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Abstract—Recently, research on intrusion detection in 

computer systems has received much attention to the 

computational intelligence society. Many intelligence 

learning algorithms applied to the huge volume of complex 

and dynamic dataset for the construction of efficient 

intrusion detection systems (IDSs). Despite of many 

advances that have been achieved in existing IDSs, there are 

still some difficulties, such as correct classification of large 

intrusion detection dataset, unbalanced detection accuracy 

in the high speed network traffic, and reduce false positives. 

This paper presents a new approach to the alert 

classification to reduce false positives in intrusion detection 

using improved self adaptive Bayesian algorithm (ISABA). 

The proposed approach applied to the security domain of 

anomaly based network intrusion detection, which correctly 

classifies different types of attacks of KDD99 benchmark 

dataset with high classification rates in short response time 

and reduce false positives using limited computational 

resources.    

Index Terms—anomaly detection, network intrusion 

detection, alert classification, Bayesian algorithm, detection 

rate, false positives 

I. INTRODUCTION

Network intrusion detection is the problem of detecting 

unauthorized use of computer systems over a network, 

such as the Internet. IDSs were introduced by James P. 

Anderson in 1980, an example of an audit trails would be 

a log of user access [1]. IDSs have become an integral 

part of today’s information security infrastructures. In 

order to detect intrusion activities, many machine 

learning (ML) algorithms, such as Neural Network [2], 

Support Vector Machine [3], Genetic Algorithm [4], 

Fuzzy Logic [5], and Data Mining [6], etc have been 

widely used to the huge volume of complex and dynamic 

dataset to detect known and unknown intrusions. It is 

very important for IDSs to generate rules to distinguish 

normal behaviors from abnormal behavior by observing 

dataset, which is the record of activities generated by the 

operating system that are logged to a file in 

chronologically sorted order. IDSs using ML algorithms 

aim to solve the problems of analyzing huge volumes of 

dataset and realizing performance optimization of 

detection rules. IDSs detect attacks on computer systems 

and signal an alert to the Computer Emergency Response 

Team (CERT). The network intrusion detection area is 

the arrival of new, previously unseen attacks, because 

hackers are very inventive and they use newer ways to 

disrupt the normal operation of servers and users. 

Anomaly detection detects new attacks which has not 

presented in the dataset by observing system activities 

and classifying it as either normal or anomalous. An 

important research challenge today is to develop adaptive 

IDSs to improve classification rates, and reduce false 

positives.    

The Bayesian algorithm (BA) provides a probabilistic 

approach for classification [7], [8], which provides an 

optimal way to predict the class of an unknown example. 

It is widely used in many fields of data mining, image 

processing, bio-informatics, and information retrieval etc. 

It calculates conditional probabilities from a given dataset 

and used these conditional probabilities to find out the 

probabilities of belongingness to different classes. The 

unseen example is then categorized to that class, which 

assumes the maximum value. In this paper, based on a 

comprehensive analysis for the current research 

challenges we propose a new algorithm to address the 

problem of classification rates and false positives using 

improved self adaptive Bayesian Algorithm. This 

algorithm correctly classifies different types of attacks of 

KDD99 dataset with high detection accuracy in short 

response time, and also maximizes the detection rate 

(DR) and minimizes the false positives (FP). In our 

experiments proposed algorithm reduced the number of 

false positives by up to 90% with acceptable 

misclassification rates.  

The remainder of this paper is organized as follows. 

Section II provides a review of IDSs and section III 

provides IDSs using machine learning algorithms. 

Section IV presents our proposed new algorithm. 

Experimental results are presented in section V. Finally, 

section VI makes some concluding remarks along with 

suggestions for further improvement. 

