
Implementation of Low Density Parity Check
Decoders using a New High Level Design

Methodology

Syed Mahfuzul Aziz and Minh Duc Pham
School of Electrical & Information Engineering, University of South Australia, Mawson Lakes, Australia

Email: {Mahfuz.Aziz, Minh.Pham}@unisa.edu.au

Abstract—Low density parity check (LDPC) codes are
error-correcting codes that offer huge advantages in terms
of coding gain, throughput and power dissipation. Error
correction algorithms are often implemented in hardware
for fast processing to meet the real-time needs of
communication systems. However hardware
implementation of LDPC decoders using traditional
hardware description language (HDL) based approach is a
complex and time consuming task. This paper presents an
efficient high level approach to designing LDPC decoders
using a collection of high level modelling tools. The
proposed new methodology supports programmable logic
design starting from high level modelling all the way up to
FPGA implementation. The methodology has been used to
design and implement representative LDPC decoders. A
comprehensive testing strategy has been developed to test
the designed decoders at various levels. The simulation and
implementation results presented in this paper prove the
validity and productivity of the new high level design
approach.

Index Terms—Error correction coding, digital systems,
digital communication, logic design, FPGA.

I. INTRODUCTION

Information passing through a practical
communication channel may be corrupted in transit by
noise present in the channel [1]. Therefore it is of
paramount importance for communication systems to
have adequate means for the detection and correction of
errors in the information received over communication
channels. Turbo codes and LDPC (low density parity
check) codes are most commonly used for error detection
and correction nowadays [2]. Both of these codes provide
coding gains [3] close to Shannon’s limit [4]. LDPC
codes however outperform turbo codes in terms of coding
gain for large SNR [5, 6]. LDPC code of length 1 million
with a coding rate (ratio of information bits to the sum of
information and parity bits) of 0.5 and BER of 10-6
provides a capacity which is only 0.13db from Shannon’s
limit [5]. Further advantages of using LDPC codes are

given in [7]. These include less computational complexity
as compared to turbo codes, ability to pipeline the
decoder to increase throughput at the cost of registers and
some latency, and less number of iterations than turbo
codes. Increased number of iterations reduces the
throughput and increases power dissipation [5, 8]. The
studies conducted in [7] and [8] indicate that lesser
number of iterations in LDPC codes helps achieving
higher throughput and decreases power dissipation.
Another factor which contributes to increasing the
throughput of LDPC decoder is the degree of parallelism
which is adjustable [9, 10]. Another reason of using
LDPC codes is that it is relatively easier to implement
than turbo codes [11].

Despite all these advantages of LDPC codes the
random parity check matrix makes the wiring between
variable and check nodes complex, especially for large
matrices. This leads to increased routing congestion in the
decoder and eventually the size of the LDPC decoder
increases and speed decreases [12, 13]. Complexity of
practical implementation makes high throughput very
difficult to achieve [14, 15]. Moreover, designing LDPC
decoders in VHDL (Very high speed integrated circuit
Hardware Description Language) becomes a cumbersome
task when the size of the design increases. Huge amount
of time and effort are required to model such large
designs in VHDL [16]. It results in decrease in
productivity. It becomes a nightmare for the designer to
write VHDL code for thousands of connections and to
make the changes required. Therefore, hardware
implementation of LDPC decoder remains a challenge.
 This paper examines high level modelling and
synthesis techniques of LDPC decoders using emerging
industry tools. It compares the high level approaches with
traditional hardware description language based
approaches in terms of modelling complexity, efforts and
time. It also compares the results obtained for a
representative LDPC decoder design using the high level
approaches and using a traditional HDL based approach.

II. DESIGN APPROACH

This paper investigates a new high-level modelling and
synthesis methodology for LDPC decoder using state of

Project number: ITEE-09/CGD-12, University of South Australia.
Corresponding author: Dr Syed Mahfuzul Aziz, Email:
mahfuz.aziz@unisa.edu.au

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 81

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.1.81-90

the art tools. As opposed to using only hand written
VHDL codes for the entire design, this research examines
high level design methods using Simulink, involving a
combination of blocks designed with predefined library
components and with embedded Matlab codes. A VHDL
(VHSIC Hardware Description Language) code is
generated automatically from the high level Simulink
model using Mathworks’s Simulink HDL coder (version
1.2). The entire design process is captured in Fig. 1.

