
Anomaly Network Intrusion Detection Based on

Improved Self Adaptive Bayesian Algorithm

Dewan Md. Farid
Dept. of CSE, Jahangirnagar University, Dhaka-1342, Bangladesh

Email: dmfarid@uiu.ac.bd

Mohammad Zahidur Rahman
Dept. of CSE, Jahangirnagar University, Dhaka-1342, Bangladesh

Email: rmzahid@juniv.edu

Abstract—Recently, research on intrusion detection in

computer systems has received much attention to the

computational intelligence society. Many intelligence

learning algorithms applied to the huge volume of complex

and dynamic dataset for the construction of efficient

intrusion detection systems (IDSs). Despite of many

advances that have been achieved in existing IDSs, there are

still some difficulties, such as correct classification of large

intrusion detection dataset, unbalanced detection accuracy

in the high speed network traffic, and reduce false positives.

This paper presents a new approach to the alert

classification to reduce false positives in intrusion detection

using improved self adaptive Bayesian algorithm (ISABA).

The proposed approach applied to the security domain of

anomaly based network intrusion detection, which correctly

classifies different types of attacks of KDD99 benchmark

dataset with high classification rates in short response time

and reduce false positives using limited computational

resources.

Index Terms—anomaly detection, network intrusion

detection, alert classification, Bayesian algorithm, detection

rate, false positives

I. INTRODUCTION

Network intrusion detection is the problem of detecting

unauthorized use of computer systems over a network,

such as the Internet. IDSs were introduced by James P.

Anderson in 1980, an example of an audit trails would be

a log of user access [1]. IDSs have become an integral

part of today’s information security infrastructures. In

order to detect intrusion activities, many machine

learning (ML) algorithms, such as Neural Network [2],

Support Vector Machine [3], Genetic Algorithm [4],

Fuzzy Logic [5], and Data Mining [6], etc have been

widely used to the huge volume of complex and dynamic

dataset to detect known and unknown intrusions. It is

very important for IDSs to generate rules to distinguish

normal behaviors from abnormal behavior by observing

dataset, which is the record of activities generated by the

operating system that are logged to a file in

chronologically sorted order. IDSs using ML algorithms

aim to solve the problems of analyzing huge volumes of

dataset and realizing performance optimization of

detection rules. IDSs detect attacks on computer systems

and signal an alert to the Computer Emergency Response

Team (CERT). The network intrusion detection area is

the arrival of new, previously unseen attacks, because

hackers are very inventive and they use newer ways to

disrupt the normal operation of servers and users.

Anomaly detection detects new attacks which has not

presented in the dataset by observing system activities

and classifying it as either normal or anomalous. An

important research challenge today is to develop adaptive

IDSs to improve classification rates, and reduce false

positives.

The Bayesian algorithm (BA) provides a probabilistic

approach for classification [7], [8], which provides an

optimal way to predict the class of an unknown example.

It is widely used in many fields of data mining, image

processing, bio-informatics, and information retrieval etc.

It calculates conditional probabilities from a given dataset

and used these conditional probabilities to find out the

probabilities of belongingness to different classes. The

unseen example is then categorized to that class, which

assumes the maximum value. In this paper, based on a

comprehensive analysis for the current research

challenges we propose a new algorithm to address the

problem of classification rates and false positives using

improved self adaptive Bayesian Algorithm. This

algorithm correctly classifies different types of attacks of

KDD99 dataset with high detection accuracy in short

response time, and also maximizes the detection rate

(DR) and minimizes the false positives (FP). In our

experiments proposed algorithm reduced the number of

false positives by up to 90% with acceptable

misclassification rates.

The remainder of this paper is organized as follows.

Section II provides a review of IDSs and section III

provides IDSs using machine learning algorithms.

Section IV presents our proposed new algorithm.

Experimental results are presented in section V. Finally,

section VI makes some concluding remarks along with

suggestions for further improvement.

