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Abstract— We propose a new efficient identity-based broad-
cast encryption scheme without random oracles and prove
that it achieves selective identity, chosen plaintext security.
Our scheme is constructed based on bilinear Diffie-Hellman
inversion assumption and it is a good efficient hybrid encryp-
tion scheme, which achieves O(1)-size ciphertexts, public
parameters and constant size private keys. In our scheme,
either ciphertexts or public parameters has no relation with
the number of receivers, moreover, both the encryption and
decryption only require one pairing computation. Compared
with other identity-based broadcast encryption schemes,
our scheme has comparable properties, but with a better
efficiency.

Index Terms— Identity-based broadcast encryption, Random
oracles, Bilinear Groups, Bilinear Diffie-Hellman Assump-
tion

I. INTRODUCTION

Broadcast encryption(BE) systems [1] allow a sender,
who wants to send a message to a dynamically chosen
subset N ⊆ [1, n] of users, to construct a ciphertext such
that only users in N can decrypt; the sender can then
safely transmit this ciphertext over a broadcast channel to
all users. Many BE systems [2]–[6] have been proposed,
and some of them make use of the hybrid encryption
paradigm where the broadcast ciphertext only encrypts
a symmetric key which is used to encrypt the broadcast
contents. It is preferable if the system uses public key
(anybody can encrypt), permits stateless receivers (users
do not need to update their private keys), and is fully
collusion resistant (even if all users outside of N collude,
they cannot decrypt). Typically, we assume that a broad-
cast encryption system has these properties. For a useful
secure broadcast system, short ciphertexts are required,
thus the main challenge in building efficient broadcast
systems is to encrypt messages with short ciphertexts.

The formal concept of the identity-based broadcast en-
cryption (IBBE) was introduced by Delerablée in [7](and
independently in [8]) in 2007. This concept is related to
identity-based encryption(IBE) [9], in which the maximal
size of a broadcast group is N = 1. It is also related
to multi receiver ID-based KEM (mID-KEM), introduced
in [10] and further developed in [11]–[14].

In [7], Delerablée proposed the formal definition and
security notions for IBBE. In his definition, an IBBE

scheme basically includes an Extract procedure in the
definition of Broadcast Encryption given in [5], and
can also be viewed as a generalization of classical IBE
systems. For security notions, Delerablée followed the
definition of the classical security notions for BE (security
against static adversaries), which is close to the notion of
selective identity security(weaker than full security), used
in [15]. Then, Delerablée proposed an IBBE scheme using
a Key Encapsulation Mechanism (KEM), so that long
messages can be encrypted under a short symmetric key.
In his solution, ciphertexts and private keys are of constant
size, and the public key is linear in the maximal value of
N . Finally, he proved that his construction is selective
identity, chosen plaintext(IND-sID-CPA) secure. How-
ever, the security of his scheme requires cryptographic
hash functions that are modeled as random oracles, i.e.,
his scheme is only proven secure in the random oracle
model but maybe insecure in practice.

Recently, Guo [16] proposed an authority identity-
based broadcast encryption(AA-IBBE) scheme based on
the result of [7]. The scheme provides a new approach
to mitigate the key escrow problem in IBBE schemes.
In [16], Guo gave IND-sID-CPA security proof of his
scheme in the random oracle model, but did not describe
efficiency. Compared with the construction in [7], we
assume that they have the same efficiency.

Moreover, in the year 2008, Boneh and Hamburg [17]
developed a general framework for constructing identity-
based encryption and broadcast encryption, and given
the first broadcast hierarchical identity based encryp-
tion(HIBE) system with random oracles. The ciphertext
size in all systems proposed in [17] is independent of the
number of users involved, but private key size grows with
the complexity of the system.

Lately, Gentry and Waters [21] presented new tech-
niques for achieving adaptive security in broadcast en-
cryption systems. Note that fully collusion resistant un-
der adaptive attacks is the right model for security in
broadcast encryption systems. In [21], they presented
a new definition of security called semi-static security
and showed a generic two-key transformation from semi-
statically secure systems to adaptively secure systems
that have comparable-size ciphertexts. Furthermore, they
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presented the first adaptively secure IBBE scheme with
public key of size O(λ · l) and constant-sized private
keys(i.e., O(λ)).

