the soft-embedded-
processor Microblaze [14], which is implemented in a
Spartan 3–based FPGA, and a virtual simulator
environment implemented in LabVIEW. The architecture
is shown in Figure 1, where a communication system is
implemented using RS232 standard. Additionally, a
keyboard is used for sending pre-defined commands to
the control implemented in the FPGA.

The embedded microprocessor implements the main
control of car tasks in software functions, namely: brake,
clutch, steering wheel, gear and throttle sub-systems of a
real vehicle. Each function was written in C language in a
structured software approach. Several hardware modules
were incorporated to the hardware design during the
project specification: RS232 interface, buttons, display
using the EDK tool (Embedded Design Kit) options [5],
and so on. Finally, a specific keyboard module described
in the hardware description language VHDL was added
to the controller design.

Figure 1. The Overall System Architecture

A simulator environment was developed in the
LabVIEW system and it is connected to the controller
through a RS-232 based interface. Additionally, a
communication protocol was defined to achieve the

362 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER

communication between the controller and the simulator.
In this case, both simulator and the controller exchange
information using a predefined data-package format.
Figure 1 shows this approach, where the motion
controller can be accessed using the operator interface,
which includes a keyboard for editing control commands
and a display for monitoring the status variables. The
controller can interface with both the real car and the
simulator tool that was implemented in LabVIEW.

The control module was defined using the EDK tool
[5], in which the Microblaze processor is the system core.
This processor has a RISC architecture with 32-bit
general purpose registers, an ALU (Arithmetic Logic
Unit), a shift unit, interrupts, among other possible
peripherals. The EDK tool is an embedded development
environment that includes a library of peripheral IP cores,
where the Xilinx Platform Studio tool is employed for
intuitive hardware system creation. Additionally, a Built-
On Eclipse software development environment, GNU
compiler and a debugger are also included. Figure 2
depicts the system, which includes the embedded system
in the FPGA, the user interface and the communication
with the simulator environment.

Figure 2. The embedded system and its interface

A. The hardware System of the Controller

The architecture of the embedded motion controller
system is shown in Figure 3, which was designed and
synthesized using the EDK. The communication of the
processor with peripheral devices is achieved by the OPB
bus (On-chip Peripheral Bus). There are several hardware
peripherals related to the FPGA-based board resources
such as display, keyboard, RS232, push-buttons, dip-
switches and leds. The processor controls the operation
flow of the system by running different special designed
software functions, which were written in C language and
stored in the bRAM-block (see Figure 3). The leds,
display and pushbutton modules were automatically
generated by the EDK system. On the other hand, the
keyboard module was first described in a VHDL (Very
High speed integrated circuit Hardware Description
Language) file implementing the PS2 protocol and then

included as a peripheral device in the overall design. The
PWM blocks are responsible for generating modulated
speed control signals of the DC-motors related to the
throttle and gear devices. The PWM signals were
implemented using Microblaze’s timers, which can be
added to the design according to the system needs. In this
case, only two PWM modules have been generated;
further details can be found in [20].

Figure 3. The Motion Controller System on the Spartan 3 based board

B. The Software Modules of the Controller

Once the processor system was configured and your
peripherals were defined, all programming was made in
standard C language, compiled and tested inside of the
EDK environment. The module descriptions are the
following (see figure 4):

Figure 4: Software Project of the Control

a)The brake.c module: it receives a defined command
to operate the car-brake (see section 3.C). The
module verifies the current position of the brake and
it gives the proper direction to the actuator. A PWM
(Pulse-Width Modulation) signal is used to control
the actuator-speed.

b)The clutch.c module: it receives commands from the
user (see section 4) and verifies the current position
of the clutch, executing a special procedure to drive
the pneumatic-system. This module has an alternative
way to execute the clutch control by a stepper-motor.

c)The steering.c wheel module: it receives defined
commands (see section 3.C) to achieve a user-
defined position. The module verifies the current

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 363

© 2010 ACADEMY PUBLISHER

position and it gives the proper direction to the wheel
actuator.