Simulink HDL coder gives the flexibility of integrating
different design approaches, namely Matlab programs,
Simulink models and VHDL codes. Simulink and Matlab
programs provide a much higher level of abstraction than
VHDL. Therefore our design approach utilizes as many
Simulink library blocks and Matlab blocks as possible to
design various modules of the decoder provided these
modules can be successfully processed by the HDL coder
for automatic generation of VHDL codes. All the
modules are then integrated in a top level Simulink model
to produce the overall decoder model. VHDL code is
generated automatically using Simulink HDL coder along
with an optional test bench. This test bench can be used
in ModelSim (a HDL simulator) to check correctness of
the design. The auto-generated VHDL code can also be
used in Altera’s Quartus II or Xilinx ISE (Integrated
Software Environment) for synthesis and implementation
on desired FPGA (Field Programmable Gate Array).
Automatic HDL code generation will lead to reduction in
design efforts thereby increasing design productivity.

Figure 1. Proposed design flow.

III. OVERVIEW OF LDPC CODES AND DECODING
ALGORITHM

Low density parity check (LDPC) codes are a class of
linear block codes which are used for error detection and
correction [17]. LDPC codes were first discovered by
Gallager in 1962. In 1981, Tanner worked on LDPC
codes and came up with important tanner graphs or
bipartite graphs [18]. LDPC codes could not be
implemented at the time of invention because the
technology was not advanced, though they were studied
again after almost three decades because they are more

advantageous than any other error-correcting codes.
LDPC codes are extensively used in standards such as
10Gigabit Ethernet (10GBaseT) & digital video
broadcasting (DVB-S2) [19].

There are different algorithms which could be used for
decoding purposes. We used the min-sum decoding
algorithm [14, 20], which is a special case of sum-product
algorithm [18, 21, 22]. Sum-product algorithm reduces
the computational complexity and makes the decoder
numerically stable [18]. Assume that the messages from
the host communication system are represented by I and
are passed on to the decoder for error correction. The
LDPC decoder consists of a number of variable nodes (v)
and check nodes (c). The operation of the min-sum
algorithm can be summarised as follows [14]:

A. Variable Node Operation
A variable node performs the operation given in (1)

and passes the outputs to check nodes.

v
cvMm
mvcv IRL += ∑

∈ \)(
 (1)

where, Iv is the input to variable node v, also known as
Log Likelihood ratio (LLR), Lcv is the output of variable
node v going to check node c, M(v)\c denotes the set of
check nodes connected to variable node v excluding the
check node c, Rmv is the output of check nodes going to
variable node v.

B. Check Node Operation
A check node receives messages from variable nodes

and performs the operation given by (2):

∏
∈

∈×=
vcNn

cvvcNncvcv LLsignR
\)(

min
\)(||)((2)

where, Rcv is the output of check node c going to variable
node v.

C. Parity Check
 Every check node also checks whether the parity

condition is satisfied by looking at the sign of the
messages coming from the variable nodes. Until all the
parity checks from all the check nodes are satisfied the
messages are sent back to variable nodes and the variable
nodes do the operation specified in part (A), otherwise
the decoder stops the process.

Min-sum decoding algorithm uses soft decision.
However, hard decision is taken on the new LLR (Iv). If
the new LLR is negative then the output bit would be a 1
otherwise a 0. Interested readers can find the details of
the sum-product and min-sum decoder algorithms in [18,
20-22].

IV. REPRESENTATIVE DECODER DESIGNS

LDPC codes can be represented by an M x N sparse
matrix, usually called H matrix. The H matrix contains
mostly zeros and a small number of 1s [9, 10]. It can also

Simulink
library blocks

MATLAB
Programs

VHDL
Programs

Simulation in
Simulink

Simulation in
MATLAB

Simulation in
Quartus/Xilinx

Simulink HDL Coder (Automatic
Code Generation)

Simulation, Analysis & Synthesis

Implementation on FPGA

HDL Coder

82 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

be represented by a graph called bipartite or tanner graph.
Tanner graphs contain variable and check nodes. The
decoder prototype designed in this research is based on
the matrix shown in Fig. 2. It is a very small matrix
compared to the real matrices. This 10x5 matrix can be
transformed into a tanner graph having 10 variable nodes
and 5 check nodes as is shown in Fig. 3. The signals go
from the variable nodes to the check nodes and from the
check nodes back to variable nodes. Typically different
sets of wires are used for the signals going from variable
nodes to check nodes and vice versa. The process is
iterative and goes until all the parity checks are satisfied.
The messages in our prototype designs are 4-bit long.

1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 1 1

Figure 2. A 10x5 sparse matrix.

Figure 3. Tanner graph.