In fact, the concept of the identity-based broadcast
encryption was first introduced in [18] in 2003. Later,
Du proposed an ID-based broadcast encryption scheme
in [19] for key distribution, by which a center can
distribute session keys to a certain set of users. A tiny
difference from the scheme of [7] is that this scheme
does not require a secure channel between each user
and the center and only needs one round broadcast.
In terms of efficiency, the communication transmission
bandwidth of [19] is linearly dependent of the user size,
the encryption requires one pairing computation but the
decryption requires two pairing computation. Afterward, a
new ID-based broadcast encryption scheme was proposed
in [20] based on the result of [18], [19]. The new scheme
has a good efficiency, both the encryption and decryption
only require one pairing computation.

We focus on improving the security and efficiency
based on the result of [7], and we have made the following
contributions. We present a new efficient identity-based
broadcasting encryption scheme that is IND-sID-CPA
secure without random oracles. First, in our scheme, either
the broadcast ciphertexts or the public key is O(1)-size
and has no relation with the number of receivers. Second,
the private keys used to decrypt by the receivers are of
constant size. Third, the group manager can dynamically
include new members while preserving previously com-
puted information. In particular, user decryption keys need
not be recomputed, the morphology and size of cipher-
texts are unchanged and the group encryption key requires
minimal or no modification. In short, our construction
achieves O(1)-size ciphertexts, public key and constant
size private keys, and it does not rely on random oracles.

II. COMPLEXITY ASSUMPTIONS

Let G be a bilinear group of prime order p. We re-
view the standard Bilinear Diffie-Hellman (BDH) assump-
tion and describe the Bilinear Diffie-Hellman Inversion
(BDHI) assumption.

A. Bilinear Groups

We briefly review the necessary facts about bilinear
maps and bilinear map groups [9], [22]. We use the
following notations:

1. G and G1 are two (multiplicative) cyclic groups of
prime order p.

2. g is a generator of G.
3. e is a bilinear map e : G × G → G1.
Let G and G1 be two groups as above. A bilinear map

is a map e : G × G → G1 with the following properties:
1. Bilinearity: for all u, v ∈ G and a, b ∈ Z , we have

e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= 1.
We say that G is a bilinear group if the group action in

G can be computed efficiently and there exists a group G1

and an efficiently computable bilinear map e : G×G → G1

as above. Note that e(·, ·) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

Throughout the paper, for a prime order group G we
use G∗ to denote the set G \{1G} where 1G is the identity
of G.

B. Bilinear Diffie-Hellman Assumption

The BDH problem [9] in G is as follows: given a tuple
g, ga, gb, gc ∈ G as input, output e(g, g)abc ∈ G1. An
algorithm A has advantage ε in solving BDH in G if

Pr[A(g, ga, gb, gc) = e(g, g)abc] ≥ ε

where the probability is over the random choice of
generator g in G∗, the random choice of a, b, c in Zp,
and the random bits used by A. Similarly, we say that
an algorithm B that outputs b ∈ 0, 1 has advantage ε in
solving the decision BDH problem in G if

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 0]
−Pr[B(g, ga, gb, gc, T ) = 0]| ≥ ε

where the probability is over the random choice of
generator g in G∗, the random choice of a, b, c in Zp, the
random choice of T ∈ G1, and the random bits consumed
by B. We refer to the distribution on the left as PBDH

and the distribution on the right as RBDH .
Definition 1. We say that (Decision)(t, ε)-BDH as-

sumption holds in G if no t-time algorithm has advantage
at least ε in solving the (Decision) BDH problem in G.
Occasionally we drop the t and ε and refer to the BDH
and Decision BDH assumptions in G.

C. Bilinear Diffie-Hellman Inversion Assumption

The q-BDHI problem is defined as follows: given the
(q + 1)-tuple (g, gx, g(x2), ..., g(xq)) ∈ (G∗)q+1 as input,
compute e(g, g)1/x ∈ G∗1 . An algorithm A has advantage
ε in solving q-BDHI in G if

Pr[A(g, gx, ..., g(xq)) = e(g, g)1/x] ≥ ε

where the probability is over the random choice of gen-
erator g in G∗, the random choice of the x in Z∗p , and
the random bits of A. Similarly, we say that an algorithm
B that outputs b ∈ {0, 1} has advantage ε in solving the
decisionq-BDHI problem in G if

|Pr[B(g, gx, ..., g(xq), e(g, g)1/x) = 0]
−Pr[B(g, gx, ..., g(xq), T ) = 0]| ≥ ε

where the probability is over the random choice of gener-
ator g in G∗, the random choice of x in Z∗p , the random
choice of T ∈ G1, and the random bits of B. We refer to
the distribution on the left as PBDHI and the distribution
on the right as RBDHI .

