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Abstract—Through changing the equivalence relation in the 
incomplete information system, a new variable precision 
rough set model and an approach for knowledge reduction 
are proposed. To overcome no monotonic property of the 
lower approximation, a cumulative variable precision rough 
set model is explored, and the basic properties of cumulative 
lower and upper approximation operators are investigated. 
The example proves that the cumulative variable precision 
rough set model has wide range of applications and better 
result than variable precision rough set model. 
 

Index Terms—Variable precision rough set, Incomplete 
information system, Decision table, Cumulative 
approximation 
 

I.  INTRODUCTION 

Rough set theory (RST) has been proposed by 
Pawlak [1] as a tool to conceptualize, organize and 
analyze various types of data in knowledge discovery. 
This method is especially useful for dealing with 
uncertain and vague knowledge in information systems. 
Many examples about applications of the rough set 
method to process control, economics, medical diagnosis, 
biochemistry, environmental science, biology, chemistry, 
psychology, conflict analysis and other fields can be 
found in [2,3]. However, the classical rough set theory is 
based on an equivalence relation and can not be applied 
in many real situations. Therefore, many extended RST 
models, e.g. binary relation based rough sets [4], covering 

based rough sets [5,6], and fuzzy rough sets [7,8] have 
been proposed. In order to solve classification problems 
with uncertain data and no functional relationship 
between attributes and relax the rigid boundary definition 
of the classical rough set model to improve the model 
suitability, the variable precision rough set (VPRS) model 
was proposed by Ziarko [9] in 1993. It is an effective 
mathematical tool with an error-tolerance capability to 
handle uncertainty problem. Basically, the VPRS is an 
extension of classical rough set theory [1-3], allowing for 
a partial classification. By setting a confidence threshold, 

(0 0.5)β β≤ < , the VPRS can allow noise data or 
remove error data [10]. Recently the VPRS model has 
been widely applied in many fields [11]. 

The key issues of VPRS model mainly concentrates 
on generalization of models and development of 
reduction approaches under the equivalence relation. For 
example, β -reduct [12], β  lower (upper) distribution 
reduction [13] and reduction based on structure [14], etc, 
are reduction approaches under the equivalence relation. 
However, in many practical problems, the equivalence 
relation of objects is difficult to construct, or the 
equivalence relation of objects essentially does not exist. 
In this case, we need to generalize the VPRS model. The 
ideas of generalization are from two aspects. One is to 
generalize approximated objects from a crisp set to a 
fuzzy set [15]; The other is to generalize the relation on 
the universe from the equivalence relation to the fuzzy 
relation [15], binary relation [16], or covering relation 
[17,18]. The idea of the VPRS was introduced to fuzzy 
rough set and the theory and application of fuzzy rough 
set were discussed in [15]. The equivalence relation was 
generalized to a binary relation R  on the universe U  in 
the VPRS model, so that a generalized VPRS model was 
obtained [16]. Covering rough set model [19] has been 
obtained when the equivalence relation on the universe 
was generalized to cover on the universe in rough set 
model. The equivalence relation was generalized to cover 
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on universe U  in the VPRS model and two kinds of 
variable precision covering rough set models were 
obtained in [17,18]. The definition of the variable 
precision rough fuzzy set model under the equivalence 
relation was given in [20].  

The classical rough set approach requires the data 
table to be complete, i.e., without missing values. In 
practice, however, the data table is often incomplete. To 
deal with these cases, Greco, et al [21] proposed an 
extension of the rough set methodology to the analysis of 
incomplete data tables. The extended indiscernible 
relation between two objects is considered as a 
directional statement where a subject is compared to a 
referent object. It requires that the referent object has no 
missing values. The extended rough set approach 
maintains all good characteristics of its original version. 
It also boils down to the original approach when there is 
no missing value. The rules induced from the rough 
approximations defined according to the extended 
relation verify a suitable property: they are robust in a 
sense that each rule is supported by at least one object 
with no missing value on the condition attributes 
represented in the rule. Obviously, these ideas can be 
used to the VPRS model. 