A. Design 1
The approach taken in the first decoder design was to

use a combination of embedded Matlab blocks and
Simulink library blocks. No handwritten VHDL blocks
were used. A generic Simulink model was first developed
for each of a variable node and a check node.

Check node design in Simulink: The check node has
been designed in the same way as the variable node. The
Simulink model of the check node is shown in Fig. 4. It
uses blocks from Simulink library (absolute and bitwise
XOR). The check node finds the minimum of all the
inputs and performs the parity checks. It contains a
control block, which controls its operation.

Variable node design in Simulink: The variable node,
shown in Fig. 5, has been designed in Simulink using the
basic add block from the Simulink library. The control
block controls the operation of the variable node. The
variable node has four inputs, the first three come from
various check nodes and the fourth one is the raw LLR,
which is an external input supplied by the host
communication system. It performs the operation given in
(1) and passes the outputs to the check nodes to which it
is connected.

Once the Simulink models are developed for the check
node and the variable node, the VHDL codes for each of
these can be generated automatically using the HDL
Coder tool according to the design flow presented in Fig.
1. The functionality of each of these models can be
verified at both Simulink and VHDL levels. Each VHDL
model can also be synthesized for a target FPGA.

10x5 LDPC decoder: A LDPC decoder with 10
variable and 5 check nodes has been designed using
instances of the variable and check node components
described above. The various nodes are interconnected in
a way that corresponds to the Tanner graph of Fig. 3.

Figure 4. Check node design in Simulink.

 V1

V2

V3

V4

V5

V6

V7

V8

C1

V10

V9

C2

C3

C4

C5

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 83

© 2010 ACADEMY PUBLISHER

SIPO1

Variable
Node

SIPO2

SIPO3

New
Variable

Node with
SIPO &
PISO

PISO1

PISO2

PISO3

Figure 5. Variable node design in Simulink.

B. Design 2
Design 2 uses a combination of embedded Matlab

blocks, Simulink library blocks and VHDL/Link for
ModelSim blocks. ‘Link for ModelSim’ is a utility that
enables modules coded in VHDL to be embedded in
Simulink models. Design 2 is different from the first
design in that it uses serial communication of messages
between variable and check nodes. This is achieved using
SIPO (serial-in-parallel-out) and PISO (parallel-in-serial-
out) registers at each input and output port in all the
nodes. This greatly simplifies the interconnections by
reducing the number of wires four times at the cost of
some extra registers. The variable and check node
components are same and are connected in the same way
as in Design 1. The PISO and SIPO components are
coded in VHDL and are used in the Simulink model with
the help of the ‘Link for ModelSim’ utility (to link the
VHDL blocks with ModelSim for simulation and code
generation purposes). The way PISO and SIPO are used
in a variable node is shown in Fig. 6. Check nodes have
been modified in exactly the same manner. The inputs
and outputs of all the variable and check nodes are now
1-bit long. The effects of using a VHDL block in a
Simulink design are discussed in the next section. The
HDL coder does not generate the VHDL code of the Link
for ModelSim blocks. The VHDL code for these blocks
needs to be added before synthesizing the code.

Figure 6. A variable node with PISO and SIPO.

V. RESULTS AND ANALYSIS

A. Convergence Test
The convergence characteristics of the LDPC decoders

presented in this paper have been tested using VHDL
testbench and compared with that of a Matlab code for a
functionally equivalent decoder. For this purpose the
VHDL code automatically generated from the Simulink
models was used. Fig. 7 shows the spread of the number
of iterations for Design 2 by using plots of (mean number
of iterations + standard deviation) and (mean number of
iterations − standard deviation) versus SNR (Eb/No). It is
clear that convergence is achieved in 6 iterations. This is
consistent with the convergence result of a functionally
equivalent decoder shown in Fig. 8, designed using
Matlab code [23].

Figure 7. Spread of the number of iterations for Design 2 obtained

from VHDL testbench.

Figure 8. Spread of the number of iterations for a functionally
equivalent Matlab code.

84 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

B. Algorithm Performance
The performance of our LDPC algorithm has been

evaluated by simulating the decoder over AWGN channel
and plotting the Bit-Error-Rate (BER) against Signal-to-
Noise-Ratio (SNR) [24, 25]. Fig. 9 shows the BER
performance of Design 2 obtained from simulation of the
high-level Simulink model. Fig. 9 also shows the BER
plot of the unencoded BPSK channel. Clearly our decoder
demonstrates increasing gain in BER with increasing
SNR compared to the unencoded BER. This proves that
the proposed high-level design method can deliver
competitive designs with the desired gain in BER
performance [24, 25].

