
A Formal Model for Abstracting the Interaction of
 Web Services

Li Bao

Institute of Software Engineering, Dalian Maritime University, Dalian, China
Email: ebond@163.com

Weishi Zhang and Xiong Xie

Institute of Software Engineering, Dalian Maritime University, Dalian, China
Email: {teesiv, xxyj}@dlmu.edu.cn

Abstract—This paper addresses the problems of modeling
the interaction of Web services when they are composed
together. Many subtle errors such as message not received
and deadlock may occur due to uncontrolled concurrency of
Web services. A model called IMWSC (Interaction Module
for Web Service Composition, IMWSC for short) is
proposed. The proposed model is used to abstract and
analyze the interaction of web services. IMWSC is given a
formal semantics by means of CCS (Calculus of
Communicating System, CCS for short), which is a kind of
process algebra that can be used to model concurrent
systems. The application of this model is further
investigated in a case study. Some important points related
to verify the correctness of interaction of Web service are
discussed.

Index Terms—Web Service, Interaction, Formal Method,
IMWSC

I. INTRODUCTION

In order to survive the massive competition created by
the new online economy, many organizations are rushing
to put their core business competencies on the Internet as
a collection of web services for more automation and
global visibility[1]. The concept of web service has
become recently very popular. Web services are software
applications which can be used through a network
(intranet or Internet) via the exchange of messages based
on XML standards[2]. It has become a vehicle of web
services rather than just a repository of information.

The ability to efficiently and effectively share services
on the Web is a critical step towards the development of
the new online economy driven by the Business-to-
Business (B2B) e-commerce[1]. Existing enterprises
would form alliances and integrate their services to share
costs, skills, and resources in offering a value-added
service to form what is known as composite service.

A composite web service is a system that consists of
several conceptually autonomous but cooperating units.
In order to establish a long-running service composition,

many languages and tools emerged, which provide
different schemas to glue service operations properly.
Service composition approaches can be generally divided
into two categories [3, 4]: business flow based approach
and semantic based approach. Some famous projects on
web service are based on business flow[24], such as
eFlow[5], METEOR-S[6], SELF-SERV[7]; Semantics based
approach composes services based on ontology and relies
on the use of AI planning techniques to automatically
search, orchestrate, compose and execute services.
Representative projects on web service research that is
based on Semantics are: WebDG[8], SWORD[9], SHOP[10].

From a software engineering viewpoint, the
construction of new services by the static or dynamic
composition of existing services raises exciting new
perspectives which can significantly impact the way
industrial applications will be developed in the future —
but they also raise a number of challenges. Among them
is the essential problem of guaranteeing the correct
interaction of independent, communicating software
pieces[2].

One legitimate question is therefore whether or not the
correct and reliable interaction of web services can be
guaranteed to a great extent by introducing the formal
description techniques. Our investigations suggest a
positive answer. This paper addresses the problem of
formally modeling the interaction of web services when
they are composed together, be it in a dynamic or static
way. A model for abstracting and analyzing one scenario
of the interaction process of web services called IMWSC
is proposed. After the interaction of web service is
described in an abstract way, available supporting tool
can be used to determine whether or not this interaction
process satisfies the desired properties which are
expressed in a kind of modal logic.

This paper is structured as follows. Section 2 discusses
the related work. In Section 3, we present IMWSC.
Section 4 defines the semantics of IMWSC. The
application of IMWSC is investigated in a case study in
Section 5. And the conclusion and future work are drawn
up in Section 6.

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 91

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.1.91-98

II. Related Work

Petri nets are a formal model for concurrency. Since
the semantics of Petri nets is formally defined, by
mapping each BPEL process to a Petri net a formal model
of BPEL can be obtained which allows the verification
techniques and tools developed for Petri nets to be
exploited in the context of BPEL processes. Many works
such as [11, 12, 21, 22] introduce the Petri net based
method for describing and verifying web service.

In [21], Schmidt and Stahl discuss a mapping from
BPEL to Petri nets by giving several examples. Each
BPEL construct is mapped into a Petri net pattern.

In [22], Schlingloff, Martens and Schmidt also
consider the usability problem. They show that usability
can be expressed in alternating-time temporal logic. As a
consequence, model checking algorithms for this logic
can be exploited to check for usability.

