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Abstract—This paper presents performance analysis and 
evaluation of elliptic curve projective coordinates with 
parallel field operations over GF(p). Side-channel atomicity 
has been used in these comparisons. The field computations 
of point operations are segmented into atomic blocks that 
are indistinguishable from each other to resist against 
simple power analysis attacks. These atomic blocks are 
executed in parallel using 2, 3 and 4 multipliers. 
Comparisons between the Homogeneous, Jacobian and 
Edwards coordinate systems using parallel field operations 
over GF(p) are presented. Results show that Edwards 
coordinate system outperforms both the Homogeneous and 
Jacobian coordinate systems and gives better area-time 
(AT) and area-time2 (AT2) complexities.  
 
Index Terms— elliptic curve cryptosystems, projective 
coordinate systems, Edwards coordinates, side-channel 
atomicity. 
 

I.  INTRODUCTION 

Elliptic Curve Cryptosystems (ECCs) have been recently 
attracting increased attention [1]. The ability to use 
smaller key sizes and the computationally more efficient 
ECC algorithms compared to those used in earlier public 
key cryptosystems such as RSA [2] and ElGamal [3] are 
two main reasons why ECCs are becoming more popular. 
They are considered particularly suitable for 
implementation on smart cards or mobile devices. 
Because of the physical characteristics of such devices 
and their use in potentially hostile environments, Side 
Channel Attacks (SCA) [4 - 8] on such devices are 
considered serious threats. Two main types of SCAs have 
gained considerable attention: simple power analysis 
(SPA) attacks and differential power analysis (DPA) 
attacks. An SPA attack uses only a single observation of 
the power consumption, whereas a DPA attack uses many 
observations of the power consumption together with 
statistical tools.   

SCA seek to break the security of these devices 
through observing their power consumption trace or 
computations timing. Careless or naive implementation of 

cryptosystems allows side channel attacks to infer the 
secret key or obtain partial information about it. Thus, 
designers of cryptosystems seek to introduce algorithms 
and designs that are not only efficient, but also side 
channel attack resistant [9].  

The primary operation of ECCs is scalar 
multiplication. Scalar multiplication in the group of 
points of an elliptic curve is analogous to exponentiation 
in the multiplicative group of integers modulo a fixed 
integer m. The scalar multiplication operation, denoted as 
kP, where k is an integer and P is a point on the elliptic 
curve, represents the addition of k copies of point P. 
Scalar multiplication is computed by a series of point 
doubling and point addition operations of the point P 
depending on the bit sequence representing the scalar 
multiplier k. Several scalar multiplication algorithms have 
been proposed in the literature. A good survey is 
conducted by Hankerson et. al. in [10]. 

Several countermeasures against SCA have been 
proposed in the literature. Chevallier-Mames et al. [11] 
proposed side-channel atomicity as an efficient 
countermeasure against only SPA attacks. Side-channel 
atomicity involves almost no computational overhead to 
resist against SPA attacks. It splits the elliptic curve point 
operations into atomic blocks that are indistinguishable 
from each other. Hence, side-channel atomicity is 
considered to be an inexpensive countermeasure that does 
not leak any data regarding the operation being 
performed [11 - 13]. 

The group operations in an affine coordinate system 
involve finite field inversion, which is a very costly 
operation, particularly over prime fields. Projective 
coordinate systems are used to eliminate the need for 
performing inversion. Several projective coordinate 
systems have been proposed in the literature including the 
Homogeneous, Jacobian and Edwards coordinate systems 
[9][14][15].  

The selection of a projective coordinate is based on 
the number of arithmetic operations, mainly 
multiplications. This is to be expected due to the 
sequential nature of these architectures where a single 
multiplier is used. For high performance 
implementations, such sequential architectures are too 
slow to meet the demand of increasing number of 
operations. One solution for meeting this requirement is 
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to exploit the inherent parallelism within the elliptic 
curve point operations in projective coordinate [16 - 19].  

The performance of these projective coordinates varies 
when parallel field multipliers are used. This is because 
of the nature of their critical paths. This paper 
investigates and compares the performance of the 
Homogeneous, Jacobian and Edwards coordinate systems 
with side-channel atomicity when parallel field 
multipliers are employed. The rest of this paper is 
organized as follows. Section II gives a brief introduction 
to ECCs. Section III introduces projective coordinate 
systems. Section IV shows how the point operations of 
the projective coordinate systems are segmented into 
atomic blocks and how they are executed in parallel.  
Section V shows the performance evaluation of the 
selected projective coordinate systems using parallel field 
multipliers. Finally, Section VI concludes the paper. 