II. REVIEW OF INTRUSION DETECTION SYSTEMS

A.  History of IDSs 

In 1980, the concept of IDSs began with Anderson’s 

seminal paper, introduced the notion that audit trails 
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contained vital information that could be valuable in 

tracking misuse and understanding user behavior. His 

work was the start of host-based IDSs (HBIDSs). In 

1986, Dr. Dorothy Denning published a model which 

revealed the necessary information for commercial IDSs 

development [9]. In 1988, multics intrusion detection and 

alerting system (MIDAS), an expert system using P-

BEST and LISP was developed [10]. Haystack was also 

developed in this year using statistics to reduce audit 

trails [11]. In 1989, wisdom & sense (W&S) was a 

statistics-based anomaly detector developed, that created 

rules based on statistical analysis, and then used those 

rules for anomaly detection [12]. In 1990, Heberlein first 

introduced the idea of network IDSs, development of 

Network Security Monitor (NSM), and hybrid IDSs [13] 

and Lunt proposed SRI named intrusion detection expert 

system (IDES), a dual approach of a rule-based expert 

system and a statistical anomaly detection, which ran on 

Sun Workstations and could consider both user and 

network level data [14]. Also in the early 1990s the 

commercial development of IDSs were started and the 

Time-based inductive machine (TIM) did anomaly 

detection using inductive learning of sequential user 

patterns in Common LISP on a VAX 3500 computer 

[15]. In 1991, distributed IDSs (DIDS), an expert system 

created by the researchers of University of California 

[16], and the network anomaly detection and intrusion 

reporter (NADIR) a statistic based anomaly detector and 

also an expert system developed by Los Alamos National 

Laboratory’s Integrated Computing Network (ICN) [17]. 

In 1993, Lunt proposed the Next-generation Intrusion 

Detection Expert System by developing SRI followed 

IDES using artificial neural network [18]. The Lawrence 

Berkeley National Laboratory introduced rule language 

called Bro for packet analysis from libpcap dataset in 

1998 [19]. The audit data analysis and mining IDSs used 

tcpdump to build profiles of rules for classifications in 

2001 [20].  

B.  Types of IDSs 

Intrusion is a set of actions that attempt to compromise 

the confidentiality, integrity or availability of computer 

resources. IDSs collect information from a variety of 

systems and analyze the information for signs of 

intrusions. In general, IDS categorize into five types, 

which are described below: 

1) Network IDSs (NIDSs) responsible for detecting 

attacks related to the network [21], [22]. NIDSs 

investigate incoming and outgoing network traffic by 

connecting with network devices to find suspicious 

patterns. If a NIDS has no additional information about 

the protected host, the malicious attacker can easily avoid 

detection by taking advantage of different handling by 

overlapping IP/TCP fragments by IDS and a target host 

[23].  

2) Host-based IDSs (HBIDSs) usually are located 

in servers to examine the internal interfaces [24]. HBIDSs 

can either use standard auditing tools [25], or specially 

instrumented operating system [26], or application 

platforms [27]. It detects intrusions by analyzing system 

calls, application logs, file-system modifications, and 

other host activities related to the machine.    

3) Protocol-based IDSs (PIDSs) monitor the 

dynamic behavior and state of the protocol used the web 

server. PIDSs sit at the front end of a web server, 

monitoring and analyzing the HTTP protocol stream. It 

understands the HTTP protocol to protect web server by 

filtering IP address or port number.  

4) Application protocol-based IDSs (APIDSs) 

monitor and analysis on a specific application protocol or 

protocols between a process, and group of servers that is 

used by the computer system. APIDSs can be sitting 

between a web server and the database management 

system that monitoring the SQL protocol specific to the 

business logic. Generally, APIDSs look for the correct 

use of the protocol. 

5) Hybrid IDSs (HIDSs) combines two or more 

intrusion detection approaches. HIDS provide alert 

notification from both network and host-based intrusion 

detection devices. 

C.  Detection Models of IDSs 

Detection rate (DR) is defined as the number of 

intrusion instances detected by the system divided by the 

total number of intrusion instances present in the dataset, 

and false positives (FP) is an alarm, which rose for 

something that is not really an attack. There are two types 

of detection models for IDSs, which are described below:   

1) Misuse or signature-based IDSs are also known 

as pattern-based IDSs. It performs simple pattern 

matching to match a pattern corresponding to a known 

attack type in the database. DR of these IDSs is relatively 

low, because attacker will try to modify the basic attack 

signature in such a way that will not match the known 

signatures of that attack and it cannot detect a new attack 

for which a signature is not yet installed in the database.  

