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Abstract  —  Short Text Compression is a great concern 
for data engineering and management. The rapid use of 
small devices especially, mobile phones and wireless sensors 
have turned short text compression into a demand-of-the-
time. In this paper, we propose an approach of compressing 
short English text for smart devices. The prime objective of 
this proposed technique is to establish a low-complexity 
lossless compression scheme suitable for smart devices like 
cellular phones and PDAs (Personal Digital Assistants) 
having small memory and relatively low processing speed. 
The main target is to compress short messages up to an 
optimal level, which requires optimal space, consumes less 
time and low overhead. Here a new static-statistical context 
model has been proposed to obtain the compression. We use 
character masking with space integration, syllable based 
dictionary matching and static coding in hierarchical steps 
to achieve low complexity lossless compression of short 
English text for low-powered electronic devices. We also 
propose an efficient probabilistic distribution based 
content-ranking scheme for training the statistical model. 
We analyze the performance of the proposed scheme as well 
as the other similar existing schemes with respect to 
compression ratio, computational complexity and 
compression-decompression time. The analysis shows that, 
the required number of operations for the proposed scheme 
is less than that of other existing systems. The experimental 
results of the implemented model give better compression 
for small text files using optimum resources. The obtained 
compression ratio indicates a satisfactory performance in 
terms of compression parameters including better 
compression ratio, lower compression and decompression 
time with reduced memory requirements and lower 
complexity. The compression time is also lower because of 
computational simplicity. In overall analysis, the simplicity 
of computational requirement encompasses the compression 
effective and efficient.  
 

Index Terms  —  Short Text Compression, Syllable, 
Statistical Model, Text-ranking, Static Coding, Smart 
Devices. 

I. INTRODUCTION 

Twenty-First century is the age of information and 
communication technology. Science through its 

marvelous achievements has converted this world into 
information and communication based global village. 
The prime aspect of present technology is to ensure a 
better way of communication throughout the world in a 
more convenient, easy and cost-effective way. With the 
aspects of cost, facility and reliability a new trend of 
introducing small sized devices with some sorts of 
computing and communicating power have established 
its place in the arena of research. With the voyage of 
introducing smart devices, the challenge of adorning 
them with greater and effective use has come into 
question. It is now a great concern to embed maximum 
applications within these smart devices where it is an 
extreme problem to provide a low-complex and low-
memory consuming version for smart devices of some 
prime necessary applications like data compression, 
which generally requires large memory and greater 
processing speed. Mobile communication that is a great 
gift of modern technology introducing the era of digital 
communication also suffers from the same limitation. 
Though crossing the boundary of voice communication, 
short messages communication has established its robust 
place in the arena of digital communication, Short 
Message Service (SMS) providers (usually 
Telecommunication Companies) have a constraint that 
each message should be not more than of 160 characters. 
This constraint is really a great limitation for frequent 
communication using SMS. In order to overcome this 
limitation, compression of the short message is a well 
policy. That is why; our aim is to make “short” messages 
“shorter”, expressing “larger” feelings in “smaller” 
expenses.  

Here we introduce a scheme of compressing short 
English text for smart devices like cellular phones and 
wireless sensors having small memory and relatively low 
processing speed communicating with lower bandwidth 
i.e. channel capacity. We have employed a new statistical 
model with a novel approach of integrating text ranking 
or component categorization scheme for building the 
model. Modified syllable based dictionary matching and 
static coding is used to obtain the compression. 
Moreover, we have employed a new theoretical concept 
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of choosing the multi-grams, which has facilitated us to 
obtain mentionable compression ratio using a small 
number of knowledgebase entries than other methods, 
consuming less resource. Besides of experimental results 
we have provided a comprehensive theoretical analysis 
of compression ratio of proposed scheme with similar 
existing scheme.  

II.  RELATED LITERATURE  

Though a number of researches have been performed 
regarding large-scale data compression, in the specific 
field of short text compression, the number of available 
research work is small. Business issue of mobile phone 
service providers may be indicated as a reason behind the 
unavailability of research material.  The following 
sections give a glimpse of the most recent research 
developments on short text compression issues for small 
devices.  

A. Compression of Short Text on Embedded Systems  

The recent literature regarding short text compression 
titled “Compression of Short Text on Embedded 
Systems” by Rein et al. [1] proposes a low-complexity 
version of PPM (Prediction by Partial Matching). A hash 
table technique with one-at-a-time hash function is 
employed in this method to design the data structure for 
data and context model. They use statistical models with 
hash table lengths of 16384, 32768, 65536 and 131072 
elements requiring two bytes for each element, which 
result an allocation of 32, 64, 128 and 256 Kbytes of 
RAM respectively. If this memory requirement may be 
substantially decreased, we may achieve more efficient 
compression and hence may make the scheme usable to 
even very low-quality cellular phones. Another 
concerned approach by Rein et al. is “Low Complexity 
Compression of Short Message” [2] with Low Complex 
and Power Efficient Text Compressor for Cellular and 
Sensor Networks [3] are variations of [1].    