As research aiming at facilitating web services
integration and verification, WS-Net introduced in [11] is
an executable architectural description language
incorporating the semantics of Colored Petri-net with the
style and understandability of object-oriented concepts.

In [12], Tao provide a web service composition model
which is based on a kind of advanced Petri-net, OOPN
(Object Oriented Petri Net). A web service can be
mapped to an OOPN system based on this model and
different OOPN system can be integrated together into a
composite service via message passing.

A process algebra is a rather small concurrent language
that abstracts from many details and focuses on particular
features. There are several relevant publications [1, 13, 14]
for process algebra based methods.

Gwen Salaün, Lucas Bordeaux present an overview of
the applicability of process algebras in the context of web
services in [1].

Authors present a framework for the design and the
verification of WSs using process algebras and their tools
in [13].

Li Bao, Weishi Zhang present a CCS based method for
describing and verifying the behaviour of web service in
[14].

III. Defining IMWSC

A. Initiative of IMWSC
For the Petri net based methods, one major defect is

that the number of the places and the transitions described
in a Petri net is too large. Researchers often map each
element in a web service composition language to an
element in Petri net and do not restrict the number of the
places and the transitions in a Petri net. If the number of
the places and the transitions described in a Petri net is
not restricted, the designers will meet a condition of state
explosion, which is very difficult to be dealt with; another
major defect for the Petri net based methods is the lack of
the description of interaction process of web services.
The Petri net based methods often put their emphasis on
describing the workflow inside a web service, and do not
present the complicate interaction process of web services.

 For the process algebra based methods, one major
defect is that some kinds of complex structure of web
service composition can not been defined by using these
methods; another major defect for the process algebra
based methods is that the lack of rigorous translation
mechanism between the element of web service
composition language and the element of process algebra.
These methods often give simple corresponding relations
and translation rules. These relations and rules can not
guarantee the correct reservation of the information
related to behavior and are apt to lead to the loss of
information. We adopt a kind of hierarchically refined
description method to define the interaction process of
web services, i.e., we divide the interaction process of
web services into smaller parts, which is defined as
Interaction Module for Web Service Composition
(IMWSC in short). For each of these parts, a scenario of
the interaction of web services is defined. These smaller
parts, i.e., modules, have a common property that the
outcome of each module is determinate, in other words,
each of the module has only one terminative state. This
important property suggests these modules can be
composed. Therefore, by mapping each module to a
transition in a Petri net, modules which describe the
scenarios of the interaction of web services are strictly
composed. However, for the limit of the length, we only
introduce the definition and properties of a module, i.e.
IMWSC model, method about how to compose these
modules will be introduced in further work.

 Instead of composing activities of web service, we
compose modules. The merit of our approach is that it
can effectively reduce the number of the objects to be
analysis, such that the interaction process of web service
is described more concisely, as well as the state explosion
can be avoided. At the same time, web service
composition with complex structure can be described by
composing these modules, while the process algebra
based methods can not achieve.

 Another benefit of our approach is the introducing of
the semantic of IMWSC. The semantic of IMWSC
comprises three parts: semantic domain, semantic range,
and valuation function. A process calculus CCS (Calculus
of Communicating Systems, CCS in short) [15, 16] is
introduced as a semantic range, and then valuation
functions are defined that translate an IMWSC(semantic
domain) into a process term. Since the valuation
functions are rigorously defined, the correct reservation
of the information related to behavior can be guaranteed,
such that the loss of information can be avoided.

B. Formal Definition of IMWSC
A web service is a software application which can be

used through a network (intranet or Internet). For a web
service, the basic functional unit is operation. The process
of web service invocation is actually the process of
operation invocation. For IMWSC, the invocation of
operation is modeled by Activity. For a better control of
the structure of activities, we introduce a set of processes,
i.e. Proc, as the basic control unit. A process, i.e. an
element in Proc, is a linear concatenation of activities. If

92 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

the output data of one operation is the input data of

another operation , we consider that there is a

corresponding relation between and . For

IMWSC, we introduce the binary relation to

represent this kind of relation. Symbol

1opr

2opr

1opr 2opr

aR
L is introduced

into IMWSC to record the interaction history of web
services. We described the interaction process of web
services in a scenario in the way defined by IMWSC, in
other words, the definition of an instance of IMWSC is
the definition of the interaction process of web services in
a scenario.

