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Abstract—Low density parity check (LDPC) codes are 
error-correcting codes that offer huge advantages in terms 
of coding gain, throughput and power dissipation. Error 
correction algorithms are often implemented in hardware 
for fast processing to meet the real-time needs of 
communication systems. However hardware 
implementation of LDPC decoders using traditional 
hardware description language (HDL) based approach is a 
complex and time consuming task. This paper presents an 
efficient high level approach to designing LDPC decoders 
using a collection of high level modelling tools. The 
proposed new methodology supports programmable logic 
design starting from high level modelling all the way up to 
FPGA implementation. The methodology has been used to 
design and implement representative LDPC decoders. A 
comprehensive testing strategy has been developed to test 
the designed decoders at various levels.  The simulation and 
implementation results presented in this paper prove the 
validity and productivity of the new high level design 
approach. 
 
Index Terms—Error correction coding, digital systems, 
digital communication, logic design, FPGA. 
 

I. INTRODUCTION 

Information passing through a practical 
communication channel may be corrupted in transit by 
noise present in the channel [1]. Therefore it is of 
paramount importance for communication systems to 
have adequate means for the detection and correction of 
errors in the information received over communication 
channels. Turbo codes and LDPC (low density parity 
check) codes are most commonly used for error detection 
and correction nowadays [2]. Both of these codes provide 
coding gains [3] close to Shannon’s limit [4]. LDPC 
codes however outperform turbo codes in terms of coding 
gain for large SNR [5, 6]. LDPC code of length 1 million 
with a coding rate (ratio of information bits to the sum of 
information and parity bits) of 0.5 and BER of 10-6 
provides a capacity which is only 0.13db from Shannon’s 
limit [5]. Further advantages of using LDPC codes are 

given in [7]. These include less computational complexity 
as compared to turbo codes, ability to pipeline the 
decoder to increase throughput at the cost of registers and 
some latency, and less number of iterations than turbo 
codes. Increased number of iterations reduces the 
throughput and increases power dissipation [5, 8]. The 
studies conducted in [7] and [8] indicate that lesser 
number of iterations in LDPC codes helps achieving 
higher throughput and decreases power dissipation. 
Another factor which contributes to increasing the 
throughput of LDPC decoder is the degree of parallelism 
which is adjustable [9, 10]. Another reason of using 
LDPC codes is that it is relatively easier to implement 
than turbo codes [11]. 

Despite all these advantages of LDPC codes the 
random parity check matrix makes the wiring between 
variable and check nodes complex, especially for large 
matrices. This leads to increased routing congestion in the 
decoder and eventually the size of the LDPC decoder 
increases and speed decreases [12, 13]. Complexity of 
practical implementation makes high throughput very 
difficult to achieve [14, 15]. Moreover, designing LDPC 
decoders in VHDL (Very high speed integrated circuit 
Hardware Description Language) becomes a cumbersome 
task when the size of the design increases. Huge amount 
of time and effort are required to model such large 
designs in VHDL [16]. It results in decrease in 
productivity. It becomes a nightmare for the designer to 
write VHDL code for thousands of connections and to 
make the changes required. Therefore, hardware 
implementation of LDPC decoder remains a challenge. 
 This paper examines high level modelling and 
synthesis techniques of LDPC decoders using emerging 
industry tools. It compares the high level approaches with 
traditional hardware description language based 
approaches in terms of modelling complexity, efforts and 
time. It also compares the results obtained for a 
representative LDPC decoder design using the high level 
approaches and using a traditional HDL based approach. 

II. DESIGN APPROACH  

This paper investigates a new high-level modelling and 
synthesis methodology for LDPC decoder using state of 
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the art tools. As opposed to using only hand written 
VHDL codes for the entire design, this research examines 
high level design methods using Simulink, involving a 
combination of blocks designed with predefined library 
components and with embedded Matlab codes. A VHDL 
(VHSIC Hardware Description Language) code is 
generated automatically from the high level Simulink 
model using Mathworks’s Simulink HDL coder (version 
1.2). The entire design process is captured in Fig. 1.  