Figure 9. Performance simulation of the LDPC decoder.

C. Synthesis
Synthesis results for the high-level designs are given

below and are compared with their ‘VHDL only’
counterparts. The results were obtained using Altera’s
Quartus II software with Cyclone II EP2C70F672C6 as
the target FPGA device. Table 1 compares the resources
used by our Design 1 and its maximum operating
frequency (Fmax) with the same decoder designed solely
using hand coded VHDL. Our design uses 2.1% of the
FPGA’s logical elements, only 120 registers and has a
maximum frequency of 42.96 MHz. Clearly our Simulink
design uses much less resources and is faster than the
VHDL-only design. The higher register count in the
VHDL design is due to the presence of dedicated
registers for latching variable and check node outputs,
which were removed from the Simulink design. Table 2
compares our Design 2 with its VHDL-only counterpart.
It uses 3.5% of the logic elements, which is higher than
the amount used by the VHDL-only design (2.8%).

TABLE I.
DESIGN 1 COMPARED WITH VHDL-ONLY COUNTERPART

 Design 1 VHDL only design

Logical elements 1432 (2.1%) 1492 (2.2%)

Combinational functions 1432 (2.1%) 1492 (2.2%)

Total registers 120 (0.2%) 686 (1%)

Maximum frequency (Fmax) 42.96MHz 37.3 MHz

TABLE II.
DESIGN 2 COMPARED WITH VHDL-ONLY COUNTERPART

 Design 2 VHDL only design

Logical elements 2416 (3.5%) 1916 (2.8%)

Combinational functions 2416 (3.5%) 1916 (2.8%)

Total registers 480 (0.7%) 881 (1.3%)

Maximum frequency (Fmax) 67.20MHz 67.72MHz

The reason for the higher number of logic elements in
our design is that the control unit contains handshaking
circuitry to facilitate communication of large amount of
data between the PC and the FPGA board for testing.
However, the VHDL-only design has a simple control unit
and does not include any such handshaking circuitry. Our
Design 2 uses nearly half the number of registers and
achieves nearly the same maximum frequency (Fmax).
The time required by our high-level approach for
successful modelling, simulation and synthesis of the
LDPC designs was almost a quarter of that required by
the hand coding method.

D. Behavioral Simulation of VHDL Model
Fig. 10 shows the functional simulation result for the

VHDL model of Design 2 generated from its top level
Simulink model. A set of raw LLRs (6, 6, 2, 4, 7, 4, -2, 6,
4, 7) are applied to the variable nodes. The signals
end_o_vn & end_o_cn are the control signals. The parity
becomes 1 in the third iteration when all the parity checks
are satisfied and the decoder stops the iterations. The
corrected LLRs output by the variable nodes are 7, 7, 7,
7, 7, 7, -8, 4, 5, 7.

E. Hardware Implementation and Testing
After fully simulating the Simulink as well as the

VHDL models of Design 1 and Design 2, both designs
were implemented on a Xilinx Spartan 2E FPGA. The
FPGA platform we used is shown in Fig. 11. It contains
three separate modules: the USB communication module
for communicating with the PC, the main FPGA module
housing the Xilinx Spartan IIE, and the I/O module. The
LLRs are generated by a MATLAB program and are
stored in a text file on the PC. A LabVIEW program
running on the PC sends these LLRs to the decoder via
the USB module and receives the decoded LLRs back
along with the parity information. The decoded LLRs are
written into a separate file by the LabVIEW program and
analysed for correctness by a MATLAB program by
comparing with the LLRs generated by simulation of the
Simulink and/or VHDL models. The PC controls the
operation of the decoder on the FPGA through a number
of handshaking signals as is shown in Fig. 12, for
example start/stop, max_iteration etc. The I/O module has
been used to display useful runtime information, for
example the number of iterations completed by the
decoder for each LLR. This enables us to obtain a visual
indication that the LDPC decoder is operating. The
performance results obtained from the implemented
decoders are presented in the next sub-section along with
the performance of Simulink and VHDL models.

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 85

© 2010 ACADEMY PUBLISHER

Figure 10. Behavioral simulation results of decoder Design 2.

Figure 11. The FPGA platform used to implement the decoders.

Figure 12. Block diagram of the LDPC decoder implemented on the
Xilinx Spartan 2E FPGA device.