II. REVIEW OF INTRUSION DETECTION SYSTEMS

A. History of IDSs

In 1980, the concept of IDSs began with Anderson’s

seminal paper, introduced the notion that audit trails

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 23

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.1.23-31

contained vital information that could be valuable in

tracking misuse and understanding user behavior. His

work was the start of host-based IDSs (HBIDSs). In

1986, Dr. Dorothy Denning published a model which

revealed the necessary information for commercial IDSs

development [9]. In 1988, multics intrusion detection and

alerting system (MIDAS), an expert system using P-

BEST and LISP was developed [10]. Haystack was also

developed in this year using statistics to reduce audit

trails [11]. In 1989, wisdom & sense (W&S) was a

statistics-based anomaly detector developed, that created

rules based on statistical analysis, and then used those

rules for anomaly detection [12]. In 1990, Heberlein first

introduced the idea of network IDSs, development of

Network Security Monitor (NSM), and hybrid IDSs [13]

and Lunt proposed SRI named intrusion detection expert

system (IDES), a dual approach of a rule-based expert

system and a statistical anomaly detection, which ran on

Sun Workstations and could consider both user and

network level data [14]. Also in the early 1990s the

commercial development of IDSs were started and the

Time-based inductive machine (TIM) did anomaly

detection using inductive learning of sequential user

patterns in Common LISP on a VAX 3500 computer

[15]. In 1991, distributed IDSs (DIDS), an expert system

created by the researchers of University of California

[16], and the network anomaly detection and intrusion

reporter (NADIR) a statistic based anomaly detector and

also an expert system developed by Los Alamos National

Laboratory’s Integrated Computing Network (ICN) [17].

In 1993, Lunt proposed the Next-generation Intrusion

Detection Expert System by developing SRI followed

IDES using artificial neural network [18]. The Lawrence

Berkeley National Laboratory introduced rule language

called Bro for packet analysis from libpcap dataset in

1998 [19]. The audit data analysis and mining IDSs used

tcpdump to build profiles of rules for classifications in

2001 [20].

B. Types of IDSs

Intrusion is a set of actions that attempt to compromise

the confidentiality, integrity or availability of computer

resources. IDSs collect information from a variety of

systems and analyze the information for signs of

intrusions. In general, IDS categorize into five types,

which are described below:

1) Network IDSs (NIDSs) responsible for detecting

attacks related to the network [21], [22]. NIDSs

investigate incoming and outgoing network traffic by

connecting with network devices to find suspicious

patterns. If a NIDS has no additional information about

the protected host, the malicious attacker can easily avoid

detection by taking advantage of different handling by

overlapping IP/TCP fragments by IDS and a target host

[23].

2) Host-based IDSs (HBIDSs) usually are located

in servers to examine the internal interfaces [24]. HBIDSs

can either use standard auditing tools [25], or specially

instrumented operating system [26], or application

platforms [27]. It detects intrusions by analyzing system

calls, application logs, file-system modifications, and

other host activities related to the machine.

3) Protocol-based IDSs (PIDSs) monitor the

dynamic behavior and state of the protocol used the web

server. PIDSs sit at the front end of a web server,

monitoring and analyzing the HTTP protocol stream. It

understands the HTTP protocol to protect web server by

filtering IP address or port number.

4) Application protocol-based IDSs (APIDSs)

monitor and analysis on a specific application protocol or

protocols between a process, and group of servers that is

used by the computer system. APIDSs can be sitting

between a web server and the database management

system that monitoring the SQL protocol specific to the

business logic. Generally, APIDSs look for the correct

use of the protocol.

5) Hybrid IDSs (HIDSs) combines two or more

intrusion detection approaches. HIDS provide alert

notification from both network and host-based intrusion

detection devices.

C. Detection Models of IDSs

Detection rate (DR) is defined as the number of

intrusion instances detected by the system divided by the

total number of intrusion instances present in the dataset,

and false positives (FP) is an alarm, which rose for

something that is not really an attack. There are two types

of detection models for IDSs, which are described below:

1) Misuse or signature-based IDSs are also known

as pattern-based IDSs. It performs simple pattern

matching to match a pattern corresponding to a known

attack type in the database. DR of these IDSs is relatively

low, because attacker will try to modify the basic attack

signature in such a way that will not match the known

signatures of that attack and it cannot detect a new attack

for which a signature is not yet installed in the database.

2) Anomaly-based IDSs tries to identify new

attacks by analyzing strange behavior from normal

behaviors. It has a relatively high detection rate for new

types of intrusion. The disadvantage is that in many cases

there is no signal “normal profile” and anomaly-based

systems tend to produce many false positives.