Simulink HDL coder gives the flexibility of integrating 
different design approaches, namely Matlab programs, 
Simulink models and VHDL codes. Simulink and Matlab 
programs provide a much higher level of abstraction than 
VHDL. Therefore our design approach utilizes as many 
Simulink library blocks and Matlab blocks as possible to 
design various modules of the decoder provided these 
modules can be successfully processed by the HDL coder 
for automatic generation of VHDL codes. All the 
modules are then integrated in a top level Simulink model 
to produce the overall decoder model. VHDL code is 
generated automatically using Simulink HDL coder along 
with an optional test bench. This test bench can be used 
in ModelSim (a HDL simulator) to check correctness of 
the design. The auto-generated VHDL code can also be 
used in Altera’s Quartus II or Xilinx ISE (Integrated 
Software Environment) for synthesis and implementation 
on desired FPGA (Field Programmable Gate Array). 
Automatic HDL code generation will lead to reduction in 
design efforts thereby increasing design productivity. 

 

Figure 1.  Proposed design flow. 

III. OVERVIEW OF LDPC CODES AND DECODING 
ALGORITHM 

Low density parity check (LDPC) codes are a class of 
linear block codes which are used for error detection and 
correction [17]. LDPC codes were first discovered by 
Gallager in 1962. In 1981, Tanner worked on LDPC 
codes and came up with important tanner graphs or 
bipartite graphs [18]. LDPC codes could not be 
implemented at the time of invention because the 
technology was not advanced, though they were studied 
again after almost three decades because they are more 

advantageous than any other error-correcting codes. 
LDPC codes are extensively used in standards such as 
10Gigabit Ethernet (10GBaseT) & digital video 
broadcasting (DVB-S2) [19]. 

There are different algorithms which could be used for 
decoding purposes. We used the min-sum decoding 
algorithm [14, 20], which is a special case of sum-product 
algorithm [18, 21, 22]. Sum-product algorithm reduces 
the computational complexity and makes the decoder 
numerically stable [18]. Assume that the messages from 
the host communication system are represented by I and 
are passed on to the decoder for error correction. The 
LDPC decoder consists of a number of variable nodes (v) 
and check nodes (c). The operation of the min-sum 
algorithm can be summarised as follows [14]: 

A. Variable Node Operation 
A variable node performs the operation given in (1) 

and passes the outputs to check nodes. 
 

v
cvMm
mvcv IRL += ∑

∈ \)(
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where, Iv is the input to variable node v, also known as 
Log Likelihood ratio (LLR), Lcv is the output of variable 
node v going to check node c, M(v)\c denotes the set of 
check nodes connected to variable node v excluding the 
check node c, Rmv is the output of check nodes going to 
variable node v. 

B. Check Node Operation 
A check node receives messages from variable nodes 

and performs the operation given by (2):  
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where, Rcv is the output of check node c going to variable 
node v. 

C. Parity Check 
 Every check node also checks whether the parity 

condition is satisfied by looking at the sign of the 
messages coming from the variable nodes. Until all the 
parity checks from all the check nodes are satisfied the 
messages are sent back to variable nodes and the variable 
nodes do the operation specified in part (A), otherwise 
the decoder stops the process. 

Min-sum decoding algorithm uses soft decision. 
However, hard decision is taken on the new LLR (Iv). If 
the new LLR is negative then the output bit would be a 1 
otherwise a 0. Interested readers can find the details of 
the sum-product and min-sum decoder algorithms in [18, 
20-22]. 