B. Compression of Small Text Files Using Syllables  

“Compression of Small Text Files Using Syllables” 
proposed by Lansky et al. [4, 5] concerns on 
compressing small text files using syllables. To 
implement their concept they created database of 
frequent syllables. Here, condition for adding syllable to 
database is that, its frequency is greater than 1:65000. In 
this scheme, the primary knowledge-base size is more 
than 4000 entries initially. For low memory devices, it is 
obviously difficult to afford this amount of storage as 
well as to facilitate a well suited mechanism of searching; 
which leads our proposed scheme to redefine the 
knowledge-base span as short as possible and hence to 
reduce the scope of loosely choosing the syllables or n-
grams. Moreover, in formation of the syllables, space is 
not considered with any special concern. But, as in any 
text document, it is a common assumption that, at least 
20% of the total characters may be spaces, it may be a 

good idea to have specific consideration of syllable 
involving spaces. In [4, 5], all the training syllable entries 
are stored without any categorization. This often results 
for coding redundancy, which can be handled by 
integrating text ranking or component categorization 
scheme with syllable selection.  

C. Modified Greedy Sequential Grammar Transform 
based Lossless data Compression 

The model proposed by M. R. Islam et al. [6] uses the 
advantages of greedy sequential grammar transform with 
block sorting to compress data. However, this scheme is 
highly expensive in terms of memory consumption and 
thus not suitable for low memory devices.  

D. Two-Level Directory Based Compression 

Dictionary based text compression techniques are an 
important and mostly adapted data compression schemes. 
A dictionary based text preprocessing scheme titled 
TWRT (Two-level Word Replacing Transformation) has 
been proposed by P. Skibinski [7]. They use several 
dictionaries and divide files into various kinds, which 
improve the compression performance.  

TWRT  can  use  up  to  two  dictionaries, which  are  
dynamically  selected  before  the actual preprocessing 
starts. For some  types  of  data  like  programming  
languages,  references etc. first level dictionaries (small 
dictionaries) are specified whereas second level 
dictionaries (large dictionaries) are specific for natural 
languages (e.g., English, Russian, French). While 
concerned with any source text, if no appropriate first 
level dictionary is found, then it is not used. Selection of 
the second level dictionary is analogous. When TWRT 
has selected only the one (the first or the second level) 
dictionary, it works like WRT (Word Replacing 
Transformation) [7]. If TWRT has selected  both  the  
first  and  the  second  level  dictionaries,  then the  
second  level  dictionary  is  appended  after  the  first  
level dictionary. That is, the dictionaries are 
automatically merged. If the same word exists in the first 
and the second level dictionaries, then the second 
appearance of word is ignored to minimize length of 
code-words. Only the names of  the  dictionaries  are  
written  in  the  output  file,  so  the  decoder  can  use  
the  same combination of the dictionaries. 

TWRT preprocesses the input file step by step with all 
dictionaries and finally to choose the smallest output file. 
Nevertheless, this idea is very slow. They propose  to  
read only  the  first  f  (e.g., 250) words  from each of n 
dictionaries  (small  and  large)  and  create  one  joined  
dictionary  which is completely impossible to afford for 
low-memory devices. If there are same words in different 
dictionaries, then all occurrences of this words are 
skipped which is too an extremely infeasible technique 
for smart device platform-aware compression. The main 
problem for TWRT is selection of the dictionaries before 
preprocessing, which hampers the processing time for 
concerned devices [3]. Moreover the dictionary length is 
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too huge to be used for small memory devices. For small 
text compression it is also not feasible and to some extent 
efficient to have field-specific dictionary. Above all, 
being the code words are determined on the fly, it is great 
doubt to cope with the memory and energy constraints as 
well as time consumptions of the low-memory devices.  

E. Other Schemes  

H. Kruse and A. Mukherjee [8, 9] proposed a 
dictionary based compression scheme named star 
encoding. According to this scheme, words are replaced 
with sequence of * symbol accompanied with reference 
to an external dictionary. The dictionary is arranged 
according to the length of words and is known to both 
sender and receiver. Proper sub-dictionary is selected by 
the length of the sequence of * symbols. Length Index 
Preserving Transformation (LIPT) is a variation of the 
star encoding by the same authors. This algorithm 
improves the PPM, BWCA and LZ based compression 
schemes [9]. Another related literature known StarNT 
works with ternary search tree and is faster than the 
previous. The first 312 words of the dictionary are the 
most frequently used words of the English language. The 
remaining part of the dictionary is filled up by words 
sorted by their lengths first and then by their frequencies. 
This scheme also does not take the use of substring 
weighting approach. Moreover, the scheme requires that, 
the dictionary should be transmitted first in order to set 
up the knowledge-base. It is completely in-feasible to be 
used for compressing small texts for low-powered and 
small memory devices.  