d)The throttle.c module: It works in two stages: the
first one works for controlling the butterfly valve
position, which is measured by a potentiometer. The
second one executes a control strategy, where a
rotation reference is set by the user. Then, the system
controls the position until the required rotation is
accomplished. A PWM signal is used to control the
actuator-speed.

e)The gear.c module: this module receives the
command of the operator (see section 4) and verifies
the current position for changing the gear-position.
This is achieved by two DC-motors, which move the
gear-lever in the X and Y axis in a predefined way.
The DC-motor’s speed is controlled by two PWM-
signals.

Fig. 5 shows the C code of the gear module (the gear
function). The gear position is defined in the x, y axis,
which represent columns and rows respectively. The
definition of the new-gear position is defined in lines 3 to
21 (see Figure 5), where the first, second, third, fourth,
neutral and reverse gears are identified.

Figure 5. The C code of the Gear Module

The state variables pos_x_gear and pos_y_gear are
used for representing the current gear-position. In the real
car the positions are measured by means of two
potentiometers (for x and y axis). The potentiometer
sensors (adapted in the real car) send values, which are
compared with predefined constants, namely POS1X,
POS2X, POS3X, POS1Y, POS2Y and POS3Y. For
instance, lines 3 to 8 identify if the current gear is the
first-gear. The other gears are identified in lines 9 to 21
(including the reverse and unknown gears). When the
new gear position is defined the system starts the process
in order to achieve the new gear position. Lines 28 to 35
show the process to accomplish the first gear where the
adjust_pwm_gear function is called with parameter “Y”
for controlling the corresponding DC motor, sending an
appropriated PWM signal (see line 33). The same
program also tests if the current position is equal to the
desired one, which is indicated by the new_gear variable
(see line 22). In this case the adjust_pwm_gear function
is called for stopping the DC motor movement, using the
“P” parameter (see line 23).

C. The Commands for Interface Control System

Several commands were defined in order to control the
car and their definitions, whose specific syntax and
semantics are described in table I and II. The commands
are organized into two sets, describing both automatic
and manual modes (see tables I and II, respectively).

The first mode defines commands for debugging
actions, including arrow keys for increasing/reducing the
current positing of steering wheel, clutch and engine
rotation, among others. The second mode defines
commands for using either via keyboard or into a C
program. In this case each command was implemented in
a dedicated C function, using two parameters (x and y,
see table I). For example, the command related to the
clutch (EBxy) can have the parameter x defined as A, B
and C, indicating three different semantics: press the
clutch, fast disable of the clutch, and disable the clutch
until y % of the final position, respectively (see table I).
The parameter y is only valid for the third case (EBCy,
see table I), where the y parameter represents the final
position that the clutch will reach.

The commands are sent by the user using the keyboard
and then the Microblaze identifies and processes them,
before sending the appropriate control signals (to the
actuators) using the RS232-base protocol for the
simulator environment. For the real car the signals are
directly sent in parallel, using the expander connectors of
the FPGA-based board.

IV. THE SIMULATOR ENVIRONMENT

The main task of the simulator environment is to
simulate the kinematics and general behavior of the
vehicle in normal situations. The concepts of Virtual
Instrumentation, by programming in LabVIEW
environment, were applied in order to generate the

1 void gear(Xuint8 gear) {
2 current_columm = 0;
3 if(pos_x_gear == POS1X)
 { // init the gear-position identification process
4 if(pos_y_gear == POS3Y) new_gear = 1;
 // the first gear
5 else if(pos_y_gear == POS1Y) new_gear = 2;
6 else new_gear = 'U'; // unknown gear
7 current_columm = 1;
8 }
9 else if(pos_x_gear == POS2X) {
10 current_columm = 2;
11 if(pos_y_gear == POS3Y) new_gear = 3;
12 else if(pos_y_gear == POS1Y) new_gear = 4;
13 else if(pos_y_gear == POS2Y) new_gear = 'N';
 // the neutral gear
14 }
15 else if(pos_x_gear == POS3X) {
16 current_columm = 3;
17 if(pos_y_gear == POS3Y) new_gear = 5;
18 else if(pos_y_gear == POS1Y) new_gear = 'R';
19 else new_gear = 'U';
20 }
21 else new_gear = 'U';
 // unknown gear
22 if(gear == new_gear) {
 // the new position was achieved
23 adjust_pwm_gear('P');
24 • • •