Definition 1. (IMWSC) Formally, an IMWSC is a
septuple <Service, Proc, Activity, L, Message, , F >,
where:

aR

● Service denotes a set of web services;
● Proc is a set of processes ;
● Activity is a set of activities ;
● L is a set of sequences of activities;
● Message is a set of messages that are exchanged by

services;
● aR ⊆ Activity×Activity is a binary relation;

● F is a sextuple < , , , , ,

 >, where:
pTf pSf pUf aPf aTf

mAf
─ : Proc is a mapping that

describes the type of each process (composite
or basic) ;

pTf },{ bc→

─ : Proc Service is a mapping that
describes the type of each process (composite
or atomic) ;

pSf →

─ : Proc Proc is a mapping that
associates a process with a composite process;

pUf →

─ : Activity Proc is a mapping that
associates each activity with a process ;

aPf →

─ : Activity {ii, io, ei, eo, ex} is a
mapping that describes the type of each
activity (internal input, internal output,
environmental input, environmental output,
execute);

aTf →

─ : Message→Activity is a mapping that
associates each message with an Activity.

mAf

We let = =

proc} for Proc ; Let

)(procfcon ∧∈ Activityaa |{)(afaP

∈p bpf pT =∧)(c< ⊆ Activity
Activity be an partial order relation over Activity,

defined as: = { () |
×

c< 21 , aa Activityaa ∈21 ,
∧)()(21 afaf aPaP = ∧ (happens earlier than

)}; An element proc in Proc is constructed by the
following grammar:

1a

2a

proc = α | | , 21 || procproc 21 procproc p

where: ∈α Activity; proc1, proc2∈Proc.
● is a new process that performs

proc1 and proc2 independently;
21 || procproc

● is a new process that performs
proc1 and proc2 sequentially.

21 procproc p

Fig. 1 presents an illustration of the structure of
IMWSC. In Fig.1, a service is visualized by a circle;
interaction of services is visualized by a pair of parallel
arrows (with opposite directions); the interaction process
Definition, i.e., the definition of an instance of IMWSC,
is visualized by a rectangle.

Figure 1. Structure of IMWSC

C. The Necessary Condition for the Correctness of
IMWSC

The fundamental requirement for a correct interaction
process of services is that each input of a service shall be
met by another service. Thus the basic requirement that
guarantees the correctness of IMWSC is:

for any activity ∈1a Activity, if it is an input activity,

then, there shall be another activity Activity, such
that . The necessary condition for the correctness
of IMWSC can also be defined as the following
predicative formula:

∈2a
21 aRa a

Activitya∈∀ (() (iiafaT =)(∨ ioafaT =)(→
Activitya∈∃ ' ())) 'aaRa ∨ aRa a'

IV. Formal Semantics of IMWSC

Formal semantic descriptions of a model are the basis
for proving properties of this model. Moreover, they
provide precise documentation of model design and
standards for implementations, and (sometimes) they can
be used for generation of prototype implementations.

The formal semantics of IMWSC comprises three parts:
semantic domain, semantic range, and valuation function.
A process calculus CCS (Calculus of Communicating
Systems, CCS for short) is introduced as a semantic range,

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 93

© 2010 ACADEMY PUBLISHER

and then valuation functions are defined that translate an
IMWSC (semantic domain) into a process term.

A. Basic Syntax of CCS
Let A be a countably infinite collection of names, and

the set = { | A} be the set of complementary
names (or co-names for short). Let L = A

a ∈a
U be a set of

labels, and = L Act }{τU be the set of actions, where
τ denote the activities which are not externally visible.
Let K be a countably infinite collection of process names.

The collection of CCS expressions is given by the
following grammar:

QP, =:: K | P.α | | | ∑
∈Ii

iP QP | P [] |

f

LP \
where:

● K is a process name in K ;
● α is an action in ; Act
● I is an index set;
● is a relabelling function satisfying

the following constraints:
ActActf →:

─ ττ =)(f and

─)()(afaf = for each label ; a
● L is a set of labels.

B. Operational Semantics of CCS
CCS is formalized using axiomatic and operational

semantics. To formally capture the understanding of the
semantics of the language CCS, the collection of
inference rules are therefore introduced as follows (a

transition holds for CCS expressions P, Q if,
and only if, it can be proven using these rules) :

QP
α
→

For a detailed introduction to the syntax and
operational semantics of CCS, readers are referred to [17,
18].