IV. REPRESENTATIVE DECODER DESIGNS 

LDPC codes can be represented by an M x N sparse 
matrix, usually called H matrix. The H matrix contains 
mostly zeros and a small number of 1s [9, 10]. It can also 
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be represented by a graph called bipartite or tanner graph. 
Tanner graphs contain variable and check nodes. The 
decoder prototype designed in this research is based on 
the matrix shown in Fig. 2. It is a very small matrix 
compared to the real matrices. This 10x5 matrix can be 
transformed into a tanner graph having 10 variable nodes 
and 5 check nodes as is shown in Fig. 3. The signals go 
from the variable nodes to the check nodes and from the 
check nodes back to variable nodes. Typically different 
sets of wires are used for the signals going from variable 
nodes to check nodes and vice versa. The process is 
iterative and goes until all the parity checks are satisfied. 
The messages in our prototype designs are 4-bit long.  

 

1 1 1 1 0 1 1 0 0 0 
0 0 1 1 1 1 1 1 0 0 
0 1 0 1 0 1 0 1 1 1 
1 0 1 0 1 0 0 1 1 1 
1 1 0 0 1 0 1 0 1 1 

Figure 2.  A 10x5 sparse matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Tanner graph. 

A. Design 1 
The approach taken in the first decoder design was to 

use a combination of embedded Matlab blocks and 
Simulink library blocks. No handwritten VHDL blocks 
were used. A generic Simulink model was first developed 
for each of a variable node and a check node.  

Check node design in Simulink: The check node has 
been designed in the same way as the variable node. The 
Simulink model of the check node is shown in Fig. 4. It 
uses blocks from Simulink library (absolute and bitwise 
XOR). The check node finds the minimum of all the 
inputs and performs the parity checks. It contains a 
control block, which controls its operation. 

Variable node design in Simulink: The variable node, 
shown in Fig. 5, has been designed in Simulink using the 
basic add block from the Simulink library. The control 
block controls the operation of the variable node. The 
variable node has four inputs, the first three come from 
various check nodes and the fourth one is the raw LLR, 
which is an external input supplied by the host 
communication system. It performs the operation given in 
(1) and passes the outputs to the check nodes to which it 
is connected.  

Once the Simulink models are developed for the check 
node and the variable node, the VHDL codes for each of 
these can be generated automatically using the HDL 
Coder tool according to the design flow presented in Fig. 
1. The functionality of each of these models can be 
verified at both Simulink and VHDL levels. Each VHDL 
model can also be synthesized for a target FPGA. 

10x5 LDPC decoder: A LDPC decoder with 10 
variable and 5 check nodes has been designed using 
instances of the variable and check node components 
described above. The various nodes are interconnected in 
a way that corresponds to the Tanner graph of Fig. 3. 

 

 
Figure 4.  Check node design in Simulink. 
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Figure 5.  Variable node design in Simulink. 

B. Design 2 
Design 2 uses a combination of embedded Matlab 

blocks, Simulink library blocks and VHDL/Link for 
ModelSim blocks. ‘Link for ModelSim’ is a utility that 
enables modules coded in VHDL to be embedded in 
Simulink models. Design 2 is different from the first 
design in that it uses serial communication of messages 
between variable and check nodes. This is achieved using 
SIPO (serial-in-parallel-out) and PISO (parallel-in-serial-
out) registers at each input and output port in all the 
nodes. This greatly simplifies the interconnections by 
reducing the number of wires four times at the cost of 
some extra registers. The variable and check node 
components are same and are connected in the same way 
as in Design 1. The PISO and SIPO components are 
coded in VHDL and are used in the Simulink model with 
the help of the ‘Link for ModelSim’ utility (to link the 
VHDL blocks with ModelSim for simulation and code 
generation purposes).  The way PISO and SIPO are used 
in a variable node is shown in Fig. 6. Check nodes have 
been modified in exactly the same manner. The inputs 
and outputs of all the variable and check nodes are now 
1-bit long. The effects of using a VHDL block in a 
Simulink design are discussed in the next section. The 
HDL coder does not generate the VHDL code of the Link 
for ModelSim blocks. The VHDL code for these blocks 
needs to be added before synthesizing the code. 