25 • • •

26 • • •

27 }
28 // First_gear Treatment
29 else if(gear== 1) {
 // to accomplish the new position
30 if((current_columm == 1 && pos_y_gear < POS3Y)
 ||
 (current_columm>1 && pos_y_gear< POS2Y)) {
31 if(current_columm == 1)
 dif = POS3Y – pos_y_gear;
32 else dif = POS2Y – pos_y_gear;
33 adjust_pwm_gear('Y');
34 • • •

35 }
36 • • •

37 }

364 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER

appropriated signals, according to the control and status
variables.

TABLE I

COMMAND-LINES FOR THE CONTROLLER

Syntax
Parameter

1
(x)

Parameter
2

(y)
Semantics

DIxy D, E or C
integer of
0 to 60

Turn the front-wheels
right in x degrees (x = D),
or turn the front-wheels
left in x degrees (x = E),
or align the front-wheels
(x = C).

FRExy 0 or 1 -
FRE‘1’: press the brake
or FRE‘0’ – release the
brake

ACxy B or R

0 - 100
If x = b.

0 – 9999
 If x = r

ACBy: put the throttle
butterfly valve at y% of
the maximum position.

ACRy: activate the
throttle butterfly valve
until the rotation reaches
a y value

CABxy 0 to 6 -
CABx: put the gearshift
at x position.

EBxy A, R or C
0 – 100
if x = C

EBA: press the clutch.

EBR: execute a fast
disable of the clutch.

EBCy: disable the clutch
until y % of the final
position.

Cxy or
Fxy

A, C or F

0 - 100
for Cx

1 – 9999
 for Fx

Cxy: modify PWM duty
cycle at y% for: a) the
brake (x = F), b) the
throttle valve (x = A) and
c) the gear (x = C).

Fxy: modify the PWM
frequency for:
a) the brake (x = F).
b) the throttle valve (x

=A).
c) the gear (x = C).

The frequency is
modified for y KHz
(LabVIEW or the
real car).

Pxy A or R
positive
integer

PAy: rotate the clutch
steeper motor actuator y
steeps in the up direction.

PRy: rotate the clutch
steeper motor actuator y
steeps in the reverse
direction.

The general structure of the simulator environment

system is depicted in Figure 6. The architecture is defined
by the global-variable-module, the serial-module, the
signal-variable-module and the trajectory-module (see
Figure 6).

TABLE II

MANUAL COMMANDS

Syntax Semantics

↑ Increase the engine rotation

↓ Reduces the engine rotation

← Rotate the front-wheels to the left

→ Rotate the front-wheels to the right

W Move the gearshift to the up side

S Move the gearshift to the down side

A Turn the gearshift to the left

D Turn the gearshift to the right

Space press/release the brake

E press the clutch

Q Fast release of the clutch

1 Put the first gear position

N Put the neutral gear position

R Put the reverse gear position

The global-variable-module allows the communication
among the all other modules, representing the status
variables in 8-bits words. The serial-module performs
the communication though the serial based protocol,
allowing the user to configure several parameter such as
bits per character, start/stop bits, parity and bit rates for
transmission. Data are transmitted in a RS-232 interface
and the receiving bytes are separated and interpreted by
the module following the defined protocol (see sec. V).

The communication process executes four steps in
sequence: open-serial-port, receiving-data, separating-
bytes and close-serial-port (Figure 7 shows these steps).
Whenever the close-serial-port steep is executed the
module executes the open-serial-port steep again.