II.  ELLIPTIC CURVE PRELIMINARIES 

The elliptic curve cryptosystem (ECC), which was 
originally proposed by Niel Koblitz and Victor Miller in 
1985, is seen as a serious alternative to RSA because the 
key size of ECC is much shorter than that of RSA and 
ElGamal. To date, no significant breakthroughs have 
been made in determining weaknesses in the EC 
algorithm, which is based on the discrete logarithm 
problem over points on an elliptic curve. The fact that the 
problem appears so difficult to crack means that key sizes 
can be reduced considerably, even exponentially. This 
makes ECC a serious challenger to RSA and ElGamal.  

Extensive research has been done on the underlying 
math, security strength, and efficient implementation of 
ECCs [20]. Among the different fields that can underlie 
elliptic curves, prime fields GF(p) and binary fields 
GF(2m) have been shown to be best suited for 
cryptographic applications. An elliptic curve E over the 
finite field GF(p) defined by the parameters a, b ∈ GF(p) 
with p > 3, consists of the set of points P = (x, y), where 
x, y ∈ GF(p), that satisfy the equation:  

y2 = x3 + ax + b, 
where a, b ∈ GF(p) and 4a3 + 27b2 ≠ 0 mod p together 
with the additive identity of the group point O known as 
the “point at infinity”.  

Scalar multiplication (kP) is the primary operation of 
ECCs Several scalar multiplication algorithms have been 
proposed in the literature [10]. Computing kP can be 
done with the straightforward double-and-add algorithm, 
the so-called binary algorithm, based on the binary 
expression of k = (km-1,…,k0) where km-1 is the most 
significant bit of the multiplier k. The double-and-add 
scalar multiplication algorithm is the most 
straightforward scalar multiplication algorithm. It 
inspects the bits of the scalar multiplier k, and if the 
inspected bit ki = 0, only point doubling is performed. If, 
however, the inspected bit ki = 1, both point doubling and 
addition are performed. The double-and-add algorithm 
requires (m-1) point doublings and an average of (m/2) 
point additions [10].  

Non-adjacent form (NAF) reduces the average number 
of point additions to (m/3) [21]. In NAF, signed-digit 

representations are used such that the scalar multiplier’s 
coefficient   ki ∈ {0, ±1}. NAF has the property that no 
two consecutive coefficients are nonzero. NAF also has 
the property that every positive integer k has a unique 
NAF encoding, denoted NAF(k). 

III. PROJECTIVE COORDINATE SYSTEMS 

Projective coordinate systems are used to eliminate the 
need for performing inversion. Several projective 
coordinate systems have been proposed in the literature 
[9][14][15], including the Homogeneous, Jacobian and 
Edwards coordinate systems. For the Homogeneous, so 
called projective, coordinate system, an elliptic curve 
point P takes the form (x, y) = (X/Z, Y/Z), while for the 
Jacobian coordinate system, P takes the form (x, y) = 
(X/Z2, Y/Z3) [9]. 

Let P1, P2 and P3 be three different points on the 
elliptic curve over GF(p), where P1=(X1, Y1, Z1), P2=(X2, 
Y2, Z2=1) and P3=(X3, Y3, Z3). Point addition with the 
Homogenous coordinate systems can be computed as: 
A=Y2Z1, B=X2Z1−X1, C=A2Z1−B3−2B2X1, X3=BC, 
Y3=A(B2X1−C)−B3Y1, Z3=B3Z1. Point doubling, on the 
other hand, can be computed as: A=aZ1

2+3X1
2, B=Y1Z1, 

C=X1Y1B, D=A2−8C, X3=2BD, Y3=A(4C−D)−8Y1
2B2, 

Z3=8B3. 
With the Jacobian coordinate system, point addition 

can be computed as: A=X1, B=X2Z1
2, C=Y1, D=Y2Z1

3, 
E=B−A, F=D−C, X3=F2–(E3+2AE2), 
Y3=F(AE2−X3)−CE3, Z3=Z1E. Point doubling, on the 
other hand, can be computed as: A=4X1Y1