The classical and the generalized VPRS approach 
based on indiscernible relations also require the data table 
to be complete. In this paper, two kinds of VPRS 
approaches for dealing with incomplete dada table are 
proposed. The paper is organized as follows. In Section 2, 
a general view of VPRS approach and incomplete 
information system are given. In Section 3, based on the 
extended indiscernible relation, we propose a new VPRS 
model and an approach for knowledge reduction in the 
incomplete information system. In Section 4, a 
cumulative VPRS model in the incomplete information 
system is discussed. They are based on the cumulative β  
lower (upper) approximation of X . In Section 5, we 
present an illustrative example which is intended to 
explain the concepts introduced in Section 3 and Section 
4. The paper ends with conclusions and further research 
topics in Section 6. 

II.  PRELIMINARIES AND NOTATIONS 

Definition 1 [1]. An information system is the 4-
tuple ( , , , )S U Q V f= , where U  is a non-empty finite 

set of objects (universe), 1 2{ , , , }mQ q q q= L  is a finite 

set of attributes, qV  is the domain of the attribute q , 

q
q Q

V V
∈

= U  and :f U Q V× →  is a total function such 

that ( , ) qf x q V∈  for each q Q∈ , x U∈ , called an 

information function. If { }Q C d= U  and 
{ }C d =∅I , then ( , { }, , )S U C d V f= U  is called 

a decision table, where d  is a decision attribute. 

To every (non-empty) subset of attributes P C⊆  is 
associated an indiscernible relation on U , denoted by 

PR : 

{( , ) : ( , ) ( , ) }.PR x y U U f x q f y q q P= ∈ × = ∀ ∈       (1) 

If ( , ) Px y R∈ , it is said that the objects x and y are P -
indiscernible. Clearly, the indiscernible relation thus 
defined is an equivalence relation (reflexive, symmetric 
and transitive). The family of all the equivalence classes 
of the relation pR  is denoted by / pU R  and the 

equivalence class containing an element x U∈  by 
[ ] { : ( , ) }px y U x y R= ∈ ∈ . The equivalence classes 

of the relation pR  are called P -elementary sets. If 

P C= , the C -elementary sets are called atoms. 
Definition 2 [9]. Let X  and Y  be subsets of non-

empty finite universe U , if every e X∈  then e Y∈ , 
we call Y  contain X . It is described as Y X⊇ . Let 

1 | | / | |,  |X|>0,
( , )

0,                          |X|=0,
X Y X

c X Y
−⎧

= ⎨
⎩

I                     (2) 

where | |X  is cardinality of set X . ( , )c X Y  is called 
the relative error ratio for X  with regard to Y . 

Definition 3 [9]. Let S  be a decision table, X  a 
nonempty subset of U , 0 0.5β≤ <  and P C∅ ≠ ⊆ . 
The β  lower approximation and the β  upper 
approximation of X  in S  are defined, respectively, by: 

( ) { : ([ ], ) }.P X x U c x Xβ β= ∈ ≤                          (3) 

( ) { : ([ ], ) 1 }.P X x U c x Xβ β= ∈ < −                      (4) 

The elements of ( )P Xβ  are those objects x U∈  
which belong to the equivalence classes generated by the 
indiscernible relation pR , contained in X  with the error 

ratio β ; the elements of  ( )P X
β

 are all and only those 
objects x U∈  which belong to the equivalence classes 
generated by the indiscernible relation pR , contained in 

X  with the error ratio 1 β− . 

Definition 4 [21]. An information system is called an 
incomplete information system if there exists x U∈  and 
a C∈  that satisfy that the value ( , )f x a  is unknown, 
denoted as “*”. It assumes here that at least one of the 
states of x  in terms of P  is certain where P C⊆ , i.e. 

a P∃ ∈  such that ( , )f x a  is known. Thus, 

{*}C dV V V= U U . 