Where:
• φ is the angle of the wheels;
• θ is the vehicle angle with regard to the X axis;
• is the distance between the vehicle center to the Y

axis
• y is the distance between the vehicle center to the X

axis;
• l the distance between the vehicle’s wheels;
• v is the vehicle speed.

Some parts of the trajectory-module were directly
implemented in C language in order to represent the
canonical equations.

() ()
.

.cos .cosx v θ φ=
 (1)

() ()
.

.sin .cosy v θ φ=
 (2)

. sin
.v

l

φ
θ =

 (3)

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 365

© 2010 ACADEMY PUBLISHER

Figure 6. The general architecture of the simulator environment

Figure 7. The internal structure of the simulator

Fig. 9 shows the LabVIEW sub-module of the throttle
control in the virtual car, where a C code was embedded
in the LabVIEW VI (Virtual Instrumentation).

The loops in each module are executed with a rate of
1KHz, allowing the user to define speed parameter for the
virtual actuators. For instance, if the user needs to

increment the throttle variable in 50 units per second then
the variable is increasing at 0.05 units per execution
cycle. The user's interface of the simulator environment is
shown in Figure 10 and it represents the car position and
several blocks for monitoring the current engine rotation,
gear position, throttle, among others.

366 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER

Figure 8. The Kinematics Variables using the three canonical equations

Figure 9. Software Structure of the Virtual Simulator Environment –
The Throttle Control

Figure 10. The user interface in the LabVIEW

V. THE COMMUNICATION PROTOCOL FOR THE
SIMULATOR SYSTEM

A communication protocol was defined in order to
implement a full-duplex communication between the
control module (FPGA) and the LabVIEW program. The
controller sends to the LabVIEW a 3-bytes package,
where the first one represents a specific car state-variable,
encoded in 4 bits (namely, front-wheel_1, front-wheel_2,
x-position of the gear, y-position of the gear, brake-
position and clutch-position) (see Figure 11). The second
byte represents the information for controlling the clutch,
in which the 4-most-significant bits are used for the
stepper-motor signals and the other bits for electro-valve
system control.

The last byte is used for generating and sending PWM
signals for the throttle (2-bits), steering wheel (2-bits) and
brake (2-bits). In this case, the first bit of the throttle is
used to represent the direction and the second is used for
generate the properly PWM signal. Given that the
packages are sent in a sequence, the simulation
environment program is capable to rebuild the PWM
signal using only one bit in the serial communication.

On the other hand, the information coming from the
simulation program (the feedback of the state variables)
is encoded using two bytes (see Figure 12). The first byte
is used to encode a specific state variable (front-wheel_1,
front-wheel_2, x-position of the gear, y-position of the
gear, brake-position, and clutch-position), using the 3-
most significant bits. The second byte represents the
current value of the corresponding state variable (for
example, the clutch variable). In this case, the program
responds to the controller about the required state
information.

VI. RESULTS FROM SIMULATION AND REAL
TESTS

The results obtained with the implementation of the
system were distributed in four topics: FPGA synthesis
results, testing car results, simulator environment results
and simulator-results vs. real-car-results.

A. The FPGA Synthesis Results

The FPGA synthesis results were obtained in the EDK
project report [14]. The results are shown in Tab. 3 for
the main modules of the control system, where a Spartan
3 device (xc3s200ft256-4) was employed for the
hardware implementation of the controller.

The main resources consumption is related to the
Microblaze implementation. The clock frequency is
shown for each implemented device. The results (in
percentage of the total of resources available in Spartan 3
device) are related to slices, slices-flip-flops, LUTs, IOB,
Ram-Blocks (Bram).

There are also timing results for each hardware
modules (for instance, microprocessor and PWM
modules).