D. Functions of IDSs

IDSs are automated systems detecting and alarming of

any situation where an intrusion has taken or is about to

take place. According to the Common Intrusion Detection

Framework (CIDF), generally IDSs consists of four

components, like: sensors, analyzers, database, and

response units. Most modern IDSs use multiple intrusion

sensors, which obtain alerts from the large computational

environment to maximize their trustworthiness.

Analyzers use the input of the sensors, analyze the

information gathered by these sensors, and return a

synthesis or summary of the input. Today, machine

learning algorithms have become an indispensable tool in

the analyzers of IDSs. Database stores all alerts and

support the analysis process. The response units carry out

prescriptions controlled by the analyzers. The functions

of IDSs are follows as [28]:

Monitoring user’s activity.

24 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

Monitoring systems activity.

Auditing system configuration.

Assessing the data files.

Recognizing known attack.

Identifying abnormal activity.

Managing audit data.

Highlighting normal activity.

Correcting system configuration errors.

Stores information about intruders.

III. IDS USING MACHINE LEARNING

A. Bayes Rule

The Bayes rule provides a way to calculate the

probability of a hypothesis based on its prior probability

[7],[8]. The best hypothesis is the most probable

hypothesis, given the observed data D plus any initial

knowledge about the prior probabilities of the various

hypotheses h (h is a hypothesis space containing possible

target function). Bayes rule is defined in equation “(1)”.

 Bayes Rule:
DP

hPhDP
DhP

)(|
)|((1)

Here P(h|D) is called the posterior probability, while

P(h) is the prior probability associated with hypothesis h.

P(D) is the probability of the occurrence of data D and

P(D|h) is the conditional probability. In many learning

scenarios, the learner considers some set of candidate

hypothesis, H and is interested in finding the most

probable hypothesis h € H given the data D. Any such

maximally probable hypothesis is called maximum

posterior (MAP) hypothesis. The MAP hypothesis use

Bayes rule to calculate the posterior probability of each

candidate hypothesis. More exactly, hMAP is a MAP

hypothesis provided:

 hMAP DhPHh |maxarg

 =
DP

hPDhP
Hh

)(|
maxarg

 =)(|maxarg hPhDPHh
 (2)

Finally, dropped the term P(D) because it is a constant

dependent of h. P(D|h) is also called likelihood of the

data D given h any hypothesis that maximizes P(D|h) is

called a Maximum Likelihood (ML) hypothesis, hML:

hML hDPHh |maxarg (3)

B. Naïve Bayesian Classifier

Naïve Bayesian (NB) classifier is a simple

probabilistic classifier based on probability models that

incorporate strong independence assumptions which often

have no bearing in reality. The probability model can be

derived using Bayes rule. Depending on the precise

nature of the probability model, NB classifier can be

trained very efficiently in a supervised learning. In many

practical applications, parameter estimation for naïve

Bayesian models uses the method of maximum

likelihood. In spite of naïve design and apparently over-

simplified assumptions, naïve Bayesian classifiers often

work much better in many complex real-world situations.

The NB classifier is given as input a set of training

examples each of which is described by attributes A1

through Ak and an associated class, C. The objective is to

classify an unseen example whose class value is unknown

but values for attributes A1 through Ak are known and

they are a1, a2,.…, ak respectively. The optimal prediction

of the unseen example is the class value c such that

P(C=ci|A1=a1,…Ak=ak) is maximum. By Bayes rule this

probability equals to

i

kk

ikk
Cc cCP

aAaAP

cCaAaAP
i ,....

|,...
maxarg

11

11 (4)

 Where P(C=ci) is the prior probability of class ci,

P(A1=a1,…Ak=ak) is the probability of occurrence of the

description of a particular example, and

P(A1=a1,…Ak=ak|C=ci) is the class conditional

probability of the description of a particular example ci of

class C. The prior probability of a class can be estimated

from training data. The probability of occurrence of the

description of particular examples is irrelevant for

decision making since it is the same for each class value

c. Learning is therefore reduced to the problem of

estimating the class conditional probability of all possible

description of examples from training data. The class

conditional probability can be written in expanded from

as follows:

 P(A1=a1,…Ak=ak|C=ci)

 = P(A1=a1| A2=a2 ^…Ak=ak ^ C=ci)

 * P(A2=a2| A3=a3 ^…Ak=ak ^ C=ci)

 * P(A3=a3| A4=a4 ^…Ak=ak ^ C=ci)

 * P(A4=a4 ^…Ak=ak ^ C=ci) (5)

In NB, it is assumed that outcome of attribute Ai is

independent of the outcome of all other attributes Aj,

given c. Thus class conditional probabilities become:

P(A1=a1,…Ak=ak|C=ci) =
k

i

iii cCaAP
1

)|(If the

above value is inserted in equation “(4)” it becomes:

 Cci
maxarg P(C=c)

k

i

iii cCaAP
1

)|((6)

In Naïve Bayesian learning, the probability values of
equation “(6)” are estimated from the given training data.