 
 

 
 

 
 
 

 
Figure 6.  A variable node with PISO and SIPO. 

 

V. RESULTS AND ANALYSIS 

A. Convergence Test 
The convergence characteristics of the LDPC decoders 

presented in this paper have been tested using VHDL 
testbench and compared with that of a Matlab code for a 
functionally equivalent decoder. For this purpose the 
VHDL code automatically generated from the Simulink 
models was used. Fig. 7 shows the spread of the number 
of iterations for Design 2 by using plots of (mean number 
of iterations + standard deviation) and (mean number of 
iterations − standard deviation) versus SNR (Eb/No). It is 
clear that convergence is achieved in 6 iterations. This is 
consistent with the convergence result of a functionally 
equivalent decoder shown in Fig. 8, designed using 
Matlab code [23]. 

 

 
Figure 7.  Spread of the number of iterations for Design 2 obtained 

from VHDL testbench. 

 

Figure 8.  Spread of the number of iterations for a functionally 
equivalent Matlab code. 
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B. Algorithm Performance 
The performance of our LDPC algorithm has been 

evaluated by simulating the decoder over AWGN channel 
and plotting the Bit-Error-Rate (BER) against Signal-to-
Noise-Ratio (SNR) [24, 25]. Fig. 9 shows the BER 
performance of Design 2 obtained from simulation of the 
high-level Simulink model. Fig. 9 also shows the BER 
plot of the unencoded BPSK channel. Clearly our decoder 
demonstrates increasing gain in BER with increasing 
SNR compared to the unencoded BER. This proves that 
the proposed high-level design method can deliver 
competitive designs with the desired gain in BER 
performance [24, 25].  

 

 
 

Figure 9.  Performance simulation of the LDPC decoder. 

C. Synthesis 
Synthesis results for the high-level designs are given 

below and are compared with their ‘VHDL only’ 
counterparts. The results were obtained using Altera’s 
Quartus II software with Cyclone II EP2C70F672C6 as 
the target FPGA device. Table 1 compares the resources 
used by our Design 1 and its maximum operating 
frequency (Fmax) with the same decoder designed solely 
using hand coded VHDL. Our design uses 2.1% of the 
FPGA’s logical elements, only 120 registers and has a 
maximum frequency of 42.96 MHz. Clearly our Simulink 
design uses much less resources and is faster than the 
VHDL-only design. The higher register count in the 
VHDL design is due to the presence of dedicated 
registers for latching variable and check node outputs, 
which were removed from the Simulink design. Table 2 
compares our Design 2 with its VHDL-only counterpart. 
It uses 3.5% of the logic elements, which is higher than 
the amount used by the VHDL-only design (2.8%). 

TABLE I. 
DESIGN 1 COMPARED WITH VHDL-ONLY COUNTERPART 

 Design 1 VHDL only design 

Logical elements 1432 (2.1%) 1492 (2.2%) 

Combinational functions 1432 (2.1%) 1492 (2.2%) 

Total registers 120 (0.2%) 686 (1%) 

Maximum frequency (Fmax) 42.96MHz 37.3 MHz 

TABLE II. 
DESIGN 2 COMPARED WITH VHDL-ONLY COUNTERPART 

 Design 2 VHDL only design 

Logical elements 2416 (3.5%) 1916 (2.8%) 

Combinational functions 2416 (3.5%) 1916 (2.8%) 

Total registers 480 (0.7%) 881 (1.3%) 

Maximum frequency (Fmax) 67.20MHz 67.72MHz 
 

The reason for the higher number of logic elements in 
our design is that the control unit contains handshaking 
circuitry to facilitate communication of large amount of 
data between the PC and the FPGA board for testing. 
However, the VHDL-only design has a simple control unit 
and does not include any such handshaking circuitry. Our 
Design 2 uses nearly half the number of registers and 
achieves nearly the same maximum frequency (Fmax). 
The time required by our high-level approach for 
successful modelling, simulation and synthesis of the 
LDPC designs was almost a quarter of that required by 
the hand coding method.  