Definition 5 [21]. ,x y U∀ ∈ , object y  is called 
subject and object x , referent. Subject y  is 
indiscernible with referent x , with respect to condition 
attributes from P C⊆  (denoted as PyI x ), if for every 
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q P∈  the following conditions satisfy: (1) ( , ) *f x q ≠ , 
(2) ( , ) ( , )  ( , ) *f x q f y q or f y q= = , where “*” 
denotes a missing value. 

The above definition means that the referent object 
considered for indiscernible with respect to P  should 
have no missing values on attributes from set P . The 
binary relation PI  is not necessarily reflexive and also 

not necessarily symmetric. However, PI  is transitive. 

For each P C⊆ , let us define a set of objects 
having no missing values on attributes from P : 

{ : ( , ) *    }.PU x U f x q for each q P= ∈ ≠ ∈        (5) 

III.   VARIABLE PRECISION ROUGH SET MODEL IN THE 
INCOMPLETE INFORMATION SYSTEM 

Definition 6. Let S  be an incomplete information 
system, X  a nonempty subset of U , 0 0.5β≤ <  and 

P C∅ ≠ ⊆ . The β  lower approximation and the β  
upper approximation of X  in S  are defined, 
respectively, by: 

( ) { : ( ( ), ) }.I
P PP X x U c I x Xβ β= ∈ ≤                 (6) 

( ) { : ( ( ), ) 1 }.
I

P PP X x U c I x Xβ β= ∈ < −           (7) 

The elements of ( )IP Xβ  are those objects x U∈  
which belong to the equivalence classes generated by the 
indiscernible relation PI , contained in X  with the error 

ratio β ; the elements of  ( )
I

P Xβ  are all and only those 
objects x U∈  which belong to the equivalence classes 
generated by the indiscernible relation PI , contained in 

X  with the error ratio 1 β− . 
The β  boundary of X  in S , denoted by 

( )IBN Xβ , is: 

( ) { : ( ( ), ) 1 }.I
P PBN X x U c I x Xβ β β= ∈ < < −   (8) 

The β  negative domain of X  in S , denoted by 

( )NEG Xβ , is: 

( ) { : ( ( ), ) 1 }.I
P PNEG X x U c I x Xβ β= ∈ ≥ −       (9) 

Corollary 1. When 0β = , the VPRS model defined 
above is equivalent to rough set model in incomplete 
information system [21]. 

Proof. In formula (10), ( ( ), )Pc I x X β≤  is 

equivalent to ( ( ), ) 0Pc I x X ≤ , so 

1 | ( ) | / | ( ) |P PI x X I x≤ I , such that ( )PI x X⊆ , that 

is to say, ( )IP X
β

 is equivalent to ( )P X . 

Analogously, ( )
I

P Xβ  is equivalent to ( )P X . 

Corollary 2. If an information system is complete, 
the VPRS model defined above is equivalent to the 
classical VPRS model. 

Proof. ,x y U∀ ∈ , P C⊆ , PyI x , then for every 

q P∈ , we have (1) ( , ) *f x q ≠ , (2) 
( , ) ( , )  ( , ) *f x q f y q or f y q= = . In a complete 

information system, we have ( , ) ( , )f x q f y q= , so 

( )PI x  is equal to [ ]x , such that formula (6) is 
equivalent to formula (3) and formula (7) is equivalent to 
formula (4). 

Theorem 1. X U∀ ⊆ , (~ ) ( )I IP X NEG X
β β

= , 

where  (~ = - )X U X . 
Proof. From Definition 6, 

| ( ) (~ ) |(~ ) { :1 }
| ( ) |

I P
P

P

I x XP X x U
I xβ β= ∈ − ≤
I

 

| ( ) (~ ) |{ : 1 }
| ( ) |

P
P

P

I x Xx U
I x

β= ∈ ≥ −
I

| ( ) |{ : }
| ( ) |
P

P
P

I x Xx U
I x

β= ∈ ≤
I

| ( ) |{ :1 1 }
| ( ) |
P

P
P

I x Xx U
I x

β= ∈ − ≥ −
I ( )INEG X

β
= . 