Definition 2. We say that the (Decision)(t, q, ε)-BDHI
assumption holds in G if no t-time algorithm has advan-
tage at least ε in solving the (Decision) q-BDHI problem
in G.

Occasionally we drop the t and ε and refer to the q-
BDHI and Decision q-BDHI assumptions. It is not known
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if the q-BDHI assumption, for q > 1, is equivalent to
BDH. A closely related assumption was previously used
in [23] where it was called weak Diffie-Hellman.

III. FORMAL DEFINITION OF IBBE

We follow the formal definition of IBBE, described
in [7].

An IBBE scheme involves an authority: the Private
Key Generator (PKG). The PKG grants new members
capability of decrypting messages by providing each new
member (with identity IDi) a decryption key skIDi . The
generation of skIDi

is performed using a master secret
key MSK. An IBBE scheme with security parameter λ
and maximal size m of the target set, is a tuple of algo-
rithms IBBE = (Setup, Extract, Encrypt, Decrypt)
described as follows:

Setup(λ, m). Takes as input the security parameter λ
and m the maximal size of the set of receivers for one
encryption, and outputs a master secret key MSK and a
public key PK. The PKG is given MSK, and PK is made
public.

Extract(MSK, IDi). Takes as input the master secret
key MSK and a user identity IDi. Extract generates a
user private key skIDi .

Encrypt(N ,PK). Takes as input the public key PK and
a set of included identities N = {IDi, · · · , IDn} with n ≤
m, and outputs a pair (Hdr, K), where Hdr is called the
header, K ∈ K and K is the set of keys for the symmetric
encryption scheme.

When a message M ∈ {0, 1}∗ is to be broadcast
to users in N , the broadcaster generates (Hdr,K) ←−
Encrypt(N ,PK), computes the encryption CM of M
under the symmetric key K and broadcasts (Hdr,S, CM ).
We will refer to Hdr as the header or broadcast ciphertext,
(Hdr,N ) as the full header, K as the message encryption
key and CM as the broadcast body.

Decrypt(N , ID, skID,Hdr,PK). Takes as input a subset
N = {IDi, · · · , IDn} (with n ≤ m), an identity ID and
the corresponding private key skID, a header Hdr, and the
public parameters PK. If ID ∈ N , the algorithm outputs
the message encryption key K which is then used to
decrypt the broadcast body CM and recover M .

Remark. This model defines, when m = 1, an IBE
system.

IV. SECURITY NOTIONS FOR IBBE

Arguably, the ”correct” definition for security in broad-
cast encryption systems is that of adaptive security. In an
adaptively secure system, the adversary is allowed to see
PK and then ask for several private keys before choosing
the set of indices that it wishes to attack. Adaptive security
in broadcast encryption is defined in [21] lately.

Our work began before the above definition was pro-
posed, and security analysis was based on the weaker
standard security notion described in [7]. One interesting
open problem is constructing an efficient IBBE scheme
without random oracles under the adaptive security no-
tion.

The rest of this section is dedicated to describing the
IND-sID-CPA security and IND-sID-CCA security for
IBBE proposed in [7].

Security is defined using the following game between
an adversary A and a challenger. Both the adversary and
the challenger are given as input m, the maximal size of
a set of receivers N .

Init: The adversary A first outputs a set N ∗ =
{ID∗i , · · · , ID∗n} of identities that he wants to attack (with
n ≤ m).

Setup: The challenger runs Setup(λ ,m) to obtain a
public parameters PK. He gives A the public key PK.

Query phase 1: The adversary A adaptively issues
queries q1, · · · , qn0 , where qi is one of the following:
• Extraction query (IDi) with the constraint that IDi 6∈

N ∗: The challenger runs Extract on IDi and forwards the
resulting private key to the adversary.
• Decryption query, which consists of a triple

(IDi,N ,Hdr) with N ∈ N ∗ and IDi ∈ N . The challenger
responds with Decrypt(N , IDi, skIDi,Hdr,PK).

Challenge: When A decides that phase 1 is over, the
challenger runs Encrypt algorithm to obtain (Hdr∗,K) =
Encrypt(N ∗,PK) where K ∈ K. The challenger then
randomly selects b ← {0, 1}, sets Kb = K, and sets
K1−b to a random value in K. The challenger returns
(Hdr∗,K0,K1) to A.