F. Comprehensive Testing Strategy
The Matlab and Simulink environment used in the high

level design methodology make it very easy and fast to
build a full test system for testing the whole design. In
this section we present a comprehensive testing strategy
for LDPC decoders whereby we can test the decoder
outputs from three different environments
simultaneously. Fig. 13 shows the proposed testing
strategy. The test system allows the design to be
simultaneously tested in Simulink, VHDL (ModelSim)
and on the FPGA.

The LDPC Encode Test Data module generates a
sequence of LDPC encoded test data and sends these to
the Simulink simulation model, VHDL testbench and
FPGA at the same time. After decoding is done in the
three environments, the data are sent back to the Test
Data Analysis module. This module analyses the decoded
data from the three environments and compares the parity
information for correctness. We have used this scheme to
validate the decoder designs presented in this paper.

Figure 13. Structure of the testing system.

Fig. 14 shows the performance plot (BER) obtained
from the FPGA and compares it with the BER obtained
from the Simulink model. The performance plots from
the VHDL testbench and FPGA are also compared in Fig.
15. These figures show a close match among the
performance plots obtained from three different
environments and therefore prove that the design has
been correctly implemented and run on the FPGA device.

Start Stop

Number_of
_Iterations

LDPC Decoder
in FPGA LLR_In

Reset

LLR_Out

Parity

Clock

Max_iteration

LDPC
Encode
Test Data

LDPC
Decoder

in
Simulink

LDPC
Decoder

in
VHDL

LDPC
Decoder

in
FPGA

LDPC
Test Data
Analysis

86 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

Figure 14. Bit-Error-Rates obtained from FPGA implementation

compared with Simulink simulation.

Figure 15. Bit-Error-Rates obtained from FPGA implementation

compared with VHDL testbench.

VI. ANALYSIS OF THE HIGH LEVEL DESIGN METHOD

The high-level design methodology presented in this
paper reduces design complexity, effort and time. For
example, to design the variable and check nodes of Fig. 4
and Fig. 5 completely in VHDL a designer has to write
behaviours of quite a few modules in VHDL and
manually do the port mapping for the top level design. As
the design gets larger and larger it becomes very difficult
to code everything in VHDL. It not only takes huge effort
and time, but also managing complex designs and reusing
the designs are often quite difficult. A great deal of
expertise and experience in VHDL is also required. For a
large LDPC decoder with hundreds of nodes, the
interconnections among the variable and check nodes
could easily become a designer’s nightmare if the entire
design has to be coded in VHDL. An alternative, intuitive
and highly efficient design method has been a long
standing desire of the engineers engaged in the design of
complex digital systems such as LDPC decoders.

The high level methodology we have presented in this
paper offers a very attractive alternative. The designs can
be done intuitively in Simulink using predefined
Simulink library blocks and blocks made from high-level
Matlab code. The design complexity, effort and time are
reduced drastically because the need for manually writing
complex VHDL code is almost eliminated. Our estimates
have shown that the time required to successfully design,
simulate and synthesise a LDPC decoder using hand
coded VHDL is almost four times that required by the
proposed high-level methodology. Our decoder Design 2
had 1069 lines of VHDL code generated automatically by
HDL Coder from the top level Simulink model as
opposed to only 225 lines of hand written VHDL code.
The main reason for the large code produced by HDL
Coder is that it used a very large number of internal
signals to generate the VHDL description of the decoder.
This is something we did not have any control over. Of
course our decider Design 2 had additional handshaking
circuitry to facilitate communication between the PC and
the FPGA board for testing purpose. This contributed to
the larger code to some extent. However, we did not
optimise the auto-generated VHDL code. Yet our decoder
designs compare favourably with the hand coded designs
(see Tables 1 and 2).

Another important aspect of the proposed high-level
design methodology is that design reuse requires much
less effort because changes are made either at block level
in Simulink or in high-level Matlab code. In addition
Matlab is a software programming language that is used
much more widely than hardware description languages
like VHDL and Verilog. Therefore designers without
specific skills in hardware languages are able to design
complex digital systems without much problem. Even
software engineers and algorithm developers are able to
quickly implement and test their high-level designs due to
the ability to automatically generate HDL descriptions
from the Simulink models. This will surely offer great
flexibility and efficiency in the design and reuse of
complex LPDC decoders. There are some other benefits
of the high level design methodology:
• Different parts of the model can be enveloped using the

‘create subsystem’ property of Simulink. It reduces the
design complexity for large designs.

• User created Simulink library blocks provide great
flexibility because the revisions made to the user
defined library seamlessly propagate through the entire
model.