2, B=3X1
2+aZ1

4, 
X3=B2−2A, Y3=B(A−X3)−8Y1

4, Z3=2Y1Z1. 
Recently, Edwards showed in [14] that all elliptic 

curves over prime fields could be transformed to the 
shape: x2 + y2 = c2 (1 + x2y2), with (0, c) as neutral 
element and with the surprisingly simple and symmetric 
addition law of two points P1 = (x1, y1) and P2 = (x2, y2) 
as: 

P1 + P2 → ((x1y2+x2y1)/(c(1+x1x2y1y2)),(y1y2-
x1x2)/(c(1-x1x2y1y2))). 

To capture a larger class of elliptic curves over the 
original field, the notion of Edwards form have been 
modified in [15] to include all curves x2 + y2 = c2 (1 + 
dx2y2) where cd(1−dc4) ≠ 0. 

Point addition with the Edwards coordinate systems 
can be computed as: B=Z1

2Z1, C=X1X2, D=Y1Y2, E=G–
(C+D), F=dCD, G=(X1+Y1)(X2+Y2), X3=Z1E(B–F), 
Z3=(B–F)(B+F), Y3=Z1(D–C)(B+F). Point doubling, on 
the other hand, can be computed as: A=X1+Y1, B=A2, 
C=X1

2, D=Y1
2, E=C+D, F=B–E, H=Z1

2, I=2H, J=E–I, 
X3=FJ, Z3=EJ, Y3=E(C–D). 

IV. THE PROPOSED METHODOLOGY 

Since field multiplications and squarings are the 
dominant operation in elliptic curve point operations in 
projective coordinates that require much higher 
computation time than field additions and subtractions, 
the emphasis in this paper is to perform comparisons 
between projective coordinate systems when parallel 
multiplications or squarings are performed at the same 

100 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



time. Furthermore, the field computations of point 
operations are segmented into atomic blocks that are 
indistinguishable from each other to resist against SPA 
attacks, which is called side-channel atomicity [11]. The 
approach adopted in this paper is: 

1. Analyzing the dataflow of point operations for 
each projective coordinate system in the 
following manner: 
a. Find the critical path which has the lowest 

number of field multiplications. 
b. Find the maximum number of multipliers 

that are needed to meet this critical path. 
2. Segmenting the field computations of point 

operations for each as follows: 
a. An atomic block contains at most one field 

multiplication, two field additions, and one 
field subtraction.  

b. A Field squaring is performed by a 
multiplier instead of using a special 
hardware unit for squaring. 

3. Varying the number of parallel multipliers from 
two to the number of multipliers specified by the 
critical path to find the following: 
a. The best schedule of each dataflow using 

the specified number of multipliers. 
b. The area-time (AT) and area-time2 (AT2) 

complexities. 

Table I shows the field arithmetic operations of the 
selected projective coordinate systems according to the 
presented formulas in Section III. In Table I, αis and βjs, 
represent multiplications/squarings and 
additions/subtractions respectively. For example, the first 
possible multiplication for point addition in  the 
Homogenous coordinate system (Y2 × Z1) is represented 
by α1. The second possible field addition for point 
doubling in Edwards coordinate system (C + D), as 
another example, is represented by β2. The data 
dependencies between the αis and βjs in point operations 
for the Homogenous, Jacobian and coordinate systems 
are depicted in Fig. 1, 2 and 3 respectively.  

In Table II, the αis and βjs are grouped in atomic 
blocks. Table II shows the atomic blocks for point 
doubling and point addition, denoted by ∆ and Γ 
respectively. An empty field operations within an atomic 
block are marked by “*”. In Table II, for example, the 
atomic block ∆1 of point doubling in the Jacobian 
coordinate system contains the on field multiplication α1, 
one field addition β1 and two empty slots. The atomic 
block Γ7 of point addition in the Homogenous coordinate 
system, as another example, contains one field 
multiplication α7 and three field additions β2, β3 and β4. 

Let the unit of time be the required time to execute 
an atomic block. In Table II, point addition requires 11 
time units for the three selected projective coordinate 
systems. Point doubling, on the other hand, requires 13, 
10 and 7 for the Homogenous, Jacobian and Edwards 
coordinate systems respectively. 