2) Anomaly-based IDSs tries to identify new 

attacks by analyzing strange behavior from normal 

behaviors. It has a relatively high detection rate for new 

types of intrusion. The disadvantage is that in many cases 

there is no signal “normal profile” and anomaly-based 

systems tend to produce many false positives. 

D.  Functions of IDSs 

IDSs are automated systems detecting and alarming of 

any situation where an intrusion has taken or is about to 

take place. According to the Common Intrusion Detection 

Framework (CIDF), generally IDSs consists of four 

components, like: sensors, analyzers, database, and 

response units. Most modern IDSs use multiple intrusion 

sensors, which obtain alerts from the large computational 

environment to maximize their trustworthiness. 

Analyzers use the input of the sensors, analyze the 

information gathered by these sensors, and return a 

synthesis or summary of the input. Today, machine 

learning algorithms have become an indispensable tool in 

the analyzers of IDSs. Database stores all alerts and 

support the analysis process. The response units carry out 

prescriptions controlled by the analyzers. The functions 

of IDSs are follows as [28]: 

Monitoring user’s activity. 
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Monitoring systems activity. 

Auditing system configuration. 

Assessing the data files. 

Recognizing known attack. 

Identifying abnormal activity. 

Managing audit data. 

Highlighting normal activity. 

Correcting system configuration errors. 

Stores information about intruders. 

III. IDS USING MACHINE LEARNING

A.  Bayes Rule 

The Bayes rule provides a way to calculate the 

probability of a hypothesis based on its prior probability 

[7],[8]. The best hypothesis is the most probable 

hypothesis, given the observed data D plus any initial 

knowledge about the prior probabilities of the various 

hypotheses h (h is a hypothesis space containing possible 

target function). Bayes rule is defined in equation “(1)”.     

      Bayes Rule: 
DP

hPhDP
DhP

)(|
)|(   (1) 

Here P(h|D) is called the posterior probability, while 

P(h) is the prior probability associated with hypothesis h.

P(D) is the probability of the occurrence of data D and 

P(D|h) is the conditional probability. In many learning 

scenarios, the learner considers some set of candidate 

hypothesis, H and is interested in finding the most 

probable hypothesis h € H given the data D. Any such 

maximally probable hypothesis is called maximum 

posterior (MAP) hypothesis. The MAP hypothesis use 

Bayes rule to calculate the posterior probability of each 

candidate hypothesis. More exactly, hMAP is a MAP 

hypothesis provided: 

        hMAP DhPHh |maxarg

  = 
DP

hPDhP
Hh

)(|
maxarg

  = )(|maxarg hPhDPHh
   (2) 

Finally, dropped the term P(D) because it is a constant 

dependent of h. P(D|h) is also called likelihood of the 

data D given h any hypothesis that maximizes P(D|h) is 

called a Maximum Likelihood (ML) hypothesis, hML:

hML hDPHh |maxarg     (3)  

B.  Naïve Bayesian Classifier 

Naïve Bayesian (NB) classifier is a simple 

probabilistic classifier based on probability models that 

incorporate strong independence assumptions which often 

have no bearing in reality. The probability model can be 

derived using Bayes rule. Depending on the precise 

nature of the probability model, NB classifier can be 

trained very efficiently in a supervised learning. In many 

practical applications, parameter estimation for naïve 

Bayesian models uses the method of maximum 

likelihood. In spite of naïve design and apparently over-

simplified assumptions, naïve Bayesian classifiers often 

work much better in many complex real-world situations. 