C. Defining Valuation Functions
The valuation functions of IMWSC, and their

corresponding semantic domains, semantic ranges are
given in Tab. 1 (symbols IMWSC denotes an IMWSC
instance; P denotes process term in CCS; A denotes the
set of atomic processes; Activity denotes a set of activities;
Act denotes the set of actions in CCS).

TABLE I

Valuation Functions and their Domains and Ranges

where:

● fm (procr) = fc (proc1) | fc (proc2) | ⋅⋅⋅ | fc (procn),

where , and

Ø

)1(, niServiceprocproc ir ≤≤∈

=)(rs procf ∧ ris procprocf =)(;

● iff = a ; =)(ic procf)(ia procf)(ipT procf

● iff = c ; =)(ic procf)(ir procf)(ipT procf

● = , where)(ia procf)()()(21 neee afafaf L⋅

iiei procafActivitya =∧∈)(, and

nccc aaa <<< L21 ;

● iff ii ei ; iie aaf !)(= =)(iaT af ∨ =)(iaT af

● iff io eo ; iie aaf ?)(= =)(iaT af ∨ =)(iaT af

● iff)(|)()(21 procfprocfprocf ccir =

ipU procprocf =)(1 ipU procprocf =∧)(2 ∧

21 || procprocproci = ;

● iff)().()(21 procfprocfprocf ccir =

ipU procprocf =)(1 ipU procprocf =∧)(2 ∧

21 procprocproci p= .

By means of the valuation functions defined in Tab. 1,
an algorithm aiming at translating an IMWSC instance to
CCS terms can be developed:

Algorithm. IMWSC_Instance_to_CCS

INPUT: IMWSC Instance

OUTPUT: The corresponding CCS terms

Process Trans_fm (IMWSC Instance)
{

1. Str Exp = Empty ;
2. For each in Proc ; p
3. Exp= Exp | Trans_fc () ; p
4. Return Exp ;

94 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

}

Process Trans_fc (process ∈p Proc)
{

1. If (process Type = basic)
{ Return Trans_fa () } ; p

2. Else { Return Trans_fr () }; p
}

Process Trans_fa (process ∈ip Proc)
{

1. Str name = getName() ; p
2. SET name = NIL ;
3. For each activity in Activitya i of process ip
4. If (activityType = output)

name = ! getName(). name ; ia
5. Else If (activityType = input)

name = ? getName(). name. ia
6. RETURN name ;

}

Process Trans_fr (process ∈ip Proc)
{

1. Str Exp = Empty ;
2. For each subService of process ju ip
3. If (compositionType of is parallel) ip

Exp = Exp | Trans_fc () ; ju
4. Else Exp = Exp. Trans_fc () ; ju
5. Return Exp ;

}

If the IMWSC instance to be translated comprises m
basic processes, and max , where

 returns the number of the activities contained

in process , the complexity of above algorithm will

be .

=n)}({ ipnum
)(ipnum

ip
)(nmO ×

V. Case Study: Application of IMWSC to a Concrete
Scenario

A. Abstracting the Interaction of Web Services
We will investigate the application of IMWSC in a

simple scenario. There are three services involved in this
scenario:

― The Client Service, which need to find out some
useful information (for convenience, client here is
considered as a service);

― The Response Service, which is responsible for
dealing with information inquiry requests;

― The Information Service, which acts as a database
and providing the useful information.

The business process of this scenario is introduced
briefly as follows:

1. The Response Service receives a request from the
Client Service which need to find out some useful
information;

2. The Response Service contacts the Information
Service and relay the information inquiry request;

3. The Response Service answers the questions to the
Client Service.

Fig. 3 presents an illustration of the structure of this
scenario, where

● A service is visualized by a rectangle (with round
angles);

● A state of a service is visualized by a circle (the
initial and the terminative states of a service are

visualized by icons , respectively);
● A transition between states is visualized by an arrow

(with curve line), from the source state to the target
state ;

● The supply channels of services in this scenario is
visualized by a pair of parallel arrows (with opposite
directions).