Table III, IV and V show the scheduling of the atomic 
blocks of the Homogenous, Jacobian and Edwards 
coordinate systems respectively on parallel multipliers 
according to the proposed methodology early in this 
section. In Table III, IV and V, the first column shows the 
number of multipliers. The second column shows the 
required time units to perform point operations using 
parallel multipliers. The utilizations of the parallel 
multipliers depends on the number of multipliers and the 
critical path of the projective coordinate system. Adding 
more multipliers, on the other hand, does not imply better 
performance. For example, the number of the required 
time units to perform point addition using the Jacobian 
projective coordinate is the same when three or four 
multipliers. 

V. RESULTS & PERFORMANCE ANALYSIS 

The lower bound on the area-time cost of a given 
design is usually employed as a performance metric 
(area) x (time)2α, 0 ≤ α ≤ 1, where the choice of α 
determines the relative importance of area and time [22]. 
Such lower bounds have been obtained for several 
problems, e.g., discrete Fourier transform, matrix 
multiplication, binary addition, and others [22]. Once the 
lower bound on the chosen performance metric is known, 
designers attempt to devise algorithms and designs which 
are optimal for a range of area and time values. Even 
though a design might be optimal for a certain range of 
area and time values, it is nevertheless of interest to 
obtain designs for minimum values of time, i.e., 
maximum speed performance, as well as designs for 
minimum area. In order to make a more meaningful 
comparison between the selected projective coordinate 
systems with parallel multipliers, both the AT and AT2 
measures are evaluated. 

Table IV shows the AT and AT2 measures for the 
selected projective coordinate systems with m = 160 bits. 
In Table IV, the Area (A) is the number of multipliers. 
The Time (T), on the other hand, is calculated using the 
NAF binary algorithm as: 

T = m(DBL) + m/3(ADD), 
where DBL and ADD are the required time units for 
performing point doubling and addition respectively in 
Tables III, IV and V. For example, T = 160 ×(4) +  × 
160 × (6) = 960 time units for Edwards coordinate system 
with two parallel multipliers. Another example with the 
Jacobian coordinate system with three multipliers gives: 
T = 160 ×(5) +  × 160 × (5) = 1066.66667 time units. 

Fig. 4 and Fig. 5 depict the comparisons results of 
Table IV for AT and AT2 respectively. The results show 
that the Edwards coordinate system provides the best AT 
and AT2 results. A key observation is that the Edwards 
coordinate system provides better AT and AT2 using only 
two multipliers when compared to the other two 
coordinate systems with four multipliers, which makes 
the Edwards coordinate system more attractive.  

Despite that the Jacobian coordinate system provides 
better performance than the Homogenous coordinate 
system with sequential designs [23], the results show that 
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the Homogenous and the Jacobian coordinate systems 
provide the same AT and AT2 when three multipliers are 
used. The results also show that the Homogenous 
coordinate system provides better AT and AT2 than the 
Jacobian coordinate system when four multipliers are 
used. This is because of the nature of the critical path of 
the Homogenous coordinate system that allows for more 
parallelism when four multipliers are employed. 

VI. CONCLUSION 

In this paper, the performance of the Homogeneous, 
Jacobian and Edwards coordinate systems with side-
channel atomicity have been analyzed when parallel 
GF(p) field multipliers are used. The point operations of 
the selected projective coordinate systems have been 
segmented into atomic blocks. These atomic block are 
executed in parallel using 2, 3 and 4 multipliers. An 
atomic block can contain at most one field multiplication, 
two field additions, and one field subtraction. A Field 
squaring is performed by a multiplier instead of using a 
special hardware unit for squaring. 

The AT and AT2 performance metric have been 
evaluated for each of the selected projective coordinate 
systems. The results show that the Edwards coordinate 
system provides the best AT and AT2 as compared to the 
other two coordinate systems. The results also show that 
the Homogenous coordinate system provides better 
performance than the Jacobian coordinate systems when 
four multipliers are used. 
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TABLE I 
 

FIELD ARITHMETIC OPERATIONS OF THE SELECTED PROJECTIVE COORDINATE SYSTEMS  
 

Homogeneous Coordinate System Jacobian Coordinate System Edwards Coordinate System (with c = 1) 
Mixed Addition Doubling Mixed Addition Doubling Mixed Addition Doubling 