Prediction by partial matching (PPM) is a major 
lossless data compression scheme, where each symbol is 
coded by taking account of the previous symbols [9]. A 
context model is employed that gives statistical 
information about the symbol with its context. In order to 
signal the decoder on the context, specific symbols are 
used by the encoder. The model order in PPM is a vital 
parameter of compression performance. However, PPM 
is computationally more complex and the overhead too is 
greater [1, 9, 12]. 

In [1] the compression starts for text sequences larger 
than 75 Bytes, and in [10] the starting point is 50 Bytes. 
If it is possible to make the lower threshold value into 
less than ten characters, the compression may really be a 
“very small text file” supported one that may place a new 
milestone in very small text file compression ensuring 
“short text gets shortest”. Our prime aim is to design 
such an effective and efficient “very short text 
compression” scheme.  

III. SHORT TEXT COMPRESSION FOR SMART DEVICES  

The prime concern of this paper is to implement a 
lossless compression of short English text for smart 
devices in a low complexity scheme. The idea behind this 
is to make it possible to communicate more efficiently by 

making utilization of minimum required bandwidth of 
wireless and sensor networks for small and embedded 
devices. More precisely saying, the main concern is to 
develop a low-complexity compression technique 
suitable for low-power consuming smart devices with 
small-memory; especially for wireless sensors and 
mobile phones. The proposed scheme is concerned with 
two parts. The first one consists of training the statistical 
model and the second provides a compression-
decompression technique. Specifically, in analyzing step 
we count the frequency of represent-able ASCII 
characters. Then, the proposed scheme proceeds by 
identifying the syllables of length two, three, four and 
five. We consider <space> as a distinct vowel and 
include this while counting the frequency of syllables, 
that is, searches for <space> either at the beginning or 
ending of syllable. In the step of boosting the statistical 
model, the substrings (which were not grabbed in the 
phase concerning syllables) with length two to five are 
considered and the frequency of each are counted. In the 
second step, we employ the provided text-ranking 
scheme for each entry and calculate the entry index. For 
entries with same index, we simply sort them. In the 
phase of choosing entries, emphasis is give on 
probability distribution based text ranking, which is 
computed with the help of its neighbor characteristics. 

As in most cases, it is unusual to have frequent match 
of substrings with length more than four characters, 
maximum of five (extra one for <space>) levels has been 
considered to train the statistical model. In each level, 
multiple entries with same weightage are simply sorted 
over. Resultant entries are assigned with non-conflicting 
binary stream. When we are to compress any text, the 
input text is successively compared with the statistical 
model and for any match, the binary stream is returned as 
output and for mismatch in any level, the level below it is 
forwarded. 

The compression and decompression are expected to 
be performed in the following manner.   

A. Compression Process 

In the first step, we plan to employ Modified Multi-
grams or syllable matching proposed by Lansky et al. [4, 
5]. A static dictionary based compression scheme uses 
approximately the same concept as that of character 
masking. It reads input data and searches for symbols or 
groups of symbols that are previously coded or indexed 
in the dictionary. If a match is found, a pointer or index 
into the dictionary can be output instead of the code for 
the symbol. Compression occurs if the pointers or index 
requires lower space (in terms of memory usage) than the 
corresponding fragments [1, 12, 15]. Though it is the 
basic idea behind multi-grams, we use it in a slightly 
modified fashion. The Knowledgebase for the multi-
grams is constructed with the help of the statistics 
obtained by analyzing the corpuses.  
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In the second step of compression process, static 
coding has been used. However, here the modification is 
made in such a way that, in spite of calculating on-stage 
codes predefined codes are employed in order to reduce 
the space and time complexity. The codes for dictionary 
entries are also predefined. The total message is encoded 
by a comparatively small number of bits and hence, we 
get a compressed outcome. The prime fact of static 
coding is that, in case of dynamic coding we are to 
calculate the frequencies in an elegant manner. 
Moreover, as the dynamic codes are determined and the 
lengths are varied through the frequencies of the symbols 
it is a must to submit the codes along with the 
compressed data. This is a limitation of dynamic coding 
if the total arena of compression is low spanned and the 
total number of symbols is not huge. Compression of 
short message also suffers in this context while using 
other similar semi-dynamic coding. Consequently, it 
motives to move towards static coding scheme to obtain 
compression of short messages. For this concerned study, 
we have analyzed the corpora- Bib, Book1, Book2, 
News, Paper1, Paper2, Paper4 and Paper5 from Calgary 
Corpus and Canterbury Corpus [16]. We have also 
analyzed 124 collections of small text for the same. A 
detail overview of the texts is presented in [10, 15]. 

B. Decompression Process   

The decompression process is performed through the 
following steps: 

Step 1: Grab the bit representation of the message, 
Step 2: Identify the character representation, 
Step 3: Display the decoded message. 