• HDL Coder can generate either VHDL or Verilog
descriptions from the high-level Simulink models,
allowing greater flexibility in the choice of the
hardware description language.
In the high-level design methodology, it is also easy

and fast to build a complete test system. The Matlab and
Simulink library provides a lot of powerful tools for
generating and analysing test data such as graphical plot,
scripts, etc.

The design methodology we have presented requires
the use of some emerging design tools and library
functions, such as Simulink hardware library and

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 87

© 2010 ACADEMY PUBLISHER

embedded Matlab blocks, Link for ModelSim and HDL
Coder tools. Because these are very recent developments
the library of Simulink blocks to support the functions a
designer needs is rather limited at the present time.
Similarly the capability of HDL Coder is limited to
conversion of a few commonly used Simulink blocks and
a few embedded Matlab blocks. Some of the specific
limitations are discussed below.

A. Current Limitations
Some common blocks in the Simulink library are not

currently supported by the HDL Coder for automatic
generation of VHDL code, e.g. flip-flops. Although we
could build the PISO and SIPO registers easily in
Simulink using the flip flops from its library the registers
were not converted to VHDL by the HDL Coder. A
careful selection of supported Matlab functions and
Simulink library blocks may help addressing this type of
problems, but not necessarily always. Some other
limitations we experienced are listed below:
• Multiple instances of some modules (components) are

used in the LDPC decoder, and in fact in most modular
designs utilising a hierarchical design methodology.
For example, in our LDPC decoder multiple instances
of the check and variable nodes, and PISO and SIPO
registers are used. The HDL Coder dumps the full
behaviour of each component as many times as it is
instantiated in the design. This produces redundant
instances of component behaviour in the generated
VHDL code. It is necessary for the designer to edit the
auto-generated code.

• There are some functions which are supported by the
HDL Coder, but it produces the output in a particular
data type. For example, the sign function of Matlab
gives output only in 8-bit integer (int8) format. It is not
possible to change these default data types in the
current version. The only option is to manually edit the
auto-generated HDL code.

• Link for ModelSim: This utility enables blocks
designed in VHDL to be included in Simulink models.
However the ports of the blocks that use Link for
ModelSim get interchanged while simulating in
Simulink. HDL code cannot be generated for the
Simulink model in this situation. The code can be
generated only after correcting the design. This makes
the design process difficult and time consuming. The
other drawback of blocks utilising Link for ModelSim
is that these blocks may make changes in the auto-
generated code. In case of the LDPC decoder these
blocks changed the signals of type signed to unsigned.
Once again this requires manually editing the auto-
generated VHDL code.

VII. CONCLUSIONS

In this paper a new high-level intuitive design
methodology based on Simulink for modelling, synthesis
and implementation of LDPC decoders has been
presented. It utilises the higher level of abstraction
offered by the Simulink modelling environment. The

modelling, simulation and synthesis process utilises a
combination of emerging design tools and associated
library functions. These include the Simulink HDL Coder
and ‘Link for ModelSim’ tools, and embedded Matlab
and Simulink hardware library blocks. Two versions of
10x5 LDPC decoders have been designed, simulated,
synthesised and successfully implemented on a Xilinx
Spartan 2E FPGA device. A comprehensive testing
strategy has been adopted to test the decoders at all
levels, from the high level Simulink model through
VHDL all the way up to hardware implementation. Our
testing strategy supports simultaneous testing of the
decoders at the three levels which is useful for real-time
debugging. The proposed high level design methodology
facilitates the creation of such testing strategy very
quickly because the test data generated at the high level is
used for testing at all three levels. This helps to reduce
the time of evaluating and testing the design as well as
ensures that the final design is efficient and error-free.
The performance figures on Bit-Error-Rates obtained at
the three levels compare favourably with those of the
LDPC decoders reported in the literature.

The proposed high level design methodology offers
great advantages in terms of design complexity, effort
and time compared to a HDL-only design method. Our
Design 1, completed using the new methodology, uses
less FPGA resources and achieves higher Fmax compared
to its HDL-only designs. Our Design 2 achieves nearly
the same Fmax as its VHDL-only counterpart, but uses
slightly higher number of logic elements due to the
inclusion of additional handshaking circuitry required for
testing the design on FPGA. Given the significant
reduction in design effort and time, the above results
make the proposed design methodology a very attractive
one. We envisage that with further enrichment of the
Simulink Library blocks, and enhancements of HDL
Coder and Link for ModelSim tools, design
methodologies similar to the one presented in this paper
will eventually replace tedious HDL-based design
approach. This will pave the way for cost effective design
and reuse of a new generation of complex high
performance LDPC decoders.