Query phase 2: The adversary continues to issue
queries qn0+1, · · · , qn where qi is one of the following:
• Extraction query (IDi), as in phase 1.
• Decryption query, as in phase 1, but with the con-

straint that Hdr 6= Hdr∗. The challenger responds as in
phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈
{0, 1} and wins the game if b = b′.

We denote by q
D

the total number of Decryption
queries and by t the total number of extraction queries
that can be issued by the adversary during the game.
Viewing t,m, qD as attack parameters, we denote by
Advind

IBBE(t,m, qD,A) the advantage of A in winning the
game:

Advind
IBBE(t,m, qD,A)

=
∣∣∣2× Pr[b = b

′
]− 1

∣∣∣
=

∣∣∣Pr[b = b
′ |b = 1]− Pr[b

′
= 1|b = 0]

∣∣∣

where the probability is taken over the random coins of
A, the challenger and all probabilistic algorithms run by
the challenger.

Definition 3. Let Advind
IBBE(t,m, qD,A) =

maxAAdvind
IBBE(t,m, qD,A) where the maximum is

taken over all probabilistic algorithms A running in time
poly(λ). An identity-based broadcast encryption scheme
IBBE is said to be (t,m, qD)-IND-sID-CCA secure if
Advind

IBBE(t,m, qD) = negl(λ).
IND-sID-CPA. We define semantic security for an

IBBE scheme by preventing the attacker from issuing
decryption queries.
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Definition 4. We say that an identity-based broadcast
encryption system is (t,m)-IND-sID-CPA secure if it is
(t,m, 0)-IND-sID-CCA secure.

V. OUR CONSTRUCTION

In this section, we present our IBBE scheme without
random oracles based on the q-BDHI assumption. The
proposed scheme achieves constant size ciphertexts, pub-
lic key and private keys.

A. Basic Construction Description

Let G be a bilinear group of prime order p. We
choose a cryptographic collision resistant hash function
H : {0, 1}∗ → Z∗p , which can map arbitrary identities as
public keys (ID) in {0, 1}∗ into Z∗p . We also assume the
K to be encrypted is an element in G1, where K ∈ K and
K is the set of keys for the symmetric encryption scheme.

Setup(λ,m): To generate the parameters of the IBBE
system, given the security parameter λ and an integer
m, a bilinear map group system G = (p,G,G1, e(·, ·)) is
constructed. We then select a random generator g ∈ G∗,
two random elements x, y ∈ Z∗p , and define X = gx and
Y = gy . The public key PK and the master secret key
MSK are defined as follows:

PK = (g, X, Y ), MSK = (x, y)

Extract(MSK, IDi): Now we have the MSK = (x, y),
to create a private key for the public key identity IDi ∈
Z∗p :

1. pick a random element r ∈ Zp, and compute R =
g

1
(r+IDi)·y+x ,

2. output the private key skIDi
= (r,R).

In case of the unlikely event that (r + IDi) · y + x = 0
(mod p), try to select a new random value for r.

Encrypt(PK,N ,K): Assume the notation N =
{IDj}n

j=1 represent the set of the receivers. To encrypt
a symmetric encryption scheme’s key K ∈ K, the broad-
caster needs to randomly pick a s ∈ Z∗p , and computes
the Hdr = (A,B, C, D) using PK and s to encapsulate
the symmetric key K, where

A = Y

∏n

j=1
IDj ·s B = Xs

C = Y s D = e(g, g)s ·K

Note that e(g, g) can be precomputed once for encryp-
tion everytime, so that it dose not require any pairing
computations.

Decrypt(PK,N , IDi, skIDi
,Hdr): In order to retrieve

the message encryption key K encapsulated in the header
Hdr = (A,B, C, D), the receiver in the set N =
{IDj}n

j=1 with identity IDi ∈ N (1 ≤ i ≤ n) and the
private key skIDi

= (r,R) should compute and output
D/e(A1/(

∏n

j=1,j 6=i
IDj) · B · Cr, R). Indeed, for the valid

ciphertext we have

D

e(A
1∏n

j=1,j 6=i
IDj ·B · Cr, R)

=
D

e(gy·IDi·s · g(x)·s · g(y)·s·r, g
1

(r+IDi)·y+x )

=
e(g, g)s ·K

e(g, g)s
= K

B. Efficiency

In terms of efficiency, our construction achieves O(1)-
size ciphertexts, public key and constant size private keys.
We can get the result from the expressions of public key,
private key and ciphertext as follows:

1. The expression of public key is PK = (g, X, Y ),
where X = gx, Y = gy and x, y ∈ Z∗p . It is obvious that
the public key is O(1)-size and has no relation with the
number of receivers.