α1 A = Y2 × Z1 α1 Z1
2 = Z1 × Z1 α1 Z1

2 = Z1 × Z1 α1 Y1
2 = Y1 × Y1 α1 B = Z1 × Z1 β1 A = X1 + Y1 

α2 X2 × Z1 α2 X1 × Y1 α2 Y2 × Z1 β1 2Y1
2 = Y1

2 + 
Y1

2 
α2 C = X1 × X2 α1 C = X1 × X1 

β1 B = X2Z1– X1 α3 B = Y1 × Z1 α3 B = X2 × Z1
2 α2 X1

2 = X1 × X1 α3 D = Y1 × Y2 α2 D = Y1 × Y1 
α3 B2 = B × B α4 X1

2 = X1 × X1 β1 E = B – A β2 2X1
2  = X1

2 + 
X1

2 
β1 X1 + Y1 β2 E = C + D 

α4 A2 = A × A β1 2X1
2  = X1

2 + 
X1

2 
α4 D = Y2 Z1 × 

Z1
2 

β3 3X1
2  = 2X1

2 + 
X1

2 
β2 X2 + Y2 β3 C – D 

α5 B3 = B2 × B β2 3X1
2  = 2X1

2 + 
X1

2 
β2 F = D – C α3 Z1

2 = Z1 × Z1 α4 G = (X1 + Y1) × 
(X2 + Y2) 

α3 B = A × A 

α6 A2 × Z1 α5 a × Z1
2 α5 E2 = E × E α4 Y1 × Z1 β3 C + D β4 F = B – E 

α7 B2 × X1 β3 A = a4 Z1
2 + 

3X1
2 

α6 F2 = F × F β4 Z3 = Y1Z1 + 
Y1Z1 

β4 D – C α4 H = Z1 × Z1 

β2 2B2X1 = B2X1 + 
B2X1 

α6 C = X1Y1 × B α7 Z3 = Z1 × E α5 X1 × Y1
2 β5 E = G – (C + 

D) 
β5 I = H + H 

β3 (B3 + 2B2X1) β4 2C = C + C α8 E3 = E2 × E β5 2X1Y1
2 = 

X1Y1
2 + X1Y1

2 
α5 C × D β6 J = E – I 

β4 C = A2Z1 – (B3 
+ 2B2X1) 

β5 4C = 2C + 2C α9 A × E2 β6 A = 2X1Y1
2 + 

2X1Y1
2 

α6 Z1 × (D – C) α5 X3  = F × J 

α8 X3 = B × C β6 8C = 4C + 4C β3 2AE2 = AE2 + 
AE2 

β7 2A= A + A α7 Z1 × E α6 Z3 = E × J 

α9 Z3 = B3 × Z1 α7 B2 = B × B β4 E3 +2AE2 α6 4Y1
4 = 2Y1

2 × 
2Y1

2 
α8 F = d × CD α7 Y3 = E × (C – D) 

β5 (B2X1– C) β7 2B2 = B2 + B2 β5 X3 = F2 – (E3 
+2AE2) 

β8 8Y1
4 = 4Y1

4 + 
4Y1

4 
β6 B – F   

α10 A × (B2X1– C) β8 4B2 = 2B2 + 
2B2 

α10 C × E3 α7 Z1
4 = Z1

2
 × Z1

2 β7 B + F   

α11 B3 × Y1 β9 8B2 = 4B2 + 
4B2 

α11 F × (AE2 – X3) α8 a × Z1
4 α9 X3 = Z1E × (B 

– F) 
  

β6 Y3 = A × 
(B2X1– C) – 

B3Y1 

α8 Y1
2

 = Y1 × Y1 β6 Y3 = F (AE2 – 
X3) – CE3 

β9 B = 3X1
2 + 

a4Z1
4 

α10 Z3 = (B – F) × 
(B + F) 

  

  α9 A2 = A × A   α9 B2 = B × B α11 Y3 = Z1(D – C) 
× (B + F) 

  

  β10 D = A2 – 8C   β10 X3 = B2 – 2A     
  β11 4C – D   β11 A– X3     
      α10 B × (A– X3)     
  α10 Z3 = 8B2 × B         
  α11 Y1

2 × –8B2   β12 Y3 = B(A– X3) 
– 8Y1

4 
    

  α12 B × D         
  β12 X3 = BD + BD         
  α13 A × (4C – D)         
  β13 Y3 = A(4C – 