The NB classifier is given as input a set of training 

examples each of which is described by attributes A1

through Ak and an associated class, C. The objective is to 

classify an unseen example whose class value is unknown 

but values for attributes A1 through Ak are known and 

they are  a1, a2,.…, ak respectively. The optimal prediction 

of the unseen example is the class value c such that 

P(C=ci|A1=a1,…Ak=ak) is maximum. By Bayes rule this 

probability equals to  

         
i

kk

ikk
Cc cCP

aAaAP

cCaAaAP
i ,....

|,...
maxarg

11

11        (4)             

 Where P(C=ci) is the prior probability of class ci,

P(A1=a1,…Ak=ak) is the probability of occurrence of the 

description of a particular example, and 

P(A1=a1,…Ak=ak|C=ci)  is the class conditional 

probability of the description of a particular example ci of 

class C. The prior probability of a class can be estimated 

from training data. The probability of occurrence of the 

description of particular examples is irrelevant for 

decision making since it is the same for each class value 

c. Learning is therefore reduced to the problem of 

estimating the class conditional probability of all possible 

description  of examples from training data. The class 

conditional probability can be written in expanded from 

as follows:  

   P(A1=a1,…Ak=ak|C=ci)

        = P(A1=a1| A2=a2 ^…Ak=ak ^ C=ci)

   * P(A2=a2| A3=a3 ^…Ak=ak ^ C=ci)

   * P(A3=a3| A4=a4 ^…Ak=ak ^ C=ci)

   * P(A4=a4 ^…Ak=ak ^ C=ci)                  (5)           

In NB, it is assumed that outcome of attribute Ai is 

independent of the outcome of all other attributes Aj,

given c. Thus class conditional probabilities become: 

P(A1=a1,…Ak=ak|C=ci) =
k

i

iii cCaAP
1

)|( If the 

above value is inserted in equation “(4)” it becomes: 

   Cci
maxarg P(C=c)

k

i

iii cCaAP
1

)|( (6) 

In Naïve Bayesian learning, the probability values of 
equation “(6)” are estimated from the given training data. 

These estimated values are then used to classify unknown 

examples.  

C.  Decision Tree Algorithms 

The ID3 technique builds decision tree using 

information theory [29]. The basic strategy used by ID3 

is to choose splitting attributes from a data set with the 

highest information gain. The amount of information 

associated with an attribute value is related to the 

probability of occurrence. The concept used to quantify 

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 25

© 2010 ACADEMY PUBLISHER



information is called entropy, which is used to measure 

the amount of randomness from a data set. When all data 

in a set belong to a single class, there is no uncertainty 

then the entropy is zero. The objective of decision tree 

classification is to iteratively partition the given data set 

into subsets where all elements in each final subset 

belong to the same class. The entropy calculation is 

shown in equation “(7)”. The value for entropy is 

between 0 and 1 and reaches a maximum when the 

probabilities are all the same. Given probabilities p1,

p2,..,ps where i=1 pi=1,

Entropy: H(p1,p2,…ps) = 
s

i 1

(pi log(1/pi))  (7) 

Given a data set, D, H(D) finds the amount of subset of 

data set. When that subset is split into s new subsets S = 

{D1, D2,…,Ds}, we can again look at the entropy of those 

subsets, A subset of data set is completely ordered if all 

examples in it are the same class. ID3 chooses the 

splitting attribute with the highest gain. The ID3 

algorithm calculates the gain by the equation “(8)”. 

      Gain (D,S) = H(D)-
s

i 1

p(Di)H(Di)            (8) 

The C4.5 algorithm improves ID3 through GainRatio

[30]. For splitting purpose, C4.5 uses the largest 

GainRatio that ensures a larger than average information 

gain. 

       GainRatio(D,S) = 

||

||
,...,

||

||

),.(

1

D

D

D

D
H

SDGain

s

  (9) 

The C5.0 algorithm improves the performance of 
building trees using boosting, which is an approach to 

combining different classifiers. But boosting does not 

always help when the training data contains a lot of noise. 
When C5.0 performs a classification, each classifier is 

assigned a vote, voting is performed, and the example of 

data set is assigned to the class with the most number of 
votes. CART (classification and regression trees) is a 

process of generating a binary tree for decision making 

[31]. CART handles missing data and contains a pruning 
strategy. The SPRINT (Scalable Parallelizable Induction 

of Decision Trees) algorithm uses an impurity function 

called gini index to find the best split [32]. “Equation 
(10), defines the gini for a data set, D”.