D. Behavioral Simulation of VHDL Model 
Fig. 10 shows the functional simulation result for the 

VHDL model of Design 2 generated from its top level 
Simulink model. A set of raw LLRs (6, 6, 2, 4, 7, 4, -2, 6, 
4, 7) are applied to the variable nodes. The signals 
end_o_vn & end_o_cn are the control signals. The parity 
becomes 1 in the third iteration when all the parity checks 
are satisfied and the decoder stops the iterations. The 
corrected LLRs output by the variable nodes are 7, 7, 7, 
7, 7, 7, -8, 4, 5, 7. 

E. Hardware Implementation and Testing 
After fully simulating the Simulink as well as the 

VHDL models of Design 1 and Design 2, both designs 
were implemented on a Xilinx Spartan 2E FPGA. The 
FPGA platform we used is shown in Fig. 11. It contains 
three separate modules: the USB communication module 
for communicating with the PC, the main FPGA module 
housing the Xilinx Spartan IIE, and the I/O module. The 
LLRs are generated by a MATLAB program and are 
stored in a text file on the PC. A LabVIEW program 
running on the PC sends these LLRs to the decoder via 
the USB module and receives the decoded LLRs back 
along with the parity information. The decoded LLRs are 
written into a separate file by the LabVIEW program and 
analysed for correctness by a MATLAB program by 
comparing with the LLRs generated by simulation of the 
Simulink and/or VHDL models. The PC controls the 
operation of the decoder on the FPGA through a number 
of handshaking signals as is shown in Fig. 12, for 
example start/stop, max_iteration etc. The I/O module has 
been used to display useful runtime information, for 
example the number of iterations completed by the 
decoder for each LLR. This enables us to obtain a visual 
indication that the LDPC decoder is operating. The 
performance results obtained from the implemented 
decoders are presented in the next sub-section along with 
the performance of Simulink and VHDL models. 
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Figure 10.  Behavioral simulation results of decoder Design 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  The FPGA platform used to implement the decoders. 

 
 

Figure 12.   Block diagram of the LDPC decoder implemented on the 
Xilinx Spartan 2E FPGA device. 

F. Comprehensive Testing Strategy 
The Matlab and Simulink environment used in the high 

level design methodology make it very easy and fast to 
build a full test system for testing the whole design. In 
this section we present a comprehensive testing strategy 
for LDPC decoders whereby we can test the decoder 
outputs from three different environments 
simultaneously. Fig. 13 shows the proposed testing 
strategy. The test system allows the design to be 
simultaneously tested in Simulink, VHDL (ModelSim) 
and on the FPGA.  

The LDPC Encode Test Data module generates a 
sequence of LDPC encoded test data and sends these to 
the Simulink simulation model, VHDL testbench and 
FPGA at the same time. After decoding is done in the 
three environments, the data are sent back to the Test 
Data Analysis module. This module analyses the decoded 
data from the three environments and compares the parity 
information for correctness. We have used this scheme to 
validate the decoder designs presented in this paper.  

 

 

 

 

 

 

 

 

 

 

Figure 13.  Structure of the testing system. 

Fig. 14 shows the performance plot (BER) obtained 
from the FPGA and compares it with the BER obtained 
from the Simulink model. The performance plots from 
the VHDL testbench and FPGA are also compared in Fig. 
15. These figures show a close match among the 
performance plots obtained from three different 
environments and therefore prove that the design has 
been correctly implemented and run on the FPGA device.   
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Figure 14.  Bit-Error-Rates obtained from FPGA implementation 

compared with Simulink simulation. 

 

 

 

 

 

 

 

 
 
Figure 15.  Bit-Error-Rates obtained from FPGA implementation 

compared with VHDL testbench.  