These estimated values are then used to classify unknown

examples.

C. Decision Tree Algorithms

The ID3 technique builds decision tree using

information theory [29]. The basic strategy used by ID3

is to choose splitting attributes from a data set with the

highest information gain. The amount of information

associated with an attribute value is related to the

probability of occurrence. The concept used to quantify

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 25

© 2010 ACADEMY PUBLISHER

information is called entropy, which is used to measure

the amount of randomness from a data set. When all data

in a set belong to a single class, there is no uncertainty

then the entropy is zero. The objective of decision tree

classification is to iteratively partition the given data set

into subsets where all elements in each final subset

belong to the same class. The entropy calculation is

shown in equation “(7)”. The value for entropy is

between 0 and 1 and reaches a maximum when the

probabilities are all the same. Given probabilities p1,

p2,..,ps where i=1 pi=1,

Entropy: H(p1,p2,…ps) =
s

i 1

(pi log(1/pi)) (7)

Given a data set, D, H(D) finds the amount of subset of

data set. When that subset is split into s new subsets S =

{D1, D2,…,Ds}, we can again look at the entropy of those

subsets, A subset of data set is completely ordered if all

examples in it are the same class. ID3 chooses the

splitting attribute with the highest gain. The ID3

algorithm calculates the gain by the equation “(8)”.

 Gain (D,S) = H(D)-
s

i 1

p(Di)H(Di) (8)

The C4.5 algorithm improves ID3 through GainRatio

[30]. For splitting purpose, C4.5 uses the largest

GainRatio that ensures a larger than average information

gain.

 GainRatio(D,S) =

||

||
,...,

||

||

),.(

1

D

D

D

D
H

SDGain

s

 (9)

The C5.0 algorithm improves the performance of
building trees using boosting, which is an approach to

combining different classifiers. But boosting does not

always help when the training data contains a lot of noise.
When C5.0 performs a classification, each classifier is

assigned a vote, voting is performed, and the example of

data set is assigned to the class with the most number of
votes. CART (classification and regression trees) is a

process of generating a binary tree for decision making

[31]. CART handles missing data and contains a pruning
strategy. The SPRINT (Scalable Parallelizable Induction

of Decision Trees) algorithm uses an impurity function

called gini index to find the best split [32]. “Equation
(10), defines the gini for a data set, D”.

 gini (D) = 1- pj
2 (10)

Where, pj is the frequency of class Cj in D. The
goodness of a split of D into subsets D1 and D2 is defined

by

 ginisplit(D) = n1/n(gini(D1))+ n2/n(gini(D2)) (11)

The split with the best gini value is chosen. A number

of research projects for optimal feature selection and

classification have been done, which adopt hybrid

strategy involving evolutionary algorithm and inductive

decision tree learning [33], [34], [35], [36].

D. K-Nearest Neighbors

The K nearest neighbors (KNN) is a classification

algorithm based on the use of distance measures [37]. It

finds k examples in training data that are closest to the

test example and assigns the most frequent label among

these examples to the new example. When a classification

is to be made for a new example, its distance to each

attribute in the training data must be determined. Only the

K closest examples in the training data are considered

further. The new example is then placed in the class that

contains the most examples from this set of K closest

examples. KNN can be considered decision making

technique as equivalent to Bayesian classifier in which

the number of neighbors of each example is used as an

estimate of the relative posterior probabilities of class

membership in the neighborhood of a sample to be

classified.

IV. IMPROVED SELF ADAPTIVE BAYESIAN ALGORITHM

A. Adaptive Bayesian Algorithm

Adaptive Bayesian algorithm creates a function from

KDD99 benchmark intrusion detection training data [38],

which first estimate the class conditional probabilities for

each attribute value based on their frequencies over the

weights with match of same class in the training data. In a

given training data, D = {A1, A2,…,An} of attributes,

where each attribute Ai = {Ai1, Ai2,…,Aik} contains

attribute values and a set of classes C = {C1, C2,…,Cn},

where each class Cj = {Cj1, Cj2,…,Cjk} has some values.