    gini (D) =    1-  pj
2               (10) 

Where, pj is the frequency of class Cj in D. The 
goodness of a split of D into subsets D1 and D2 is defined 

by

       ginisplit(D) = n1/n(gini(D1))+ n2/n(gini(D2))      (11) 

The split with the best gini value is chosen. A number 

of research projects for optimal feature selection and 

classification have been done, which adopt hybrid 

strategy involving evolutionary algorithm and inductive 

decision tree learning [33], [34], [35], [36]. 

D.  K-Nearest Neighbors 

The K nearest neighbors (KNN) is a classification 

algorithm based on the use of distance measures [37]. It 

finds k examples in training data that are closest to the 

test example and assigns the most frequent label among 

these examples to the new example. When a classification 

is to be made for a new example, its distance to each 

attribute in the training data must be determined. Only the 

K closest examples in the training data are considered 

further. The new example is then placed in the class that 

contains the most examples from this set of K closest 

examples. KNN can be considered decision making 

technique as equivalent to Bayesian classifier in which 

the number of neighbors of each example is used as an 

estimate of the relative posterior probabilities of class 

membership in the neighborhood of a sample to be 

classified. 

IV. IMPROVED SELF ADAPTIVE BAYESIAN ALGORITHM

A.  Adaptive Bayesian Algorithm 

Adaptive Bayesian algorithm creates a function from 

KDD99 benchmark intrusion detection training data [38], 

which first estimate the class conditional probabilities for 

each attribute value based on their frequencies over the 

weights with match of same class in the training data. In a 

given training data, D = {A1, A2,…,An} of attributes, 

where each attribute Ai = {Ai1, Ai2,…,Aik} contains 

attribute values and a set of classes C = {C1, C2,…,Cn},

where each class Cj = {Cj1, Cj2,…,Cjk} has some values. 

Each example in the training data contains weight, W = 

{W1, W2…, Wn}. Initially, all the weights for each 

example of training data have equal unit value that set to 

Wi = 1.0. Then calculate the sum of weights for each 

class from the training data by counting how often each 

class occurs in the training data and the sum of weights 

for each attribute value with respect to same class in the 

training data. Next calculate the class conditional 

probabilities for each attribute value using equation 

“(12)” from the training data.  

P(Aij|Cji) = 

ji

ij

C

A

W

W
               (12) 

Here P(Aij|Cji) is the class conditional probability, WA

is the sum of weights for each attribute value, and WC is 

the sum of weights for each class.  After calculating the 

class conditional probabilities for each attribute value 

from the training data, the algorithm classify the each test 

example using equation “(13)”.  

               TargetClass =  Ci  P(Aij|Cji)                (13) 

If any test example is misclassified, the algorithm 

updates the weights of training data. The algorithm 

compare each of test examples with every training 

example and compute the similarity between them, and 

then weights of training data are increased by a fixed 
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small value multiplied by the corresponding similarity 

measure.  

Wi = Wi + (S*0.01);               (14) 

Here S is the similarity between test and training 

examples. If the test example is correctly classified, then 

the weights of training data will remain unchanged. After 

weights adjustment, the class conditional probabilities for 

attribute values are recalculated from the modified 

weights in training data. If the new set of probabilities 

correctly classifies all the test examples, the algorithm 

terminates. Otherwise, the iteration continues until all the 
test examples are correctly classified or the target 

accuracy is achieved. At this stage the algorithm 

terminates, the class conditional probabilities are 
preserved for future classification of seen or unseen 

examples.  