Theorem 2. Let S  be an incomplete information 
system, ,X Y  are two nonempty subsets of U , 
0 0.5β≤ <  and P C∅ ≠ ⊆ . The rough 
approximations defined as above satisfy the following 
properties: 

① ( ) ( )
IIP X P Xββ

⊆ ;     

② ( ) ( )
IIP P ββ

∅ = ∅ =∅ ; ( ) ( )
IIP U P U Uββ

= = ; 

③ ( ) ( )I IX Y P X P Y
β β

⊆ ⇒ ⊆ ;  

④ ( ) ( )
I I

X Y P X P Yβ β⊆ ⇒ ⊆  

⑤ ( ) ( ) ( )I I IP X Y P X P Y
β β β

⊇U U ;   

⑥ ( ) ( ) ( )I I IP X Y P X P Y
β β β

⊆I I ; 

⑦ ( ) ( ) ( )
I I I

P X Y P X P Yβ β β⊇U U ;  

⑧ ( ) ( ) ( )
I I I

P X Y P X P Yβ β β⊆I I ; 

⑨ (~ ) ~ ( )
IIP X P Xββ

= ; 

⑩ (~ ) ~ ( )
I IP X P Xβ β

= ; 

Proof. ① Because of 0 0.5β≤ < , x  satisfies 

( )IP Xβ  such that x  satisfies ( )
I

P Xβ . 
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② Because of 0 0.5β≤ <  and X =∅ , we have 

( )IP
β
∅ =∅  and ( )

I
P β ∅ =∅ . Therefore, 

( ) ( )
IIP U P U Uββ

= = . 

③ ( )Ix P X
β

∀ ∈ , ( ( ), )Pc I x X β≤ , when 

X Y⊆ , we have ( ( ), )Pc I x Y β≤ , that is to say, 

( )Ix P Y
β

∈ . 

④ Similar to ③, we have ( ) ( )
I I

P X P Yβ β⊆ . 
⑤ From ③, we have 

( ) ( ) ( )I I IP X Y P X P Y
β β β

⊇U U . 

⑥ From ③, we have 

( ) ( ) ( )I I IP X Y P X P Y
β β β

⊆I I . 

⑦ From ④, we have 

( ) ( ) ( )
I I I

P X Y P X P Yβ β β⊇U U . 

⑧ From ④, we have 

( ) ( ) ( )
I I I

P X Y P X P Yβ β β⊆I I . 

⑨ From Theorem 1, 
| ( ) |(~ ) { :1 1 }

| ( ) |
I P

P
P

I x XP X x U
I xβ β= ∈ − ≥ −

I
 

| ( ) |~ { :1 1 }
| ( ) |
P

P
P

I x Xx U
I x

β= ∈ − < −
I ~ ( )

I
P Xβ= . 

⑩ Similar to ③, we have (~ ) ~ ( )
I IP X P Xβ β

= . 

The following ratio defines a β  accuracy of the 
approximation of X U⊆ , X ≠ ∅ , by means of the 
attributes from P C⊆ : 

| ( ) |
( ) .

| ( ) |

I

IP

P X
X

P X
β

β

α =                       (10) 

Obviously, 0 ( ) 1P Xα≤ < .  

Another ratio defines a β  quality of the 
approximation of X  by means of the attributes from 
P C⊆ : 

| ( ) |
( ) .| |

I

P

P X
X X

βλ =                         (11) 

The quality ( )P Xλ  represents the relative frequency of 

the objects with error ratio β  correctly classified by 
means of the attributes from P . 

A primary use of rough set theory is to reduce the 
number of attributes in databases thereby improving the 
performance of applications in a number of aspects 
including speed, storage, and accuracy. For a data set 
with discrete attribute values, this can be done by 
reducing the number of redundant attributes and find a 

subset of the original attributes that are the most 
informative. 