Figure 2. A Scenario of Interaction of Services

By applying IMWSC, the interaction process of
services in this scenario is described as follows:

conf (Client) = { cReq, cAsk, cInquiry, cInfo };

conf (Reponse) = { rReq, rAsk, rInquiry, rAnswer };

conf (InfoS) = { iAnswer, iInfo }.

aTf (cReq) = ii; (cAsk) = io; (cInquiry) = ii; aTf aTf

aTf (cInfo) = io; (rReq) = io; (rAsk) = ii; aTf aTf

aTf (rInquiry) = io; (rAnswer) = ii; aTf

aTf (iReq) = io; (iInfo) = ii; (iAnswer) = io. eTf aTf
cReq c< cAsk c< cInquiry cInfo; c<

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 95

© 2010 ACADEMY PUBLISHER

rReq rAsk rInquiry rAnswer; c< c< c<
iAnswer iInfo. c<

< rReq, cReq >∈ ; < cAsk, rAsk >∈ ; aR aR
< rInquiry, cInquiry >∈ ; < cInfo, iInfo >aR ∈ aR ;

< iAnswer, rAnswer >∈ ; aR
__

By means of the semantics of IMWSC defined in
Section 4, the corresponding CCS terms translated are as
follows:

Client = ! Req. ? Ask. ! Inquiry. ? Info. nil ;

Response = ? Req. ! Ask. ? Inquiry. ! Answer. nil;

InfoS = ? Answer. ! Info. nil;

Scenario = (Client | Response | InfoS) / { req, ask,
info, Inquiry, Answer }

B. Verifying the Interaction of Web Services
CCS is an effective modeling language which has

available supporting tool CWB-NC (Concurrency
Workbench of the New Century, CWB-NC for short) [20].
We use this tool to reason on and verify the behavior of
an instance of IMWSC.

Using the supporting tool of CCS, i.e., CWB-NC, aims
at assist the design and verification of a system. Applying
CCS in the design phase of a system is helpful to show
explicitly the interaction of the components that compose
this system; after the model of a system has been
constructed, modal −μ calculus [23] can be used to reason
on the system behavior. For a detailed introduction to
modal logic, readers are referred to, for example, [19, 23].

One type of verification supported by the tool is
reachability analysis. Here, as in each type of verification,
our first step in using the tool is to write a description of
the system supported by CWB-NC. The description is
then parsed by the tool and checked for syntactic
correctness. We then give a logical formula describing a
“bad state” that the system should never reach. Given
such a formula and system description, CWB-NC
explores every possible state the system may reach during
execution sequence and checks to see if a bad state is
reachable. If a bad state is detected, a description of the
execution sequence leading to the state is reported to the
user. Many bugs such as deadlock and critical section
violation may be found using this approach[20].

Correct termination is one of the main properties a
proper web service should satisfy. We use can_terminate
to define the state of termination of a system. And the
explanation for this state is as follows:

can_terminate is true of a system if it will reach a
terminative state. We express this property the system
should have in modal −μ calculus:

prop can_terminate =
min X = [−]ff \/ <−>X

Reachability analysis is actually a special case of a
more general type of verification called model checking.
In the model checking approach a system is again
described using a design language and a property the
system should have is formulated as a logical formula[20].

Another type of verification supported by CWB-NC
involves using a design language for defining both
systems and specifications. Here the specification
describes a system behavior more abstractly than the
system description[20]. A relation, i.e., Observational
equivalence needs to be introduced before we conduct
this type of verification.

Observational equivalence is useful in verification as
they lay the conceptual basis for deciding that the
behavior of two web services can be considered to be the
same. They can also be used as a tool for reducing
verification effort by replacing a process by a smaller (in
size), but equivalent one. The bisimulation equivalence
between two processes is a relation between their
evolutions such that for each evolution of one of the
services there is a corresponding evolution of the other
service such that the evolutions are observationally
equivalent and lead to processes which are again
bisimilar. This characterization of the behavior of web
services using the notion of bisimulation helps service
designer optimize composite services by, e.g., changing
their component web services with equivalent ones.
Another motivation is customization of services. To
enhance competitiveness a service providers may modify
their service for customers' convenience and this
customized service must conform to the original one.
Formally, the relation of observational equivalence is
defined as:

Definition 1 [Weak Transitions][23]:

● iff , ; 'qq
ε
⇒ '10 qqqqq n =→→→=

τττ
L 0≥n

● iff ; 'qq
τ
⇒ 'qq

ε
⇒

● iff , ('qq
α
⇒ '21 qqqq

εαε
⇒→⇒ τα ≠).