B.  Improved Self Adaptive Bayesian Algorithm 

Improved self adaptive Bayesian algorithm (ISABA) is 

the modification of adaptive Bayesian algorithm. Given a 

training data ISABA initializes the weights of each 

example Wi set to 1.0 and estimates the prior probability 

P(Cj) for each class by summing the weights how often 

each class occurs in the training data. For each attribute in 

training data, Ai the number of occurrences of each 

attribute value Aij can be counted by summing the 

weights to determine the probability P(Aij). Similarly, the 

probability P(Aij | Cj) can be estimate by summing the 

weights how often each attribute value occurs in the class 

in the training data. An example in the training data may 

have many different attributes A = {A1, A2,…,An}, and 

each attribute have many values Ai = {Ai1, Ai2,…,Aik}. The 

conditional probability P(Aij | Cj) estimate for all values 

of attributes. Then the algorithm uses these conditional 

probabilities to classify all the training examples. When 

classifying a training example, the conditional and prior 

probabilities generated from the training data are used to 

make the prediction. This is done by multiplying the 

probabilities of the different attribute values from the 

example. Suppose the training example ei has p

independent attribute values {Ai1, Ai2,…,Aip}, the 

algorithm has P(Aik | Cj), for each class Cj and attribute 

Aik, and then estimate probability P(ei | Cj) by using 

equation “(15)”.     

              P(ei | Cj) = P(Cj) k=1 p P(Aij | Cj)            (15)

To calculate the probability P(ei), the algorithm 

estimate the likelihood that ei is in each class. The 

probability that ei is in a class is the product of the 

conditional probabilities for each attribute values. The 

posterior probability P(Cj | ei) is then found for each 

class. The class with the highest probability is the one 

chosen for the example in training data. Now the 

algorithm updates the weights for each example in the 

training data with the highest value of posterior 

probability P(Cj | ei) for that example and also changes 

the class value associate with highest posterior 

probability. If any example in the training data is 

misclassified then the algorithm again calculates the prior 

probability P(Cj) and conditional probability P(Aij | Cj)

from the training examples using the updated weights, 

and again classify the training examples and updates the 

weights of training examples. This iteration will continue 

until all the training examples are correctly classified or 

the target accuracy is achieved.  

After classifying the training examples, the algorithm 

classify the test examples using the conditional 

probabilities P(Aij | Cj). If any test example is 

misclassified, the algorithm again updates the weights of 

training examples. The algorithm compares each of test 

example with every training examples and compute the 

similarity between them (out of four attributes two 

attribute values are same then similarity becomes 0.5 or 

one attribute value is same then similarity is 0.25 and so 

on), and then weights of training examples are increased 

by a fixed small value multiplied by the corresponding 

similarity measure. If the test examples are correctly 

classified, then the weights of training examples will 

remain unchanged. After weights adjustment, the 

conditional probabilities P(Aij | Cj) for attribute values are 

recalculated from the modified weights of training 

examples. If the new set of probabilities correctly 

classifies all the test examples, the algorithm stores the 

conditional probabilities and builds a decision tree by 

information gain using last updated weights. Otherwise, 

the iteration continues until all the test examples are 

correctly classified or the target accuracy is achieved. At 

this stage the algorithm correctly classifies all the test 

examples, the conditional probabilities P(Aij | Cj) are 

preserved for future classification of seen or unseen 

intrusions, and builds a decision tree by information gain 

using the last updated weights of training examples, 

which is also used for classification of seen or unseen 

intrusions. The main procedure of ISABA algorithm is 

described as follows. 

Algorithm ISABA 

Input: training data D, testing data 

Output: intrusion detection model 

Procedure:  

1. Initialize all the weights in D, Wi=1.0. 

2. Calculate the prior probabilities P(Cj) for each 

class Cj from D.

P(Cj) = 
n

i

i

Ci

i

W

W

1

3. Calculate the probabilities P(Aij) for  each 

attribute value Aij from D.

P(Aij) = 

jij CA

iW

4. Calculate the conditional probabilities P(Aij | Cj)
for each attribute values from D.
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P(Aij | Cj) = 

iC

i

ij

W

AP )(

5. Classify each example in D.

       P(ei | Cj) = P(Cj)  P(Aij | Cj)

6. Initialize all the weights in D with Maximum 

Likelihood (ML) of posterior probability P(Cj|ei)

and change the class value associated with 

highest posterior probability.  