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 367

© 2010 ACADEMY PUBLISHER

M
IC
R
O
B
LA
Z E

L A
B V
I E
W

Figure 11. The protocol structure to send data from Microblaze to the simulator

LA
B
VI
E
W

M
IC
R
O
BL
A
ZE

Figure 12. The protocol structure to send data from the simulator to the Microblaze

In this case, the critical frequency (the lowest
operation frequency) is for the 7-segment driver (about
68 MHz, see line 6, column 7), representing the global
timing constraint for the overall system. Given that the
used FPGA based board works at 50 MHz, this critical
frequency has not impact in the control device and does
not represents a bottleneck in the overall control system
performance. Table III depicts only a peripheral
implementation for one PWM signal, but additional
PWM devices can be easily added in the design
depending on the requirements.

TABLE III

SYNTHESIS RESULTS IN THE EDK TOOL

Module
Slices
(%)

Slices
flip-
flops
(%)

LUT
s

(%)
IOB

BRAM
(%)

Max
Freq

(MHz)

Microblaze 43 14 29 751 0 91.128

BRAM-
block 0 0 0 119 66 203.707

DIP-
Switches –

8 bits
2 1 0 119 0 135.612

Push_Butto
ns – 3 bits

2 1 2 64 0 138.927

Interface_I/
O 10 8 2 285 0 134.953

Opb_7
segled_0

9 4 5 69 0 68.362

Ps2_Keybo
ard_0 2 1 1 64 0 100.120

PWM_I/O 2 1 0 98 0 138.658

PWM_time
r_0

13 8 7 67 0 98.348

B. The Simulation Environment Results

The simulator environment results are shown in Figure
13 as a sequence of illustrations demonstrating the
vehicle movement controlled by the same commands
shown in tables I and II. Figures 13.a to 13.h show the car
in the simulation environment, moving through the

window area. A command sequence was sent through the
keyboard in order to simulate a parking maneuver. Figure
13.h shows the final position of the car. All the
commands were executed in the manual-mode set (see
table II).

C. The Testing Car Results

Tests of car movement control were accomplished
with the objective of validating the movement controller
and evaluated the feasibility of the system. The vehicle
was controlled through commands sent through the
keyboard. Figure 14 shows a sequence of images of the
film of the car movement test. In Figure 14.a the car is
stopped whereas Figure 14.b shows the car beginning the
movement (the processes to accomplish the first-gear was
already finished). Several maneuvers are shown in
Figures 14.c to 14.h, which imply the use of the clutch,
the steering wheel and the brake. All the commands were
sent to the FPGA embedded controller through the
keyboard.

D. Simulator-results/Real-car-result (comparing the

results)

Fig. 15 allows the performance comparison between
the real car and the simulator environment for a specific
case. Figure 15.a shows the position signal of the throttle
transducer (using a mathematical model of a real
transducer), obtained in the simulator environment.
The throttle position was changed through the time and
the maximal acceleration was obtained between 100 and
125 seconds after the throttle position change. On the
other hand, Figure 15.b shows the real signal coming
from the throttle transducer (the real throttle
potentiometer). Notice that acceleration and deceleration
curves are very similar. Both signal amplitudes (from the
simulator and the car) were obtained using 8-bits
resolution (the value of maximal acceleration signal is
255).

368 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER

Figure 13. The Simulator Environment Results

Figure 14. Results of Car Test

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 369

© 2010 ACADEMY PUBLISHER

(a) The throttle signal in the simulator (b)The throttle signal in the car

Figure 15. Comparing throttle behavior of real car and the simulated car

VII. CONCLUSIONS

A completed car control system was implemented
using a FPGA-embedded processor. The implemented car
motion system comprises the steering wheel, clutch, gear,
brake and throttle subsystems. To accomplish the
controller’s implementation, specific commands (whose
syntax and semantics were defined in this work) allow
the maneuvering of the car. The commands can be also
used into the control program running in the embedded
microcontroller. That is, the commands are really specific
functions that are implemented in C language and allow
the implementation of the automation strategies of the
car. This approach permits to use the commands in order
to follow a previously defined trajectory, which is
fundamental for automatic parking maneuvering issues
and to solve the hands-free driving problem. Regarding
HMI, the implemented controller provides monitoring
facilities for the different status variables (for steering-
wheel, the throttle, the clutch, the brake and the gear) in
both cases: the real car and the simulator in a similar way
as reported in [19] and [25]. One important and original
contribution of this work is that it implements the whole
automation of a normal car, even with a mechanical gear.
The results of this research can be easily applied in the
case of people with disabilities, which need to drive
adapted cars.