Each example in the training data contains weight, W =

{W1, W2…, Wn}. Initially, all the weights for each

example of training data have equal unit value that set to

Wi = 1.0. Then calculate the sum of weights for each

class from the training data by counting how often each

class occurs in the training data and the sum of weights

for each attribute value with respect to same class in the

training data. Next calculate the class conditional

probabilities for each attribute value using equation

“(12)” from the training data.

P(Aij|Cji) =

ji

ij

C

A

W

W
 (12)

Here P(Aij|Cji) is the class conditional probability, WA

is the sum of weights for each attribute value, and WC is

the sum of weights for each class. After calculating the

class conditional probabilities for each attribute value

from the training data, the algorithm classify the each test

example using equation “(13)”.

 TargetClass = Ci P(Aij|Cji) (13)

If any test example is misclassified, the algorithm

updates the weights of training data. The algorithm

compare each of test examples with every training

example and compute the similarity between them, and

then weights of training data are increased by a fixed

26 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

small value multiplied by the corresponding similarity

measure.

Wi = Wi + (S*0.01); (14)

Here S is the similarity between test and training

examples. If the test example is correctly classified, then

the weights of training data will remain unchanged. After

weights adjustment, the class conditional probabilities for

attribute values are recalculated from the modified

weights in training data. If the new set of probabilities

correctly classifies all the test examples, the algorithm

terminates. Otherwise, the iteration continues until all the
test examples are correctly classified or the target

accuracy is achieved. At this stage the algorithm

terminates, the class conditional probabilities are
preserved for future classification of seen or unseen

examples.

B. Improved Self Adaptive Bayesian Algorithm

Improved self adaptive Bayesian algorithm (ISABA) is

the modification of adaptive Bayesian algorithm. Given a

training data ISABA initializes the weights of each

example Wi set to 1.0 and estimates the prior probability

P(Cj) for each class by summing the weights how often

each class occurs in the training data. For each attribute in

training data, Ai the number of occurrences of each

attribute value Aij can be counted by summing the

weights to determine the probability P(Aij). Similarly, the

probability P(Aij | Cj) can be estimate by summing the

weights how often each attribute value occurs in the class

in the training data. An example in the training data may

have many different attributes A = {A1, A2,…,An}, and

each attribute have many values Ai = {Ai1, Ai2,…,Aik}. The

conditional probability P(Aij | Cj) estimate for all values

of attributes. Then the algorithm uses these conditional

probabilities to classify all the training examples. When

classifying a training example, the conditional and prior

probabilities generated from the training data are used to

make the prediction. This is done by multiplying the

probabilities of the different attribute values from the

example. Suppose the training example ei has p

independent attribute values {Ai1, Ai2,…,Aip}, the

algorithm has P(Aik | Cj), for each class Cj and attribute

Aik, and then estimate probability P(ei | Cj) by using

equation “(15)”.

 P(ei | Cj) = P(Cj) k=1 p P(Aij | Cj) (15)

To calculate the probability P(ei), the algorithm

estimate the likelihood that ei is in each class. The

probability that ei is in a class is the product of the

conditional probabilities for each attribute values. The

posterior probability P(Cj | ei) is then found for each

class. The class with the highest probability is the one

chosen for the example in training data. Now the

algorithm updates the weights for each example in the

training data with the highest value of posterior

probability P(Cj | ei) for that example and also changes

the class value associate with highest posterior

probability. If any example in the training data is

misclassified then the algorithm again calculates the prior

probability P(Cj) and conditional probability P(Aij | Cj)

from the training examples using the updated weights,

and again classify the training examples and updates the

weights of training examples. This iteration will continue

until all the training examples are correctly classified or

the target accuracy is achieved.