2. The expression of private key is skIDi
= (r,R),

where r ∈ Zp and R = g
1

(r+IDi)·y+x . It is obvious that
the private key is constant size.

3. The expression of ciphertext is Hdr = (A,B, C, D):

A = Y

∏n

j=1
IDj ·s B = Xs

C = Y s D = e(g, g)s ·K
where s ∈ Z∗p , K is the symmetric key. Because the result
of

∏n
j=1 IDj · s is a numerical value, so the ciphertext has

no relation with the number of receivers and it is O(1)-
size.

Note that the public key in our construction is constant
size which is different from the linear size of N in [7],
[16], and shorter than the schemes in [21]; private keys
is constant size which is different from growing with the
complexity of the system in [17]; both the encryption and
decryption only require one pairing computation, which is
different from the number of pairing computation in [7],
[16], [19]. As a result, our scheme has a better efficiency
compared with other identity-based broadcast encryption
schemes.

C. Security Analysis

We prove that our IBBE scheme without random ora-
cles is selective identity, chosen plaintext(IND-sID-CPA)
secure under the Decision q-BDHI assumption.

Theorem 1. Suppose the (t, q, ε)-Decision BDHI as-
sumption holds in G of size |G| = p. Then the previously
defined IBBE system is (t′, qD, ε)-selective identity, cho-
sen plaintext(IND-sID-CPA)secure for any qD < q, and
any t′ < t − Θ(Γq2) where Γ is the maximum time for
an exponentiation in G.

Proof. The rest of this section is dedicated to proving
Theorem 1. Suppose A has advantage ε in attacking
the IBBE system. We build an algorithm B that uses
A to solve the Decision q-BDHI problem in G. Al-
gorithm B is given as input a random (q + 2)-tuple
(g, gα, gα2

, ..., gαq

, T ) ∈ (G∗)q+1 × G1. Algorithm B’s
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goal is to output 1 if T = e(g, g)1/α and 0 otherwise.
Algorithm B works by interacting with A in a selective
identity game as follows:

Preparation: Algorithm B builds a generator h ∈ G∗
for which it knows q−1 pairs of the form (wi, h

1/(α·wi))
for random w1, w2, ..., wq−2 ∈ Z∗p . This is done as
follows:

1. Pick random w1, w2, ..., wq−2 ∈ Z∗p and let f(z) be
the polynomial f(z) =

∏q−2
i=1 (z + wi). Expand the

terms of f to get f(z) =
∑q−2

i=0 ciz
i. The constant

term c0 is non-zero.
2. Compute h =

∏q−1
i=1 (g(α)i

)ci−1 = gαf(α) and u =∏q−1
i=1 (g(α)i+1

)ci−1 = gα2f(α). Note that u = hα.
3. Check that h ∈ G∗. Indeed if we had h = 1 in
G this would mean that wj = −α for some easily
identifiale wj , at which point B would be able to
solve the challenge directly. Thus we assume that
all wj 6= −α.

4. Observe that for any i = 1, ..., q − 2, it is easy for
B to construct the pair (wi, h

1/(α·wi)). To see this,
we have

fi(z) =
αf(z)
αwi

=
f(z)
wi

=
q−2∑

j=0

cj

wi
zj =

q−2∑

j=0

djz
j

Then

h
1

α·wi = gfi(α) =
q−2∑

j=0

(g(αj))dj

5. Afterward, B computes

Th = T c2
0 · T0

where

T0 =
q−2∏

i=0

q−3∏

j=0

e(g(α)i

, g(α)j

)
cicj+1

Observe that if T = e(g, g)1/α then Th =
e(gf(α)/α, gf(α)) = e(h, h)1/α. On the contrary, if
T is uniform in G1, then so is Th.

We will be using the values h, u, Th and the pairs
(wi, h

1/(α·wi)) for i = 1, ...q − 1 throughout the simu-
lation.

Initialization: The selective identity game begin with
the adversary A first outputting a set N ∗ = {ID∗j}n

j=1of
identities he wants to attack.