ACKNOWLEDGEMENT

This work has been supported in part by a research
grant from the Division of IT, Engineering and the
Environment of the University of South Australia
(UniSA). The authors wish to thank Mr Sunil Sharma for
his initial investigations into developing variable and
check node models using Simulink and related tools. The
authors also acknowledge Prof Bill Cowley of UniSA’s
Institute of Telecommunications Research for his useful
suggestions and critical feedback. The authors understand
that Prof Cowley’s time has been partially supported
through a research grant from Sir Ross and Sir Keith
Smith fund. Finally the authors would like to thank Dr
Mark Ho of the School of Electrical and Information
Engineering of UniSA for his suggestions on the
performance simulations of the decoder.

88 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes.
Cambridge, Mass: Monogram, 1963.

[2] S. Johnson, Introducing Low-Density Parity-Check
Codes. Australia: University of Newcastle, 2006.

[3] S. Lin and D. J. Costello, Error Control Coding:
Fundamentals and Applications. New Jersey: Prentice
Hall, 2004.

[4] B. Reiffen, “Sequential Decoding for Discrete Input
Memoryless Channels,” IRE Trans. Inf. Theory, vol. 8,
no. 3, pp. 208-220, April 1962.

[5] A. J. Blanksby and C. J. Howland, “A 690- mW 1-Gb/s
1024-b, rate-1/2 low-density parity check code decoder,”
IEEE J. Solid State Circuits, vol. 37, no. 3, pp. 404–412,
2002.

[6] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke,
“Design of capacity-approaching irregular low-density
parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, pp.
619-637, February 2001.

[7] J. Nguyen, B. Nikolic, and E. Yeo, Design of a low
density parity check iterative decoder. University of
California, Berkley: EECS, College of Engineering, 2002.

[8] S. Hong and W. Stark, “Design and implementation of a
low complexity VLSI turbo-code decoder architecture for
low energy mobile wireless communications,” J. VLSI
Signal Processing, vol. 24, pp. 43-57, 2000.

[9] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro,
“Configurable, High Throughput, Irregular LDPC
Decoder Architecture: Tradeoff Analysis and
Implementation,” Proc. Int. Conf. Application Specific
Systems, Architectures and Processors, pp. 360-367,
September 2006.

[10] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro,
“Configurable LDPC Decoder Architectures for Regular
and Irregular Codes”, J. Signal Processing Systems, vol.
53, pp. 73-88, October 2008.

[11] Y. Lei, L. Hui, and R. C. J. Shi, “Code Construction and
FPGA Implementation of a low-error-floor multi-rate
low-density Parity-check code decoder,” IEEE Trans.
Circuits & Systems I, vol. 53, pp. 892-904, April 2006.

[12] A. Darabiha, C. A. Carusone, R. F. Kschischang, and E.
S. Rogers, “Multi-Gbit/sec Low Density Parity Check
Decoders with Reduced Interconnect Complexity,” Proc.
IEEE Int. Symp. Circuits & Systems, vol. 5, pp. 5194-
5197, 2005.

[13] A. Darabiha, C. A. Carusone, and R. F. Kschischang,
“Block-Interlaced LDPC Decoders With Reduced
Interconnect Complexity,” IEEE Trans. Circuits &
Systems I I, vol. 55, pp. 74-78, January 2008.

[14] J. Sha, M. Gao, Z. Zhang, Li Li, and Z. Wang, “An FPGA
implementation of array LDPC decoder,” Proc. IEEE
Asia Pacific Conf. Circ. & Systems, pp. 1675-1678,
December 2006.

[15] Mauro Cocco, “A scalable architecture of LDPC
Decoding,” Proc. Design, Automation & Test in Europe
Conf., vol. 3, pp. 88-93, February 2004.

[16] J. A. Wicks and J. R. Armstrong, “Efficiency ratings for
VHDL behavioral models,” IEEE Proc. Southeasrcon’98,
pp. 401-404, April 1998.

[17] M. Eroz, F.W. Sun, and L.N. Lee, “DVB-S2 low density
parity check codes with near Shannon limit performance,”
Int. J. Satellite Communications and Networking, pp.
269-279, 2004.

[18] W. E. Ryan, An Introduction to LDPC Codes. USA: The
University of Arizona, 2003.

[19] T. Mohsenin and B. M. Baas, “Split-Row: A reduced
complexity, high throughput LDPC decoder architecture,”
Proc. Int. Conf. on Computer Design (ICCD 2006), San
Jose, CA, pp. 220-225, 1-4 Oct 2007.