         Wi= PML(Cj|ei)

         Cj = Ci  PML(Cj|ei)

7. If any example in D is misclassified, then go to 

step 2, else go to step 8.  
8. Classify all test examples with the conditional 

probabilities P(Aij | Cj).

9. If any test example is misclassified then update 
the weights of D using similarity S.

         Wi = Wi + (S+0.01)

10. If weight update, then recalculate the 
probabilities P(Aij) and P(Aij | Cj) using updated 

weights of D and go to step 8. 

11. If all test examples are correctly classified then 
the algorithm stores conditional probabilities for 

future classification of seen or unseen intrusions. 

12. The algorithm builds decision tree by 
information gain using final updated weights of 

training examples. 

V. EXPERIMENTAL RESULTS

A.  Experimental Data 

The KDD99 dataset is a common benchmark for 

evaluation of intrusion detection techniques [39]. In the 

1998 DARPA intrusion detection evaluation program, a 

simulated environment was set up to acquire raw TCP/IP 

dump data for a local-area network (LAN) by the MIT 

Lincoln Lab to compare the performance of various 

intrusion detection methods. The DARPA98 was 

operated like a real environment, but being blasted with 

multiple intrusion attacks and received much attention in 

the research community of adaptive intrusion detection. 

In 1999, based on the DARPA98 data the Third 

International Knowledge Discovery and Data Mining 

Tools Competition established the KDD99 benchmark 

dataset for intrusion detection based on data mining. In 

the KDD99 data set, each data example represents 

attribute values of a class in the network data flow, and 

each class is labeled either as normal or as an attack with 

exactly one specific attack type. The KDD99 data records 

are all labeled with one of the following five types: 

1) Normal connections are generated by simulated 

daily user behavior such as downloading files, visiting 

web pages, etc. 

2) Denial of Service (DoS) attack causes the 

computing power or memory of a victim machine too 

busy or too full to handle legitimate requests. DoS attacks 

are classified based on the services that an attacker 

renders unavailable to legitimate users. Example of DoS 

attacks are Apache2, Land, Mail bomb, Back, etc.   

3) User to Root (U2R) is a class of attacks that an 

intruder/hacker begins with the access of a normal user 

account and then becomes a super-user by exploiting 

various vulnerabilities of the system. Most common 

exploits of U2R attacks are regular buffer overflows, 

Loadmodule, Fdformat, and Ffbconfig.   

4) Remote to User (R2L) is a class of attacks that a 

remote user gains access of a local account by sending 

packets to a machine over a network communication, 

which include Sendmail, and Xlock.  

5) Probing (Probe) is an attack scans a network to 

gather information or find known vulnerabilities. An 

intruder with a map of machines and services that are 

available on a network can use the information to look for 

exploits. 

B.  Eeperimental Analysis 

Correct classification of known and unknown 

intrusions is one of the central problems for network-

based intrusion detection. Many supervised and 
unsupervised learning algorithms already applied to 

classifying intrusions but their performance were not very 

satisfactory due to the challenging problem of detection 
novel attacks with low false alarms. In order to evaluate 

the performance of improved self adaptive Bayesian 

algorithm (ISABA) for intrusion detection, we performed 
5-class classification using KDD99 benchmark dataset. 

The training and testing data are taken randomly from the 

KDD99 dataset with different ratios of positive versus 
negative instance. The training data are used to train the 

algorithms, and the test data are used to evaluate the 

performance of the algorithms. Table I shows the number 
of examples in 10% training data and 10% testing data of 

KDD99 dataset. There are some new attack examples in 

testing data, which is no present in the training dataset. 