The simulator allowed the overall system validation in
a high abstraction level, very close to the real situations.
Virtual instrumentation based in LabVIEW is a powerful
tool for representing the reality, and to the best of our
knowledge, no similar simulation system can be found in
the literature that allows the validation of a complex
control system on this abstraction level.

Additionally, a RS-232 based protocol was defined
and tested to allow the user to send the commands to the
controller (by typing in a keyboard). The same protocol
allows the controller sends predefined data packages to
the LabVIEW environment in order to update the current
status of the virtual car in real time.

The tests in the simulator and in the real car have
shown the suitability of this design flow for validating
complex mechatronic designs with a high reliability and
safety. Several low level security strategies can be added
to the current system for avoiding accident (e.g. collisions
and critical situations) and these strategies can be also
introduced into the simulator environment.

Otherwise, FPGAs are very suitable devices for
implementing several automation and control techniques
due to the fact that allow for embedding both typical
microprocessor such as ARM family [1] and DSPs. In the
last case, DSPs allow the implementation of specific
algorithm for digital signal processing using several
embedded resources such as multipliers and adders.
Hence, FPGA approach opens a wide variety of
possibilities for implementing, validating and simulating
solutions for several problems in the robotic and
mechatronic areas.

REFERENCES

[1] Altera, 2009. Available at http://www.altera.com.
Accessed in May 2009.

[2] Becker, J. and Hartenstein, R., 2003, “Configware and
Morphware going mainstream”. J. Sys. Arch. 49:
pp.127-142.

[3] Donecker, S. M., Lasky, T. A., Ravani, B., 2003, “A
Mechatronic Sensing System for Vehicle Guidance
and Control”. IEEE-Transactions on Mechatronics,
Vol.8, n.4, December, pp. 500 – 510

[4] Dudek, G. and Jenkin, M., 2000, “Computational
Principles of Mobile Robotics”. Cambridge
University Press, Cambridge, UK.

[5] EDK, 2009, “Platform Studio, User Guide”. Available
at www.xilinx.com/ise/embedded/edk_docs.htm.
Accessed in April 2009.

[6] Giove, D., Martinis C. D., Mauri, M., 2004,
“Reconfigurable Hardware Resource in Accelerator
Control System”. EPAC, Lucerne, Switzerland, pp.
701 – 703.

370 JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010

© 2010 ACADEMY PUBLISHER

[7] Gu, D., Hu. H., 2002, “Neural Predictive Control for a
Car-like Mobile Robot. International Journal of
Robotics and Autonomous Systems”, Vol. 39, No. 2-
3, May, pp. 1–15.

[8] Li, J. H, Lee, Li, P. M., 2005, “A Neural Network
Adaptive Controller Design for Free-Pitch-Angle
Diving Behavior of an Autonomous Underwater
Vehicle”. Robotics and Autonomous Systems.
Elsevier, 52, pp. 132 – 147.

[9] National Instruments, 2009. Available at
http://www.ni.com./labview/whatis/. Accessed in
May 2009.

[10] Paromtchik I. E., Laugier C., Gusev. S. V., Sekhavat
S., 1998, “Motion Control for Autonomous Car
Maneuvering”. Available at
http://citeseer.ist.psu.edu/184744.html. Accessed in
April 2009.

[11] Petko, M., Uhl, T., 2001, “Embedded controller
design-mechatronic approach”. IEEE, Second
Workshop on Robot Motion and Control, pp. 195 –
200.

[12] Tan, H.S., Guldner, J., Patwardhan, S., Chen, C.,
Bougler, B., 1999, “Development of an Automated
Steering Vehicle Based on Roadway Magnets A
Case Study of Mechatronic System Design”.
IEEE/ASME Transactions on Mechatronics, Vol. 4,
No. 3. pp. 258 – 271.