Definition 7. ( β  dependability) Suppose that 
( , { }, , )S U C d V f= U  is an incomplete information 

system, β  dependability is defined as follows: 
( , , ) | ( , , ) | / | | .C d pos C d Uγ β β=                 (12) 

where 

/
( , , ) ( ).I

Y U d
pos C d C Yββ

∈
= U                        (13) 

Definition 8. (β  approximation reduction) Suppose 
that ( , { }, , )S U C d V f= U  is an incomplete 
information system, X U⊆ , a conditional attribute 
subset A C⊆  is called a β  approximation reduction if 
and only if it satisfies: ① ( , , ) ( , , )A d C dγ β γ β=  and 
② there does not exist a conditional attribute subset 
B A⊆ , such that ( , , ) ( , , )B d C dγ β γ β= . 

Based on Definition 8, through removing 
superfluous attributes, we can obtain a reductive database. 

IV.  CUMULATIVE VARIABLE PRECISION ROUGH SET 
MODEL IN THE INCOMPLETE INFORMATION SYSTEM 

Let us observe that a very useful property of the 
lower approximation within the classical rough set theory 
is that if an object x U∈  belongs to the lower 
approximation of X  with respect to P C⊆ , then x  
belongs also to the lower approximation of X  with 
respect to R C⊆  when P R⊆  (this is a kind of 
monotonic property). However, formula (6) does not 
satisfy this property of the lower approximation, because 
it is possible that ( , ) *f x q ≠  for all q P∈  but 

( , ) *f x q =  for some q R P∈ − . This is quite 
problematic for some key concepts of the variable 
precision rough set theory, like β  accuracy and β  
quality of approximation, and β  dependability. 

Therefore, another definition of the lower 
approximation should be considered. Then the concepts 
of β  accuracy, β  quality , and β  dependability of 
approximation can be still valid in the case of missing 
values.  

Definition 9. Given X U⊆  and P C⊆ ,  
* ( ) ( ).I

R P
P X P Xβ β

⊆
= U                            (14) 

Then * ( )P Xβ  is called as the cumulative β  lower 

approximation of X  because it includes all the objects 
belonging to all β  lower approximations of X , where 
R P⊆ . 

It can be shown that another type of the indiscernible 
relation, denoted by *

P
I , permits a direct definition of the 

cumulative β  lower approximation in a usual way. For 
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each ,x y U∈  and for each P C⊆ , *
P

yI x  means that 

( , ) ( , )  ( , ) *f x q f y q or f x q= =  and/or 
( , ) *f y q =  for every q P∈ . Let 

* *( ) { : }
P P

I x y U yI x= ∈  for each x U∈  and for each 

P C⊆ . *
P

I  is reflexive and symmetric but not transitive. 
We can prove that Definition 9 is equivalent to the 
following definition:  

* * *( ) { : ( ( ), ) .
PPP X x U c I x Xβ β= ∈ ≤             (15) 

where  
* { : ( , ) *   at least one }.
P

U x U f x q for q P= ∈ ≠ ∈  

Using the indiscernible relation *
P

I , we can define 

the cumulative β  upper approximation of X , 

complementary to * ( )P Xβ  
* * *( ) { : ( ( ), ) 1 }.

P P
P X x U c I x Xβ β= ∈ < −         (16) 

For each X U⊆ , let * *
P P

X X U= I . Let us remark 

that *
P

x U∈  if and only if there exists R ≠ ∅  such that 

R P⊆  and Rx U∈ . 

Rough approximations * ( )P Xβ  and 
*

( )P Xβ  
satisfies the following properties: 
① For each X U⊆  and for each P C⊆ : 

** ( ) ( )P X P Xββ ⊆ ; 

② For each X U⊆  and for each P C⊆ : 
** *( ) ( )PP X U P U Xββ = − − ; 

③ For each X U⊆  and for each ,P R C⊆ , if 

P R⊆ , then 
** ( ) ( )P X R Xββ ⊆ . Furthermore, if 

* *
P RU U= , then 

* *
( ) ( )P X R Xβ β⊇ . 