Setup: To generate the system parameters, Algorithm
B dose the following:

1. Pick random a ∈ Z∗p and let b =
∏n

j=1 ID∗j .
2. Compute X = ua+b = hα(a+b) and Y = u = hα.
3. Publish PK = (h,X, Y ) as the public key, Note that

the X, Y are independent of ID∗j in the adversary’s
view.

4. We implicitly define x = α(a + b) and y = α, so
that X = hx and Y = hy . Algorithm B dose not
know the value of x and y.

Phase 1: The adversary A issues up to qD < q − 1
private key queries. Consider the i-th query for the private

key corresponding to public key IDi 6∈ {ID∗j}n
j=1. We

need to respond with a private key (r, h
1

(r+IDi)·y+x ) for a
uniformly distributed r ∈ ZP . Algorithm B responds to
the query as follows:

1. Let(wi, h
1/(α·wi)) be the i-th pair constructed during

the preparation step. Define hi = h1/(α·wi)

2. B first constructs an r ∈ Zp satisfying (r + a + b) ·
αwi = (r + IDi) · y + x. Plugging in the values of
x and y the equation becomes

(r + a + b) · αwi = (r + IDi) · α + α(a + b)

we see that the unknown α cancels from the equation
and we get r = IDi

wi−1 − (a + b) ∈ Zp which B can
evaluate.

3. Now , (r, h
1

r+a+b ) is a valid private key for IDi, for

h
1

r+a+b

i = (h
1

αwi )r+a+b = h
1

(r+IDi)·y+x

as required. From the construction of r we can see
that it is uniformly distributed among all elements in
Zp for which (r+ IDi) ·y+x 6= 0 and r 6= −(a+b).

Challenge: The adversary A outputs two message
M0,M1 ∈ G1, algorithm B picks a random bit b ∈ {0, 1}
and a random ` ∈ Z∗p . It responds with the ciphertext
CT = (hb·`, h(a+b)·`, h`, T `

h ·Mb). Define s = `/α.
On the other hand, if Th = e(g, g)1/α we have

hb·` = h

∏n

j=1
ID∗j ·` = h

α·
∏n

j=1
ID∗j ·s = Y

∏n

j=1
ID∗j ·s

h(a+b)·` = hα·(a+b)·s = (hx)s = Xs

h` = hα·s = Y s

It follows that CT is a valid encryption of Mb under
ID∗, with the uniformly distributed randomization value
s = `/α ∈ Z∗p . On the other hand when Th is uniform in
G1, then , in the adversary’s view, CT is independent of
the bit b.

Phase 2: The adversary A issues more private key
queries, for a total of at most qD < q − 1. Algorithm
B responds as before.

Guess: Finally,A outputs a guess b′ ∈ {, 0, 1}. If b = b′

then B outputs 1 meaning T = e(g, g)1/α. Otherwise, it
outputs 0 meaning T 6= e(g, g)1/α.

We show that when the input tuple is sampled from
PBDHI (where T = e(g, g)1/α) then Th = e(h, h)1/α

in which case A must satisfy |Pr[b = b′] − 1/2| > ε.
On the other hand, when the input tuple is sampled from
RBDHI (Where T is uniform in G1) then Th is uniform
and independent in G1 in which case Pr[b = b′] = 1/2.
Therefore, with g uniform in G∗, x uniform in Z∗p and T
uniform in G1, we have that

|Pr[B(g, gx, ..., g(xq), e(g, g)1/x) = 0]−
Pr[B(g, gx, ..., g(xq), T ) = 0]| ≥ |(1

2
± ε)− 1

2
| ≥ ε

as required.
This completes the proof of the Theorem 1.
The proof process is similar with [15].
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VI. CONCLUSION

The paper constructs an identity-based broadcast en-
cryption scheme which does not use the cryptographic
hash functions that are modeled as random oracles. We
then prove that it is a selective identity, chosen plaintext
secure scheme.

In terms of efficiency, the scheme achieves O(1)-size
ciphertexts, public key and constant size private keys,
either ciphertexts or public key has no relation with the
number of receivers, and both the encryption and decryp-
tion only require one pairing computation. Moreover, the
total number of possible users does not have to be fixed
in the setup in our scheme.

In terms of security, the construction is based on the
selective identity security notion, but lately, a strong stan-
dard notion has been proposed in [21], one open problem
would be constructing an adaptively secure efficient IBBE
scheme which does not rely on the random oracles under
some standard decision assumptions.
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