As all the symbols are to be coded in such a fashion that, 
by looking ahead several symbols (Typically the 
maximum length of the code) we can distinguish each 
character (with the attribute of Static Coding). In step 1, 
the bit representation of the modified message is 
performed. It is simply analyzing the bitmaps. The 
second step involves recognition of each separate bit-
patterns and indication of the characters or symbols 
indicated by each bit pattern. This recognition is 
performed on the basis of the information from fixed 
encoding table used at the time of encoding. The final 
step involves simply representing i.e. display of the 
characters recognized through decoding the received 
encoded message.   

IV. THEORETICAL ASPECT OF TRAINING THE PROPOSED 
STATISTICAL MODEL 

The proposed scheme achieves better compression 
ratio with relatively low complexity by means of 
computational simplicity and effective expert model, 
which is used to train the statistical context. Firstly, the 
prime modification is performed in the syllable selection 
section of [4, 5] proposed by Lansky et al. In their 
papers, only syllables were considered by defining 
maximal subsequence of vowels including pseudo-vowel 

‘y’. Here our proposal is to consider <blank space> as a 
Prime Syllable. Using <space> as a prime syllable may 
dramatically reduce the total number of characters 
needed to represent the message through sophisticated 
encoding. Secondly, the paper [4, 5] does not clearly 
express the criteria of choosing the training syllables for 
the model. The term used in [4, 5] to define the criteria of 
choosing syllables was simply “frequentness”. However, 
we employ a new theoretical perspective on “Text 
Ranking or Component Ranking” method to choose the 
syllables for training our proposed model. We, in the first 
step count the frequency of each vowel from the standard 
Text Calgary Corpora.  In the second step, we count the 
number of  vowels having space either at  (i - 1) or (i + 
1) position with itself at position (i). The reason of 
adding the with-space vowels is simply to increase the 
weightage of the corresponding vowels. These entries 
having vowels are also inserted in the knowledgebase as 
separate entity. In this step, we also count the statistics of 
consonants in order to build the dictionary or multi-
grams entries. In the step of extending primary 
knowledgebase, proposed in papers [4, 5] the criteria was 
that, the frequency would be 1:65000, which results a 
knowledgebase size of more than 4000 entries initially. 
For low memory devices, it is obviously difficult to 
afford this amount of storage as well as to facilitate a 
well suited mechanism of searching, which leads our 
proposed scheme to redefine the knowledge base span as 
short as possible and hence to reduce the scope of loosely 
choosing the multi-grams. In the phase of choosing 
multi-grams, we give emphasis on Probability 
Distribution, which is computed with the help of its 
neighbor characteristics.  

A new text weighting or component ranking scheme 
has been employed to select the multi-grams that 
facilitates us to efficiently construct the knowledgebase 
[11, 15]. This developed novel text weighting scheme is 
employed with an aim to get the knowledgebase. The 
proposed text weighting or component ranking is 
obtained through the following equation: 
Suppose we choose a multi-grams D consisting of 
characters C1 C2 C3… Cn  of length n. Thus,    
 

∑
=

+
−

∂∂

=∂

n

1i n,C,.........3,C2,C1C  λ) ,1n,C,.........3,C2,C1C(D1)  -) -
iC(D( 

),n,C,.........3,C2,C1C(D

   
for i > 1 and,   

)( iCD∂ = λ(Ci )  for i = 1,  where λ(Ci ) is the frequency 
of the character Ci  with assumption that each character of 
the alphabet must exist in the training data. And the value 
of  ∂(Dφ)  indicates the multi-grams index of character 
Dφ.. Here, we refer the multi-gram index obtained from    

)(D ,,C,.........,C,CC n321
∂   as the resultant text-weightage 

for the text C1 C2 C3… Cn .  
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For example, we want to have the probability distribution 
of multi-grams “and”. 
The steps will be:      
Let  ∂ ( a ) = x1  ,     
 ∂ ( n ) = x2  ,      
∂( d ) = x3  ,     
 ∂( an ) = x4   and,  
λ(Cand ) = Frequency of ‘and’ in the training document = x5. 
Therefore,  ∂(and) = ( ∂( a ) -1) + ( ∂( n ) -1) + ( ∂ (d ) -1) 
— ∂ (an) + λ (Cand ) = x1+ x2 + x3 — x4 + x5 

Static coding is defined as a set S = {B1, B2, B3 ….., Bn-1 , 
Bn } of binary streams, where each element of the set  B1, 
B2,  B3 ….., Bn-1 , Bn are uniquely identifiable providing that, 
B1, B2, B3 ….., Bn-1 ,Bn are not necessarily to be of equal bit 
lengths. As all the elements of the sets supports our three 
basic points of concern- identifiability, uniqueness and 
variability of any encoding scheme, we are interested to 
use static coding. This theoretical aspect let us do not 
consider updating the model throughout the compression, 
because, firstly, updating a larger knowledgebase using a 
very short data is not computationally affordable and 
effective, secondly, a larger portion of the source code 
may be saved if the update is avoided resulting faster 
execution  [1, 3, 11] and finally, if the training statistical 
data are not permitted to be updated as well as to be 
expanded, a constant and consistent memory 
optimization for the overall compression process may 
ensured. That is, there is no possibility to expand the 
knowledgebase arbitrarily and thus there is no risk of 
arising the overloaded memory problem or out-of-
memory problem. As the knowledgebase is not updated, 
the use of static coding is also perfect for the same.   