[13] Tzuu-Hseng, S., Chang, S-J., Chen, Y-X., 2003,
“Implementation of Autonomous Fuzzy Garage-
Parking Control by an FPGA-Based Car-Like Mobile
Robot Using Infrared Sensors”. International
Conference on Robotics & Automation, Taipei,
Taiwan, September, pp. 3776 – 3781

[14] Xilinx. Inc, 2009. Available at
http://www.xilinx.com/. Accessed in May 2009.

[15] Yang, E., Gu, D., Mita, T., Hu, H., 2004, “Nonlinear
Tracking Control of A Car-Like-mobile Robot via
Dynamic Feedback Linearization”. Control 2004,
University of Bath, UK.

[16] Zhao, Y., Collins, Jr. E.G., 2005, “Robust Automatic
Parallel Parking in Tight Spaces via Fuzzy Logic”.
Robotics and Autonomous Systems. Elsevier, 51, pp.
111 – 127.

[17] Shladover, S.E.; Desoer, C.A.; Hedrick, J.K.;
Tomizuka, M.; Walrand, J.; Zhang, W.-B.;
McMahon, D.H.; Peng, H.; Sheikholeslam, S.;

McKeown, N., 1991, “Automated vehicle control
developments in the PATH program”. IEEE
Transaction on Vehicle Technology, Vol 40, No 1,
Feb.. Pp. 114 –130

[18] Han-Shue, T., Guldner, J., Patwardhan, S., Chen, C.
and Bougler, B., (1999) “Development of an
Automated Steering Vehicle Based on Roadway
Magnets—A Case Study of Mechatronic System
Design”. IEEE/ASME Transactions on
Mechatronics, VOL. 4, NO. 3, September. pp. 258 –
272.

[19] Wada, M., Yoon, K. S, and Hashimoto, H., 2003,
“Development of Advanced Parking Assistance
System” IEEE Trasactions on Industrial Electronics,
Vol. 50, No. 1, February. pp 4 – 17.

[20] Moreno, Edward D.; Penteado, C.G.; Rodrigues da
Silva, A.C. Microcontrollers and FPGAs –
Applications on Automation Area. Edit. NOVATEC
www.novatec.com.br. ISBN 85-7522-079-9, p. 370,
2005.

[21] V. Amudha, B.Venkataramani, R. Vinoth kumar and
S. Ravishankar. Software/Hardware Co-Design of
HMM Based Isolated Digit Recognition System. In
JCP – Journal of Computers, Vol. 4, No. 2, Feb.
2009, Academy Publishers, 2009.

[22] Murakami, Masayuki. Task-based Dynamic Fault
Tolerance for Humanoid Robot Applications and Its
Hardware Implementation. In JCP – Journal of
Computers, Vol. 3, No. 8, Aug.. 2008, Academy
Publishers, 2008.

[23] Han, Meng-Ju; Hsu, Jing-Huai; Song, Kai-Tai;
Chang, Fuh-Yu. A New Information Fusion Method
for Bimodal Robotic Emotion Recognition. In JCP –
Journal of Computers, Vol. 3, No. 7, July 2008,
Academy Publishers, 2008.

[24] Shimazaki Kazunori; Kimura Tomio; Yamada
Satoshi (2004).: Parking assisting device – Patent No
US 6711473 B2 - United States.

[25] Tanaka Yuu; Iwata Yoshifumi; Satonaka Hisashi;
Endo Tomohiko; Kubota Yuichi; Matsui Akira;
Iwakiri Hideyuki; Sugiyama Toru; Kawakami Seiji;
Iwazaki Katsuhiko; Kataoka Hiroaki (2006) .:
Vehicle backward movement assist device and
vehicle parking assist device - Patent No 7039504 –
United States.

JOURNAL OF COMPUTERS, VOL. 5, NO. 3, MARCH 2010 371

© 2010 ACADEMY PUBLISHER