TABLE I. 
NUMBER OF EXAMPLES IN TRAINING AND TESTING DATA 

Attack Types 
Training 

Examples 

Testing 

Examples 

Normal 97277 60592 

Probing 4107 4166 

Denial of Service 391458 237594 

User to Root 52 70 

Remote to User 1126 8606 

Total Examples 494020 311028 

In the experiments, first we performed the 

classification on KDD99 testing data using naïve 

Bayesian classifier (NB), adaptive Bayesian algorithm 

(ABA), and improved self adaptive Bayesian algorithm 

(ISABA) and compare their results shown in Table II. It 

is clear that the proposed new algorithm is approximately 

2 times faster in training and testing than conventional 

algorithms. 
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TABLE II. 
TRAINING AND TESTING TIME COMPARISON

 Training Time (s) Testing Time (s) 

Naïve Bayesian 

Classifier  
42.9 18.4 

Adaptive Bayesian 

Algorithm 
24.6 9.6 

Improved Self Adaptive 

Bayesian Algorithm 
28.4 7.5 

The performance comparison between NB and ISABA 

on KDD99 (using 41 attributes) testing data is listed in 

Table III, which shows that the ISABA performs 

balanced and high classification rates on 5 attack classes 

of KDD99 data and minimize the false positives. 

TABLE III. 
PERFORMANCE COMPARISON BETWEEN NB AND ISABA 

 Normal Probe DoS U2R R2L 

Naïve Bayesian 

Classifier (DR %) 
99.25 99.13 99.69 64 99.11 

Naïve Bayesian 

Classifier (FP %) 
0.08 0.45 0.04 0.14 8.02 

Improved Self Adaptive 

Bayesian Algorithm 

(DR %) 

99.62 99.22 99.49 99.17 99.15 

Improved Self Adaptive 

Bayesian Algorithm  

(FP %) 

0.05 0.36 0.03 0.10 6.91 

We tested our proposed algorithm using the reduced 

dataset of 12 attributes and 17 attributes in KDD99 

dataset, which increase the classification rate for intrusion 

classes that are summarized in Table IV.  

TABLE IV. 
PERFORMANCE OF ISABA USING REDUCED DATASETS

 12 Attributes 17 Attributes 

Normal 99.97 99.96 

Probe 99.91 99.95 

DoS 99.99 99.98 

U2R 99,36 99.46 

R2L 99.53 99.69 

We also compare the detection performance among 
Support Vector Machines (SVM), Neural Network (NN), 

Genetic Algorithm (GA), Naïve Bayesian Classifier 

(NB), and improved self adaptive Bayesian algorithm 
(ISABA) on KDD99 dataset [40],[41],[42]. In total, 40 

attributes of KDD99 dataset have been used. Each 

connection can be categorized into five main classes (one 
normal class and four main intrusion classes: probe, DoS, 

U2R, and R2L). The experimental setting uses 494020 

data samples for training and 311028 data samples for 
testing. The comparative results are summarized in Table 

V.  

TABLE V. 
COMPARISON OF SEVERAL ALGORITHMS

 SVM NN GA NB ISABA 

Normal 99.4 99.6 99.3 99.55 99.82 

Probe 89.2 92.7 98.46 99.43 99.72 

DoS 94.7 97.5 99.57 99.69 99.49 

U2R 71.4 48 99.22 64 99.47 

R2L 87.2 98 98.54 99.11 99.35 

Figure 1. ROC curves for alert classification systems. 

The ROC (relative operating characteristic) curve 

shows the relationship between detection rate and false 

positives on 10% KDD99 testing data in figure 1.  

VI. CONCLUSION AND FUTURE WORKS

The main advantage of this proposed algorithm is to 

generate a minimal rule set for network intrusion 

detection, which can detect network intrusions based on 

previous activities.  Proposed algorithm analyzes the 

large volume of network data and considers the complex 

properties of attack behaviors to improve the performance 

of detection speed and detection accuracy.  This paper 

presents a new intrusion detection algorithm based on 

intelligent machine learning algorithms. In this paper we 

have concentrated on the development of the performance 

of naïve Bayesian classifier, which adjusts the weights of 

training examples until either all the test examples are 

correctly classified or the target accuracy on test 

examples is achieved. The experimental results marked 

that this algorithm minimized false positives, as well as 

maximize balance detection (classification rates) on the 5 

classes of KDD99 data. The future research issues will be 

applying domain knowledge of security to improve the 

detection accuracy, and visualizing the procedure of 

intrusion detection in real world problem domains. 
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