[20] Z. Jianguang, F. Zarkeshvari, and A. H. Banihashemi, “On
implementation of min-sum algorithm and its
modifications for decoding low-density Parity-check
(LDPC) codes”, IEEE Trans. on Communications, vol. 53,
no. 4, pp. 549-554, April 2005.

[21] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor
graphs and the sum-product algorithm,” IEEE Trans. on
Inf. Theory, vol. 47, no. 2, pp. 498-519, 2001.

[22] Sae-Young Chung, T. J. Richardson, and R. L. Urbanke,
“Analysis of Sum-Product Decoding of Low-Density
Parity-Check Codes Using a Gaussian Approximation,”
IEEE Trans. Info. Theory, vol. 47, no. 2, pp 657-670, 2001.

[23] S. M. Aziz and S. Sharma, “New Methodologies for High
Level Modeling and Synthesis of Low Density Parity
Check Decoders“, Proc. 11th Int. Conf. on Computers and
IT (ICCIT 2008), Khulna, pp. 276-281, 24-27 December
2008.

[24] D. Sridhara and T. E. Fuja, “LDPC Codes Over Rings for
PSK Modulation,” IEEE Trans. Inf. Theory, vol. 51, no. 9,
pp. 3209-3220, September 2005.

[25] J. K. S. Lee and J. Thorpe, “Memory-Efficient Decoding of
LDPC Codes,” Proc. IEEE Int. Symp. on Information
Theory (ISIT 2005), Adelaide, Australia, pp. 459-463, 4-9
November 2005.

Syed Mahfuzul Aziz received
Bachelor and Masters Degrees, both in
electrical & electronic engineering,
from Bangladesh University of
Engineering & Technology (BUET) in
1984 and 1986 respectively. He
received a Ph.D. degree in electronic
engineering from the University of
Kent (UK) in 1993 and a Graduate
Certificate in higher education from

Queensland University of Technology, Australia in 2002.
He was a Professor in BUET until 1999, and led the

development of the teaching and research programs in
integrated circuit (IC) design in Bangladesh. He joined the
University of South Australia in 1999, where he is currently an
associate professor and the inaugural academic director of first
year engineering program. In 1996, he was a visiting scholar at
the University of Texas at Austin when he spent time at Crystal
Semiconductor Corporation designing advanced CMOS
integrated circuits. He was a visiting professor at the National
Institute of Applied Science Toulouse, France in 2006, where he
has collaborations in the area of nanoscale CMOS technology
modelling and integration with educational IC design tools. He
has been involved in numerous industry projects in Australia
and overseas, and has attracted funding from reputed research
organisations such as the Australian Defence Science and
Technology Organisation (DSTO), and the Pork CRC
(Cooperative Research Centre), Australia. He has authored
eighty five refereed research papers. His research interests
include digital CMOS IC design and testability, modelling and
FPGA implementation of high performance processing systems,
biomedical engineering and engineering education.

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 89

© 2010 ACADEMY PUBLISHER

Dr Aziz is a senior member of IEEE and a member of
Engineers Australia. He has received numerous professional
awards. These include: an Excellent Achievement Award in
Networking and Internet System Development (1998) from the
Centre of the International Co-operation for Computerisation,
Japan; the International Network for Engineering Education and
Research Achievement Award (2007); a Citation for outstanding
contributions to student learning from both the Australian
Learning & Teaching Council (2007) and the Australasian
Association for Engineering Education (AaeE–2007); an AaeE
Award for Teaching Excellence - Highly Commended (2008).
He has served as member of the program committees of many
international conferences. He reviews papers for the IEEE
Transactions on Computer and Electronics Letters, UK.
Recently he has been appointed a reviewer of the National
Priorities Research Program, a flagship funding scheme of the
Qatar National Research Fund.

Minh Duc Pham received B.S.
degree in electronic engineering from
HCM National University of
Technology, Vietnam in 2003 and M.S.
degree in microsystems technology from
the University of South Australia in
2008. He has been working as an
ASIC/FPGA engineer since 2003 for
Arrive Technologies Inc, a fab-less
silicon supplier of Disruptive Next

Generation Solutions for PDH, SONET, SDH and Ethernet
Internetworking. Mr Pham is currently working as a Research
Assistant in the School of Electrical and Information
Engineering of the University of South Australia. His research
interests are in the fields of VLSI implementation of
communication systems such as SoC for next generation
networking, automation in VLSI design, forward error
correction and coding theory.

90 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