D) – 8Y1
2B2 
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TABLE II 
 

POINT OPERATIONS IN ATOMIC BLOCKS 
 

Homogeneous Coordinate System Jacobian Coordinate System Edwards Coordinate System (with c = 1)  
Mixed Addition Doubling Mixed Addition Doubling Mixed Addition Doubling 
Γ1 α1 ∆1 α1 Γ1 α1 ∆1 α1 Γ1 α1 ∆1 β1 
 *  *  *  β1  *  α1 
 *  *  *  *  *  * 
 *  *  *  *  *  * 
Γ2 α2 ∆2 α2 Γ2 α2 ∆2 α2 Γ2 α2 ∆2 α2 
 β1  *  *  β2  *  * 
 *  *  *  β3  *  β2 
 *  *  *  *  *  β3 
Γ3 α3 ∆3 α3 Γ3 α3 ∆3 α3 Γ3 α3 ∆3 α3 
 *  *  β1  *  β3  * 
 *  *  *  *  β4  * 
 *  *  *  *  *  β4 
Γ4 α4 ∆4 α4 Γ4 α4 ∆4 α4 Γ4 β1 ∆4 α4 
 *  β1  β2  β4  β2  β5 
 *  β2  *  *  α4  * 
 *  *  *  *  β5  β6 
Γ5 α5 ∆5 α5 Γ5 α5 ∆5 α5 Γ5 α5 ∆5 α5 
 *  *  *  β5  *  * 
 *  *  *  β6  *  * 
 *  β3  *  β7  *  * 
Γ6 α6 ∆6 α6 Γ6 α6 ∆6 α6 Γ6 α6 ∆6 α6 
 *  β4  *  β8  *  * 
 *  β5  *  *  *  * 
 *  β6  *  *  *  * 
Γ7 α7 ∆7 α7 Γ7 α7 ∆7 α7 Γ7 α7 ∆7 α7 
 β2  β7  *  *  *  * 
 β3  β8  *  *  *  * 
 β4  β9  *  *  *  * 
Γ8 α8 ∆8 α8 Γ8 α8 ∆8 α8 Γ8 α8   
 *  β10  *  β9  β6   
 *  β11  *  *  β7   
 *  *  *  *  *   
Γ9 α9 ∆9 α9 Γ9 α9 ∆9 α9 Γ9 α9   
 *  *  β3  β10  *   
 *  *  β4  *  *   
 *  *  β5  *  *   

Γ10 β5 ∆10 α10 Γ10 α10 ∆10 α10 Γ10 α10   
 α10  *  *  β11  *   
 *  *  *  *  *   
 *  *  *  *  *   

Γ11 α11 ∆11 α11 Γ11 α11   Γ11 α11   
 β6  *  β6    *   
 *  *  *    *   
 *  *  *    *   
  ∆12 α12         
   β12         
   *         
   *         
  ∆13 α13         
   β13         
   *         
   *         
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TABLE III 

 
POINT OPERATIONS FOR THE HOMOGENEOUS COORDINATE SYSTEM WITH PARALLEL MULTIPLIERS 

 
  Homogeneous Coordinate System 

No. of 
Multipliers 

Time Mixed Addition Doubling 

  Mul1 Mul2 Mul1 Mul2 
2 1 Γ1 Γ2 ∆1 ∆2 
 2 Γ3 Γ4 ∆3 ∆4 
 3 Γ5 Γ6 ∆5 ∆6 
 4 Γ7 Γ8 ∆7 ∆8 
 5 Γ9 Γ10 ∆9 ∆10 
 6 Γ11  ∆11 ∆12 
 7   ∆13  
  Mul1 Mul2 Mul3 Mul1 Mul2 Mul3 

3 1 Γ1 Γ2  ∆1 ∆2 ∆3 
 2 Γ3 Γ4  ∆4 ∆5 ∆6 
 3 Γ5 Γ6 Γ7 ∆7 ∆8 ∆9 
 4 Γ8 Γ9 Γ10 ∆10 ∆11 ∆12 
 5 Γ11   ∆13   
  Mul1 Mul2 Mul3 Mul4 Mul1 Mul2 Mul3 Mul4 