Due to the property of monotonic, when augmenting 
attributes set P , we get a lower approximation of X  
that is at least of the same cardinality. Thus, we can 
define analogously for the case of missing values the 
following key concepts of the variable precision rough 
sets theory: the cumulative β  accuracy of approximation 

of X  (denoted as * ( )
P

Xα ), the cumulative β  quality 

( )P Xλ  of approximation of X  (denoted as * ( )
P

Xλ ), 

and the cumulative β  dependability (denoted as 
*( , , )C dγ β ). These concepts have the same definitions 

as those given in Sections 3 but they use rough 

approximation * ( )P Xβ  and 
*

( )P Xβ . 

V. AN EXAMPLE 

The illustrative example presented in this section is 
to explain the concepts introduced in Section 3 and 
Section 4. The director of the school wants to make a 
global evaluation to some students. This evaluation 
should be based on the level in Mathematics, Physics and 
Literature. However, not all the students have passed all 
three exams and, therefore, there are some missing values. 
The director made the examples of evaluation as shown 
in Table 1.  

TABLE I 
STUDENT EVALUATIONS WITH MISSING VALUES 

Stud
ent 

Mathem
atics Physics Literature Global 

evaluation
1 medium bad bad bad 
2 good medium * good 
3 medium * medium bad 
4 * medium medium good 
5 * good bad bad 
6 good medium bad good 

For 0.35β = , The lower and upper 
approximations can be calculated from Table 1: 
Let { , , }C Mathematics Physics Literature=  be 
condition attributes and {  evaluation}Global  be 
decision attribute. Let {1,3,5}bad =  and 

{2,4,6}good = . 

{1,6}CU = , (1) {1}CI = , (6) {2,6}CI = , 

( ) {1}IC badβ = , ( ) {1}
I

C badβ = , ( ) {6}IC goodβ = , 

( ) {6}
I

C goodβ = , ( , , ) 1/ 3C dγ β = . 
Let { }L Literature= , such that 

( , , ) 1/ 3L dγ β = . It is easy to validate that L  is 
reduction of condition attribute set C .  

For 0.35β = , the cumulative lower and upper 
approximations can be calculated from Table 1: 

* {1, 2,3, 4,5,6}
C

U = ,  * (1) {1}
C

I = ,  
* (2) {2, 4,6}
C

I = ,  * (3) {3, 4}
C

I = ,  
* (4) {2,3, 4}
C

I = ,  * (5) {5}
C

I = ,  * (6) {2,6}
C

I = , 

* ( ) {1,5}C badβ = ,  
*

( ) {1,3,4,5}C badβ = ,  

* ( ) {2,4,6}C goodβ = ,  
*

( ) {2,3,4,6}C goodβ = , 
*( , , ) 5 / 6C dγ β = . 

Let { }L Literature=  and { }P Physics= , such 
that ( , , ) 5 / 6L dγ β =  and ( , , ) 5 / 6P dγ β = . It is 
easy to validate that L  and P  are cumulative β  
approximation reductions of condition attribute set C .  

From this example, we can see that the cumulative 
variable precision rough set model better reflects the 
rough set’s essence. 
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VI. CONCLUSIONS 

In incomplete information system, a new VPRS 
model was obtained through defining the relation of 
objects. To overcome no monotonic property of the 
proposed VPRS model, a cumulative data relation was 
defined and a cumulative VPRS model was established. 
However, these models were limited in applications on a 
small database with incomplete information. Moreover, 
this paper only presented the basic reduction approach for 
a decision table. In our future work, we will focus on the 
development of reduction algorithms and extracting 
minimal exact rules from the large decision table. How to 
deal with fuzzy data in incomplete information system 
will also be one of our future research work. 
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