V. PERFORMANCE  ANALYSIS 

Though it is a general idea that compression and 
decompression time should have an inter-relation, the 
proposed scheme demonstrated a little exception. The 
points behind that may be summarized through the 
following discussions.  

A.  Performance Analysis of Compression Process 

Let the total number of training entries for the 
statistical model be Ng , where Ng is a non-negative 
integer and the maximum level for statistical modeling is 
L. The first level of the statistical model must contain the 
single characters, where the total number of distinct 
character is l1. For levels 1, 2, 3, …., n-1, n the total 
number of distinct multi-gram entries are l1, l2, l3, ……, 
ln-1, ln  respectively. 

When any text is to be compressed, it is hierarchically 
compared with each level of statistical model starting 
from the highest order. If there is any match, the 
corresponding static coding for multi-gram entry is 
assigned for the text. If the multi-gram entry is not found 
throughout the level, it is forwarded to the next level. 
This assignment uses efficient searching procedures. Let 
the code m is found at the i-th level with offset k 

resulting a search cost of Sm ( l j ) + km , where km < li 
and,  j=L, L-1,……, i-1  with respect to search space. 
Here j limits from L to (i-1) instead of  i because, as we 
find the code in somewhere of i-th level not requiring to 
search the whole element-space of the i-th level, rather 
searching through an offset value k for i-th level, the 
overall search-space is L to (i-1). That is why, for the 
above consequences, the total searching appears: search 
overhead for (i-1) number of levels with additional 
search overhead of k elements. Here the term “search 
overhead” stands for the search space complexity as well 
as other related computational requirements like time and 
power consumptions. When the code matches, it is 
placed in output stream as character representation. This 
step requires padding the bit-stream and then conversion 
into character stream. Assume that, the process of overall 
conversion for each successful entry occurs with the 
overhead B. That is, for any multi-gram matching, the 
required overhead is, 

 ∑
−

=

++=
1i 

 Lj 
11j11  B  k )) ( l(S C     

Similarly, ∑
−

=
++=

1i 

 Lj 
j  B  k )) ( l(S C 2222

,  and    

∑
−

=
++=

1i 

 Lj 
nnjn  B  k )) ( l(S C n

 

In such a way if n multi-grams are identified and then 
encoded, the required resultant number of operations in 
compression process is: 

 ∑ ∑∑∑∑
−

= ====
++==

1i 

 Lj 
y

n

1y
y

n

1y
jy

n

1y

n

 1y 
y B   k )) ( l(SCT     (1) 

B.  Performance Analysis of Decompression Process 

For the decompression process, the text to be 
decompressed is converted into binary stream. If the 
largest code is of length cmax and the smallest code is of 
length cmin then the decompression process will start the 
searching with the cmax number of bits and search through 
the codes up to cmin bits by reducing one bit in each step 
for unsuccessful match. It is necessary to mention that, 
the codes with same bit length do not essentially 
comprise any specific level. So, to reveal the character 
representation for each entry d if a switch of h levels are 
required, where  cmin ≤ h ≤ cmax where the maximum level 
is  p, with the matching offset for corresponding level  kd, 
and the assignment of the code with character 
representation for each successful match requires an 
overhead of Bd, then the overall requirement for 
comparing through the each level settings results (= 
overhead of searching through level + overhead for 
searching through offset + overhead of representation).   
For detecting first character the overhead is,  
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  ∑
=

′+′+′′=
h

 pq 
11q1 B  k  )) l( S( E 1

.  

Similarly, for detecting the second character, the level-
wise overhead will be:  

∑
=

′+′+′′=
h

 pq 
q B  k  )) l( S( E 2222

  .  

Hence,     

∑
=

′+′+′′=
h

 pq 
nnqnn B k ))l( S(E    (2) 

Here,  p = maximum level, and S/ is a function that 
denotes the search-overhead for searching in element 
space provided as parameter of the function and h = 
minimum level. The computation progresses through p, 
p-1, p-2,……, h+2, h+1, h . Here the subscript n is used 
to denote the level-wise overhead for detecting one 
character representation with respect to level.  
In order to detect a single multi-grams f, the total search-
overhead with respect to search space for level-wise 
calculation is, 

 ∑
=

′+′′
h

 pq 
fqf  k ))l( S(  because, we are to 

start with maximum level p and then proceed 
decreasingly towards the downward levels h (as 
explained above). If S/ is the search-overhead function, 
then searching from level p to h will result 