Definition 2[Observational Equivalence][23]:

Let S ⊆ QQ× . The relation S is a weak

bisimulation relation if whenever then: 21 qSq

● implies for some such

that ;
11 'qq

α
→ 22 'qq

α
⇒ 2'q

21 '' qSq

● implies for some such that

.
22 'qq

α
→ 11 'qq

α
⇒ 1'q

21 '' qSq

1q and are observationally equivalent, if

for some weak bisimulation relation , written
2q 21 qSq

S 1q ≈ 2q .

96 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

In this scenario, Client is considered as a service which
interacts with the composition of the services Response
and InfoS.

The behaviour of the composition of the services
Response and InfoS can be described in two ways:

1. The system description of the composition of
services Response and InfoS is:

Response = ? Req. ! Ask. ? Inquiry. ! Answer. nil;

InfoS = ? Answer. ! Info. nil;

 Info_Response = (Response | InfoS) / {answer} ;

2. The specification of this composition is:

Spe = ? Req. ! Ask. ? Inquiry. ! Info. nil

Command ‘ eq -S obseq ’ of CWB-NC tool can be
used to examine whether or not two processes are
observationally equivalent. By executing this command,
we know that processes Info_Response and Spe are
observationally equivalent.

VI. Conclusions and Future Work

Formal description and verification of the interaction
of web services is an important research field. After the
description and verification of a practical application of
web service, we come to a conclusion that IMWSC has
very good capability in abstracting, simulating, and
analyzing a scenario of the interaction process of web
services, which will facilitate the correct implementation.

Currently many service composition methods do not
take into account abstracting and analyzing the interactive
features of services in a composition. Therefore it is apt
to make mistakes when using these methods. Our work is
an attempt to abstract and verify the interaction process of
web services which will make the composition process
more reliable.

Further work will involve defining the way IMWSC
instances are composed. An instance of IMWSC model
defined only one scenario of the interaction process of
web services. To model the complete interaction process
of web services, there is a need for composing the
instances of IMWSC model. Since Petri nets are a well
known formal model that is capable of defining the
composition process, we plan to compose the instances
by using Petri net. In our further work, we will present
the fixed point property of IMWSC model. The fixed
point property indicated the outcome of each instance of
IMWSC model is determinate, in other words, each of the
module has only one terminative state. This property lays
the mathematical foundation for mapping a module to a
transition in a Petri net.

ACKNOWLEDGMENT

This research is supported by the National Natural
Science Foundation of China under Grant No.60573087.

REFERENCES

[1] Rachid H., Boualem B.. A Petri net based model for Web
service composition. Proc. of the 14th Australian Database
Conference on Database Technologies, Adelaide, South
Australia, 2003: 191-200.

[2] Salaün G., Bordeaux L.. Describing and reasoning on Web
services using process algebra. Proc. of the 2nd IEEE
International Conference on Web Services, San Diego,
California, USA, 2004: 43-51.

[3] Schahram Dustdar, Wolfgang Schreiner. A survey on web
services composition. Int. J. Web and Grid Services, 1(1):
1-30, 2005.

[4] Muhammad Adeel Talib. Modeling the Flow in Dynamic
Web Services Composition. Information Technology
Journal, 3 (2): 184-187, 2004.

[5] Casati F, Sayal M, and Shan M C. Developing e-services
for composing e-services. Proc. of the 13th International
Conference on Advanced Information Systems
Engineering (CAiSE2001), Interlaken, Switzerland, 2001:
171-186.

[6] Patil A, Oundhakar S, Sheth A, Verma K. METEOR-S
Web service annotation framework [A]. Proc. of the 13th
International World Wide Web Conference
(WWW2004)[C], New York, USA, May 2004: 553 – 562.

[7] Benatallah B, Sheng Q Z, Dumas M. The Self-Serv
Environment for Web Services Composition[J], IEEE
Internet Computing, 2003, 7(1): 40 – 48.

[8] Medjahed B, Bouguettaya A, Elmagarmid A K.
Composing Web services on the Semantic Web[J], VLDB
Journal, 2003, 12(4): 333 – 351.

[9] Shankar R P, Armando F. SWORD: A developer toolkit
for Web service composition, Proc. of the 11th
International World Wide Web Conference, Honolulu,
Hawaii, USA, May 2002, 786 – 810

[10] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN
Planning for Web Service Composition using SHOP.
Journal of Web Semantics, 1(4):377-396, 2004.