4 1 Γ1 Γ2   ∆1 ∆2 ∆3 ∆4 
 2 Γ3 Γ4   ∆5 ∆6 ∆7 ∆8 
 3 Γ5 Γ6 Γ7  ∆9 ∆10 ∆11  
 4 Γ8 Γ9 Γ10 Γ11 ∆12 ∆13   

 
TABLE IV 

 
POINT OPERATIONS FOR THE JACOBIAN COORDINATE SYSTEM WITH PARALLEL MULTIPLIERS 

 
  Jacobian Coordinate System 

No. of 
Multipliers 

Time Mixed Addition Doubling 

  Mul1 Mul2 Mul1 Mul2 
2 1 Γ1 Γ2 ∆1 ∆2 
 2 Γ3 Γ4 ∆3 ∆4 
 3 Γ5 Γ6 ∆5 ∆6 
 4 Γ7 Γ8 ∆7 ∆8 
 5 Γ9 Γ10 ∆9  
 6 Γ11  ∆10  
  Mul1 Mul2 Mul3 Mul1 Mul2 Mul3 
3 1 Γ1 Γ2  ∆1 ∆2 ∆3 
 2 Γ3 Γ4  ∆4 ∆5 ∆6 
 3 Γ5 Γ6 Γ7 ∆7 ∆8  
 4 Γ8 Γ9  ∆9   
 5 Γ10 Γ11  ∆10   
  Mul1 Mul2 Mul3 Mul4 Mul1 Mul2 Mul3 Mul4 
4 1 Γ1 Γ2   ∆1 ∆2 ∆3 ∆4 
 2 Γ3 Γ4   ∆5 ∆6 ∆7  
 3 Γ5 Γ6 Γ7  ∆8    
 4 Γ8 Γ9   ∆9    
 5 Γ10 Γ11   ∆10    
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TABLE V 

 
POINT OPERATIONS FOR THE EDWARDS COORDINATE SYSTEM WITH PARALLEL MULTIPLIERS 

 
  Edwards Coordinate System (with c = 1) 

No. of 
Multipliers 

Time Mixed Addition Doubling 

  Mul1 Mul2 Mul1 Mul2 
2 1 Γ1 Γ2 ∆1 ∆2 
 2 Γ3 Γ4 ∆3 ∆4 
 3 Γ5 Γ6 ∆5 ∆6 
 4 Γ7 Γ8 ∆7  
 5 Γ9    
 6 Γ10 Γ11   
  Mul1 Mul2 Mul3 Mul1 Mul2 Mul3 
3 1 Γ1 Γ2 Γ3 ∆1 ∆2  
 2 Γ4 Γ5 Γ6 ∆3 ∆4  
 3 Γ7 Γ8  ∆5 ∆6 ∆7 
 4 Γ9 Γ10 Γ11    
  Mul1 Mul2 Mul3 Mul4 Mul1 Mul2 Mul3 Mul4 
4 1 Γ1 Γ2 Γ3 Γ4 ∆1 ∆2 ∆3 ∆4 
 2 Γ5 Γ6 Γ7  ∆5 ∆6 ∆7  
 3 Γ8        
 4 Γ9 Γ10 Γ11      

 
TABLE VI 

 
AT & AT2 COMPARISONS (with m = 160 bits) 

 
 Projective Coordinate System Jacobian Coordinate System Edwards Coordinate System 

Area (A) = No. of Multipliers Time (T) AT AT2 Time  (T) AT AT2 Time (T) AT AT2 
2 1440 2880 4147200 1280 2560 3276800 960 1920 1843200 
3 1066.6667 3200 3413333.3 1066.6667 3200 3413333.3 693.33333 2080 1442133 
4 853.33333 3413.3333 2912711.1 1066.6667 4266.6667 4551111.1 533.33333 2133.333 1137778 
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(a) Point Addition                                                          (b) Point Doubling 
 

Figure1. The data dependency graph of the Homogenous coordinate system. 
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(a) Point Addition                                                          (b) Point Doubling 
 

Figure 2. The data dependency graph of the Jacobian coordinate system. 
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(a) Point Addition                                                          (b) Point Doubling 
 

Figure 3. The data dependency graph of the Edwards coordinate system. 

 
 

Figure 4. Area x Time (AT) Comparisons.  

 

 
 

Figure 5. Area x Time2 (AT2) Comparisons. 
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