∑
=

′′
h

pq
qf )) l( S( where f is the multi-grams, 

which is being revealed. For the matching level, as only a 
partial number of elements are to be searched, the offset 
k is used to denote the offset.  
After checking through the levels, the procedure follows 
searching through the bit-wise statistics for any 
unsuccessful match in level-wise statistics. If there are a 
total of u bit-phases, we are to perform searching through 
the search-space consisting of starting from the 
maximum bit phase to the minimum bit phase in 
descending order. Because of any unsuccessful match in 
any bit-phase, a bit switch is performed and level wise 
calculation for that level is forwarded. That is, an 

overhead of ∑
=

g

db 
b )(E  is incurred for each level-wise 

analysis. Consequently, the overhead of unit step will be,   

∑
=

=′
g

db 
b1 )(E C   where d and g are maximum and 

minimum bit phases respectively and d ≥  g.   
Substituting the value of  Eb,  we get, 
  

∑ ∑∑∑
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Similarly, we get, 
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,b

g
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qb

g
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Bk )) l( S(  C 22,22

And,                           
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 pq 
n,b

g

db 
n,b

g

db 
qbn

g

db 
n Bk )) l( S(  C ,

 
Here, we use the subscript 1 with k and B in order to 
denote that, the calculations are for detecting unit code 
only where the calculation is performed starting from d 
to g in decreasing order, that is, in the order of d, (d-1), 
(d-2), …… , (g+2), (g+1), g. If we are to reveal n number 
of codes, then the total overhead becomes: 

∑
=

′=′
n

1y
y   CT .  

As for each bit wise overhead calculation, level-wise 
calculations would must be included; we may omit the 
subscript notation for search overhead function for 
simplicity, 
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COMPLEXITIES OF COMPRESSION AND DECOMPRESSION PROCESSES 
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C.  Performance Analysis with respect to Compression 
Ratio 

Compression ratio may be defined as the ratio of total 
number of bits to represent the compressed information 
and the total number of bits in original text.  

Let the training knowledgebase contains n  items. The 
items may contain any of the total s symbols of the 
source language. Again, the knowledgebase items vary 
from one to c characters. For traditional encoding, 
required overhead (i.e. total number of required bits) to 
represent each character of knowledgebase entries is 
log(s) in average. Therefore, if we categorize the 
knowledgebase items into kn categories, (where the 
categorization aspect is total number of characters in 
each knowledgebase entry) and there are e1, e2, e3, …, en 
elements in k1, k2, k3, …, kn categories respectively, then 

54 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER



we may easily calculate the overhead for coding the total 
knowledgebase.  

For category k1, we need a total of log(s) * k1 bits is 
needed to code each knowledgebase items.  

As there are a total of e1 elements, total bit requirement 
for coding all the elements of category k1  is,   

log(s) * k1 * e1.   

Here, log(s) , k1 and e1 are non-negative integer values.  

That is,  

Ok1 = log(s) * k1 * e1 

Ok1 = k1  e1  log(s)  
Where Ok1 indicates the total bit requirement for 

coding all the elements of category k1 .  

For category k2, we need a total of  log(s) * k2  bits to 
code each knowledgebase entries.  

As there are e2 elements, total bit requirement for 
coding all the elements of category  k2  is, log(s) * k2 * e2. 
Here, log(s) , k2 and e2 too are non-negative integer 
values.  

That is, Ok2 = log(s) * k2 * e2 

Ok2 = k2  e2   log(s)  
Where Ok2 indicates the total bit requirement for 

coding all the elements of category k2  . 

Similarly, For category kn, we can write ,  

Okn = log(s) * kn * en    

Okn = kn  en log(s)  
Where Okn indicates the total bit requirement for 

coding all the elements of category k2 . 

Symbolically, the total bit requirement for 
representation of the knowledgebase entries is: 

Ot = Ok1 + Ok2 + Ok3 + ... ... ... + Okn 

 =  log(s)* k1 * e1 +  log(s)* k2 * e2 + . . . + log(s)* kn * en   

 =  k1 e1  log(s) + k2 e2 log(s) + . . . + kn en log(s) 

 =  log(s) ( k1 e1  + k2  e2  + . . . + kn  en ) 

(4)isThat ∑
=

=
n

1i
)ie.ik(log(s)tO,

                                

Since,  1  ≤  ei  ≤ log(n) , and  s being the total number of 
symbol unit in source language, in worst case,  

(5)∑
=

=
n

1i
 )ik(nlog.n.log(s)tO

                            

Now let us consider our proposed scheme, where 
components of knowledgebase entries are grouped into 

several levels and each entry in the level is chosen by 
means of effective statistical entity. Because of using 
hierarchical statistics, any element of certain level 
possess greater probability of occurrence than the 
element placed at any position below that. However the 
levels are placed in descending order to facilitate that, 
higher-gram texts or knowledgebase components are 
coded in advance to any lower-gram texts irrespective of 
probability distribution [11]. Here, it is noteworthy that, 
though the probability distribution or statistical context 
was not taken into consideration to organize the levels, 
the total structure resulted an automatic statistical 
distribution, because, the text-ranking scheme used to 
build the knowledgebase followed hierarchical steps that 
inherently inferred statistics from lower groups. 
Consequently, whenever we are formulating the 
statistical entries, any subgroup from its upper group will 
have lower values and specific coding schemes may be 
employed taking this criteria into consideration.  