[11] Zhang Jia , Chung Jen Yao , Chang C. K. . WS-Net: A
petri-net based specification model for web services. Proc.
of the 2nd IEEE International Conference on Web
Services,San Diego,California,USA, 2004:420-427.

[12] Tao X. F. Formalizing Web service and modeling Web
service based on object oriented Petri net. Lecture Notes in
Computer Science. Berlin, Heidelberg. Springer-Verlag,
2004.

[13] A. Ferrara. Web Services: a Process Algebra Approach”,
Proc. of the 2nd Int. Conf. on Service-Oriented Computing
(ICSOC'04), ACM Press, 2004: 242-251.

[14] Li Bao, Weishi Zhang, Xiuguo Zhang. Describing and
Verifying Web Service Using CCS. In Proc. of the 7th
International Conference on Parallel and Distributed
Computing, Applications and Technologies, 2006: 421-426.

[15] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[16] R. Milner. A calculi of Communication and Concurrency.
Spinger-Verlag, 1980.

[17] Colin Fidge. A comparative introduction to CSP, CCS and
LOTOS. Technical Report, Department of Computer
Science, University of Queensland, Brisbane, Australia,
April 1994. Available at:
http://sky.fit.qut.edu.au/~fidgec/Publications/fidge94g.pdf.

[18] Luca Aceto, Kim G. An Introduction to Milner’s CCS.
Larsen. Technical Report, Department of Computer
Science, Aalborg University, Aalborg, Denmark, March
2005. Available at:

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 97

© 2010 ACADEMY PUBLISHER

http://www.getcited.org/mbrz/11086451

http://www.dimi.uniud.it/miculan/Didattica/MFGC04/intro
2ccs.pdf.

[19] C. Stirling. Modal logics for communicating systems.
Theoretical Computer Science, 49(2-3): 311-347, 1987.

[20] R. Cleaveland and S. Sims. The NCSU concurrency
workbench. In R. Alur and T. Henzinger, editors,
Proceedings of the 8th International Conference on
Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, New Brunswick, NJ, USA,
1996: 394-397.

[21] K. Schmidt and C. Stahl. A Petri net semantic for
BPEL4WS - validation and application. Proc. of the 11th
Workshop on Algorithms and Tools for Petri Nets,
Paderborn, Germany, 2004: 1-6.

[22] B. Schlinglo, A. Martens, and K. Schmidt. Modeling and
model checking web services. Proc. of the 2nd

International Workshop on Logic and Communication in
Multi-Agent Systems. volume 126 of Electronic Notes in
Theoretical Computer Science, Nancy, France, August
2004: 3-26.

[23] M. Hennessy and R. Milner, Algebraic laws for
nondeterminism and concurrency, J. Assoc. Comput.
Mach., 32: 137-161, 1985.

[24] Hull R., Su J. (2005) Tools for Composite Web Services:
A Short Overview. SIGMOD Record, 34 (2): 86-95, 2005.

Li Bao received the BS degree in
computer science from Dalian
Nationality University, China, in
2003, and the MS degree in computer
science from Dalian Maritime
University, China, in 1996. From
2006 to date, he works as a PhD
candidate in the Institute of Software
Engineering, Dalian Maritime

University, China. His research interests include
distributed computing, software engineering, and formal
description techniques.

Weishi Zhang received the BS
degree in computer science from
Xi’an Jiaotong University, China, in
1984, and the MS degree in
computer science from the Chinese
Academy of Science, China, in 1986.
He received the PhD degree in
computer science from the
University of Munich, Germany, in

1996. From 1986 to1990, he was an assistant researcher
at the Shenyang Institute of Computing, Chinese
Academy of Science, China. From 1990 to 1992, he was
a visiting scholar at Passau University, Germany. From
1992 to 1997, he was an assistant professor at the
University of Munich, Germany. In 1997, he joined the
Department of Computer Science, Dalian Maritime
University, China, where he is currently a professor of
computer science. His research interests include
distributed computing, software engineering, software
architecture, formal specification techniques, and
program semantics models.

 Xiong Xie works as a PhD candidate
in the Institute of Software
Engineering, Dalian Maritime
University, China. Her research
interests include distributed
computing, software engineering,
and formal description techniques

98 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