VI. ANALYSIS OF THE HIGH LEVEL DESIGN METHOD 

The high-level design methodology presented in this 
paper reduces design complexity, effort and time. For 
example, to design the variable and check nodes of Fig. 4 
and Fig. 5 completely in VHDL a designer has to write 
behaviours of quite a few modules in VHDL and 
manually do the port mapping for the top level design. As 
the design gets larger and larger it becomes very difficult 
to code everything in VHDL. It not only takes huge effort 
and time, but also managing complex designs and reusing 
the designs are often quite difficult. A great deal of 
expertise and experience in VHDL is also required. For a 
large LDPC decoder with hundreds of nodes, the 
interconnections among the variable and check nodes 
could easily become a designer’s nightmare if the entire 
design has to be coded in VHDL. An alternative, intuitive 
and highly efficient design method has been a long 
standing desire of the engineers engaged in the design of 
complex digital systems such as LDPC decoders. 

The high level methodology we have presented in this 
paper offers a very attractive alternative. The designs can 
be done intuitively in Simulink using predefined 
Simulink library blocks and blocks made from high-level 
Matlab code.  The design complexity, effort and time are 
reduced drastically because the need for manually writing 
complex VHDL code is almost eliminated. Our estimates 
have shown that the time required to successfully design, 
simulate and synthesise a LDPC decoder using hand 
coded VHDL is almost four times that required by the 
proposed high-level methodology. Our decoder Design 2 
had 1069 lines of VHDL code generated automatically by 
HDL Coder from the top level Simulink model as 
opposed to only 225 lines of hand written VHDL code. 
The main reason for the large code produced by HDL 
Coder is that it used a very large number of internal 
signals to generate the VHDL description of the decoder. 
This is something we did not have any control over. Of 
course our decider Design 2 had additional handshaking 
circuitry to facilitate communication between the PC and 
the FPGA board for testing purpose. This contributed to 
the larger code to some extent. However, we did not 
optimise the auto-generated VHDL code. Yet our decoder 
designs compare favourably with the hand coded designs 
(see Tables 1 and 2).  

Another important aspect of the proposed high-level 
design methodology is that design reuse requires much 
less effort because changes are made either at block level 
in Simulink or in high-level Matlab code. In addition 
Matlab is a software programming language that is used 
much more widely than hardware description languages 
like VHDL and Verilog. Therefore designers without 
specific skills in hardware languages are able to design 
complex digital systems without much problem. Even 
software engineers and algorithm developers are able to 
quickly implement and test their high-level designs due to 
the ability to automatically generate HDL descriptions 
from the Simulink models. This will surely offer great 
flexibility and efficiency in the design and reuse of 
complex LPDC decoders. There are some other benefits 
of the high level design methodology: 
• Different parts of the model can be enveloped using the 

‘create subsystem’ property of Simulink. It reduces the 
design complexity for large designs.  

• User created Simulink library blocks provide great 
flexibility because the revisions made to the user 
defined library seamlessly propagate through the entire 
model.  

• HDL Coder can generate either VHDL or Verilog 
descriptions from the high-level Simulink models, 
allowing greater flexibility in the choice of the 
hardware description language. 
In the high-level design methodology, it is also easy 

and fast to build a complete test system. The Matlab and 
Simulink library provides a lot of powerful tools for 
generating and analysing test data such as graphical plot, 
scripts, etc. 

The design methodology we have presented requires 
the use of some emerging design tools and library 
functions, such as Simulink hardware library and 
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embedded Matlab blocks, Link for ModelSim and HDL 
Coder tools. Because these are very recent developments 
the library of Simulink blocks to support the functions a 
designer needs is rather limited at the present time. 
Similarly the capability of HDL Coder is limited to 
conversion of a few commonly used Simulink blocks and 
a few embedded Matlab blocks. Some of the specific 
limitations are discussed below. 