As we are using static coding in order to encode the 
total knowledgebase and the knowledgebase is 
hierarchically grouped, the resultant outcome leads our 
proposed scheme into a low-bit consuming one. In our 
proposed scheme, symbolically, any knowledgebase 
entry varies from 1 to r characters. That is, the levels are 
r, (r - 1), (r - 2), ………, 2, 1. Formation of levels start 
from single characters and proceed incrementally. Any 
entry in the knowledgebase containing any substring 
from its successor level will have greater multi-gram 
index because of being inferred from the previously 
encountered entry. This aspect results in a sustainable 
knowledgebase architecture if we sort the knowledgebase 
in any order considering multi-gram index as the primary 
criteria. Since we are calculating the multi-gram-index or 
multi-gram-weight through a comprehensive text ranking 
scheme we may consider the underlying text elements as 
a single unit. Even though, we are considering the overall 
knowledgebase a single unit, it has been clarified earlier 
that, the architecture of the knowledgebase will provide 
us elementary grouping facilities. This coherence model 
provides us the opportunity to use static coding. If we 
have a total of m entries in the knowledgebase, coding of 
those values using binary stream may vary from 1 to 
log(m) bits. Let it be y in an average, where 1 ≤ y ≤  
log(m).  

Again, as we are using multi-grams as single 
component, if the multi-gram consists of even k 
characters where 1 ≤ k ≤ r, it will be turned into a single 
one. Consequently, the average requirement may be 
specified as  

 ny............. 3y 2y 1ypO ++++=
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(6)∑
=

=
n

1i
 iypO

                                                               

where,   1≤  yi ≤  log(m)   for 1≤ i  ≤ n . 

(7)    caseFor worst log(n)npO =
                                

.niforlog(n)iywhere ≤≤= 1
    

Even if, the total number of components n is same for 
both the cases, since 1 ≤ y ≤  log(n)  (because here m=n, 
both indicating the total number of elements) and 1 ≤ ei ≤  
log(n)  multiplying any value (category index k) with ei 
will definitely result much more than that of yi. 
Consequently, we may deduce that,  

Op ≤ Ot   

Here, n is total number of elements in the 
knowledgebase and y (1 ≤ y ≤  log(m)) refers the total 
bits needed to code component i. It is inherently clear 
that, Op ≤ Ot . That is, the total number of bits needed to 
encode the same source symbols using our proposed 
scheme is less than that of the traditional schemes. As, 
compression ratio (R) is the ratio of compressed bit and 
source bits, we get that,  

Rt = Ot / nt  

and, 

Rp = Op / nt  

As, Op ≤ Ot  we get that,  

Rp ≤ Rt. 

Even for the worst case, we get that, 
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Hence we may deduce that, even for worst case,  

Op ≤ Ot   

The lower the value of compression ratio, the better 
the compression. Consequently ,we may conclude that, 
the compression efficiency of proposed scheme is better 
than that of traditional dictionary based compression 
schemes.  

Our proposed scheme requires less space because we 
have constrained the growth of the knowledgebase. The 
facility to use a couple of levels will ensure greater 
flexibility in memory management. As, the search space 
is minimized, the computational complexity will also be 
reduced. It is of no doubt that, lower computational 
complexity will ensure faster performance.  

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The performance evaluation is performed on the basis 
of the file “book1”, “book2”, “paper4”, “paper5” and 
“paper6” from “Calgary Corpus”.  As the prime aspect of 
our proposed Compression Scheme is not to compress 
huge amount of text rather to compress texts with limited 
size affordable by the mobile devices i.e. embedded 
systems, we took blocks of texts less than five hundred 
characters chosen randomly from those files ignoring 
binary files and other non-text files and performed the 
efficiency evaluation.  

The most recent study involving compression of text 
data are: 

1. “Low Complex and Power Efficient Text 
Compressor for Cellular and Sensor Networks” (Mode 1) 
by Rein et al.  [1, 2, 3]  and, 

2.  “A modification Of Greedy Sequential Grammar 
Transform based data Compression" by Islam et al [4]  

 
We denote the above two methods as DCM-1 and 

DCM-2 respectively, where DCM stands for Data 
Compression Method. 

The simulation was performed in a 2.0 GHz Personal 
Computer with 112 MB of RAM with the object oriented 
programming language Java. The average compression 
ratio for three random execution results for different size 
of blocks of text is as follows  

TABLE 2  

COMPRESSION RATIO 

Corpus Number of 
Characters 
Considered 

Compressi
on Ratio 
(%) for 
DCM-1 

Compressi
on Ratio 
(%) for 
DCM-2 

Compressi
on Ratio 
(%) for 

proposed 
scheme 

paper 4 108 44.01 44.03 42.94 

paper 5 061 44.98 45.51 44.02 

paper 6 032 45.22 45.96 44.30 

book 1 191 46.84 48.11 45.97 

book 2 104 43.95 46.69 45.27 

The compression ratio is a metric to describe how 
many compressed units are required to describe one unit 
of data. The lower the presented value shows better 
compression. A general observation is that higher modes 
lead to better compression ratios even if the difference 
with higher orders becomes smaller.   