A. Current Limitations 
Some common blocks in the Simulink library are not 

currently supported by the HDL Coder for automatic 
generation of VHDL code, e.g. flip-flops. Although we 
could build the PISO and SIPO registers easily in 
Simulink using the flip flops from its library the registers 
were not converted to VHDL by the HDL Coder. A 
careful selection of supported Matlab functions and 
Simulink library blocks may help addressing this type of 
problems, but not necessarily always. Some other 
limitations we experienced are listed below: 
• Multiple instances of some modules (components) are 

used in the LDPC decoder, and in fact in most modular 
designs utilising a hierarchical design methodology. 
For example, in our LDPC decoder multiple instances 
of the check and variable nodes, and PISO and SIPO 
registers are used. The HDL Coder dumps the full 
behaviour of each component as many times as it is 
instantiated in the design. This produces redundant 
instances of component behaviour in the generated 
VHDL code. It is necessary for the designer to edit the 
auto-generated code. 

• There are some functions which are supported by the 
HDL Coder, but it produces the output in a particular 
data type. For example, the sign function of Matlab 
gives output only in 8-bit integer (int8) format. It is not 
possible to change these default data types in the 
current version. The only option is to manually edit the 
auto-generated HDL code.  

• Link for ModelSim: This utility enables blocks 
designed in VHDL to be included in Simulink models. 
However the ports of the blocks that use Link for 
ModelSim get interchanged while simulating in 
Simulink. HDL code cannot be generated for the 
Simulink model in this situation. The code can be 
generated only after correcting the design. This makes 
the design process difficult and time consuming. The 
other drawback of blocks utilising Link for ModelSim 
is that these blocks may make changes in the auto-
generated code. In case of the LDPC decoder these 
blocks changed the signals of type signed to unsigned. 
Once again this requires manually editing the auto-
generated VHDL code.  

VII. CONCLUSIONS 

In this paper a new high-level intuitive design 
methodology based on Simulink for modelling, synthesis 
and implementation of LDPC decoders has been 
presented. It utilises the higher level of abstraction 
offered by the Simulink modelling environment. The 

modelling, simulation and synthesis process utilises a 
combination of emerging design tools and associated 
library functions. These include the Simulink HDL Coder 
and ‘Link for ModelSim’ tools, and embedded Matlab 
and Simulink hardware library blocks. Two versions of 
10x5 LDPC decoders have been designed, simulated, 
synthesised and successfully implemented on a Xilinx 
Spartan 2E FPGA device. A comprehensive testing 
strategy has been adopted to test the decoders at all 
levels, from the high level Simulink model through 
VHDL all the way up to hardware implementation. Our 
testing strategy supports simultaneous testing of the 
decoders at the three levels which is useful for real-time 
debugging. The proposed high level design methodology 
facilitates the creation of such testing strategy very 
quickly because the test data generated at the high level is 
used for testing at all three levels. This helps to reduce 
the time of evaluating and testing the design as well as 
ensures that the final design is efficient and error-free. 
The performance figures on Bit-Error-Rates obtained at 
the three levels compare favourably with those of the 
LDPC decoders reported in the literature.  

The proposed high level design methodology offers 
great advantages in terms of design complexity, effort 
and time compared to a HDL-only design method. Our 
Design 1, completed using the new methodology, uses 
less FPGA resources and achieves higher Fmax compared 
to its HDL-only designs. Our Design 2 achieves nearly 
the same Fmax as its VHDL-only counterpart, but uses 
slightly higher number of logic elements due to the 
inclusion of additional handshaking circuitry required for 
testing the design on FPGA. Given the significant 
reduction in design effort and time, the above results 
make the proposed design methodology a very attractive 
one. We envisage that with further enrichment of the 
Simulink Library blocks, and enhancements of HDL 
Coder and Link for ModelSim tools, design 
methodologies similar to the one presented in this paper 
will eventually replace tedious HDL-based design 
approach. This will pave the way for cost effective design 
and reuse of a new generation of complex high 
performance LDPC decoders.   
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