The Performance of any dictionary based or 
knowledge-inferred compression scheme greatly varies 
with the architecture of dictionary construction and 
knowledge inference.  When the test bed is considered as 
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the same of the knowledgebase inferring one or 
dictionary forming one, the performance gain will be 
higher because of the greater match with the dictionary 
entries or knowledgebase components.  Our proposed 
scheme has worse performance because, the training 
scheme that we have provided makes an effective use of 
text ranking scheme for several corpora and choice of the 
knowledgebase entries are unbiased towards any specific 
corpus. It is the novelty of our approach which ensures a 
greater distribution of ranking and makes the developed 
scheme uniformly usable for text data compression. But, 
other schemes which are trained with specific files of any 
corpora, there are greater matching with the 
knowledgebase and the hence performance evaluation 
demonstrates better performance for that corpus or that 
specific file than that of our proposed scheme.  

The prime achievement of our proposed scheme is, it is 
even capable to compress source texts consisting with an 
average of only five characters. Though the compression 
ratio is deteriorated for that case, it is an evolutionary 
step for small text compression. This achievement may 
be greatly helpful for compression of sensor network 
concerned data and even in asynchronous data 
transmission management for web applications having 
the glimpse of real time computation.  

Besides of the evaluation scheme that has been 
presented earlier in this section, we analyze the 
performance of the proposed scheme in terms of 
compression ratio with respect to the text presented in 
[3].  
 

TITLE TEXT 

TEST_A 

The international system of units consists of a 
set of the units together with a set of the 
prefixes. The units of the SI can be divided into 
two subsets. There are seven base units. Each 
of these base units are dimensionally 
independent. From the seven base units all 
other units are derived. 
 

TEST_B 

However, few believed that SMS would be 
used as the means of sending text messages 
from a mobile to the another. One factor in the 
takeup of the SMS was that operators were 
slow to eliminate billing fraud which was 
possibly by changing SMSC setting on 
individual handsets to the SMSC's of other 
operators. 
 

TEST_C 

Alice is a fictional character in the books of the 
Alice’s adventures in the Wonderland and its 
sequel through the Looking-Glass, which were 
written by Charles Dodgson under the pen 
name Lewis Caroll. The character is based on 
Alice Liddel, a child friend of Dodgson's. The 
pictures, however do not depict Alice Liddel, 
as the illustrator never met her. She is seen as a 
logical girl, sometimes being pedantic, 
especially with Humpty Dumpty in the second 
book. 

 
The performance of proposed compression scheme (in 

terms of compression ratio) for the above texts in 
comparison with [3] (indicated as DCM-1) is given 
below.  
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Figure 1. Performance Comparison for example text. 

 
 

From the figure we find that the compression ratio is 
lower for all the cases for the text presented in [11].  

It is necessary to mention here that In order to 
implement our proposed scheme no additional hardware 
is necessary. Rather it is possible to use even in any low-
powered and low-memory devices. Basically the aspect 
of ensuring an affordable text compression scheme for a 
greater variety of smart devices we emphasis on static 
coding in lieu of on-the-fly coding. Besides the results 
presented in this section, detailed theoretical analysis on 
the space and time requirements, computational 
complexity i.e. overall computational overhead is already 
presented in section V. 

VII. CONCLUSION AND RECOMMENDATION 

We have presented an effective and efficient approach 
of compressing short English text message for low-
powered embedded devices. Here modified syllable 
based dictionary matching and static coding have been 
employed to obtain the compression. Moreover, a new 
theoretical concept of choosing the multi-grams is used, 
which has facilitated us to obtain mentionable 
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compression ratio using a small number of 
knowledgebase entries than other methods consuming 
less resource. The overall strategy of computational 
simplicity has also ensured the reduced time complexity 
for the proposed compression and decompression 
process. The main aspect of our proposed scheme resides 
in the text ranking based knowledge-base construction 
with space integration that initiates a new arena of text 
compression methodology. A consistent and relevant 
mathematical analysis of the overall performance also 
establishes a strong technical basis of the proposed 
scheme. Moreover, the prime achievement is in the scale 
of starting threshold of text compression; that we have 
reduced to less than five characters.  With limited 
knowledge-base size, the achieved compression is of no 
doubt efficient and effective. As the knowledge base is 
not accepted to be grown through the continuous 
applications, we may keep out the low-memory system 
from the risk of expanding its knowledgebase crossing 
optimal memory size and thus, the applicability of the 
proposed system even in any very low memory devices is 
ensured.  
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