After classifying the training examples, the algorithm

classify the test examples using the conditional

probabilities P(Aij | Cj). If any test example is

misclassified, the algorithm again updates the weights of

training examples. The algorithm compares each of test

example with every training examples and compute the

similarity between them (out of four attributes two

attribute values are same then similarity becomes 0.5 or

one attribute value is same then similarity is 0.25 and so

on), and then weights of training examples are increased

by a fixed small value multiplied by the corresponding

similarity measure. If the test examples are correctly

classified, then the weights of training examples will

remain unchanged. After weights adjustment, the

conditional probabilities P(Aij | Cj) for attribute values are

recalculated from the modified weights of training

examples. If the new set of probabilities correctly

classifies all the test examples, the algorithm stores the

conditional probabilities and builds a decision tree by

information gain using last updated weights. Otherwise,

the iteration continues until all the test examples are

correctly classified or the target accuracy is achieved. At

this stage the algorithm correctly classifies all the test

examples, the conditional probabilities P(Aij | Cj) are

preserved for future classification of seen or unseen

intrusions, and builds a decision tree by information gain

using the last updated weights of training examples,

which is also used for classification of seen or unseen

intrusions. The main procedure of ISABA algorithm is

described as follows.

Algorithm ISABA

Input: training data D, testing data

Output: intrusion detection model

Procedure:

1. Initialize all the weights in D, Wi=1.0.

2. Calculate the prior probabilities P(Cj) for each

class Cj from D.

P(Cj) =
n

i

i

Ci

i

W

W

1

3. Calculate the probabilities P(Aij) for each

attribute value Aij from D.

P(Aij) =

jij CA

iW

4. Calculate the conditional probabilities P(Aij | Cj)
for each attribute values from D.

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 27

© 2010 ACADEMY PUBLISHER

P(Aij | Cj) =

iC

i

ij

W

AP)(

5. Classify each example in D.

 P(ei | Cj) = P(Cj) P(Aij | Cj)

6. Initialize all the weights in D with Maximum

Likelihood (ML) of posterior probability P(Cj|ei)

and change the class value associated with

highest posterior probability.

 Wi= PML(Cj|ei)

 Cj = Ci PML(Cj|ei)

7. If any example in D is misclassified, then go to

step 2, else go to step 8.
8. Classify all test examples with the conditional

probabilities P(Aij | Cj).

9. If any test example is misclassified then update
the weights of D using similarity S.

 Wi = Wi + (S+0.01)

10. If weight update, then recalculate the
probabilities P(Aij) and P(Aij | Cj) using updated

weights of D and go to step 8.

11. If all test examples are correctly classified then
the algorithm stores conditional probabilities for

future classification of seen or unseen intrusions.

12. The algorithm builds decision tree by
information gain using final updated weights of

training examples.

V. EXPERIMENTAL RESULTS

A. Experimental Data

The KDD99 dataset is a common benchmark for

evaluation of intrusion detection techniques [39]. In the

1998 DARPA intrusion detection evaluation program, a

simulated environment was set up to acquire raw TCP/IP

dump data for a local-area network (LAN) by the MIT

Lincoln Lab to compare the performance of various

intrusion detection methods. The DARPA98 was

operated like a real environment, but being blasted with

multiple intrusion attacks and received much attention in

the research community of adaptive intrusion detection.

In 1999, based on the DARPA98 data the Third

International Knowledge Discovery and Data Mining

Tools Competition established the KDD99 benchmark

dataset for intrusion detection based on data mining. In

the KDD99 data set, each data example represents

attribute values of a class in the network data flow, and

each class is labeled either as normal or as an attack with

exactly one specific attack type. The KDD99 data records

are all labeled with one of the following five types:

1) Normal connections are generated by simulated

daily user behavior such as downloading files, visiting

web pages, etc.

2) Denial of Service (DoS) attack causes the

computing power or memory of a victim machine too

busy or too full to handle legitimate requests. DoS attacks

are classified based on the services that an attacker

renders unavailable to legitimate users. Example of DoS

attacks are Apache2, Land, Mail bomb, Back, etc.

3) User to Root (U2R) is a class of attacks that an

intruder/hacker begins with the access of a normal user

account and then becomes a super-user by exploiting

various vulnerabilities of the system. Most common

exploits of U2R attacks are regular buffer overflows,

Loadmodule, Fdformat, and Ffbconfig.

4) Remote to User (R2L) is a class of attacks that a

remote user gains access of a local account by sending

packets to a machine over a network communication,

which include Sendmail, and Xlock.

5) Probing (Probe) is an attack scans a network to

gather information or find known vulnerabilities. An

intruder with a map of machines and services that are

available on a network can use the information to look for

exploits.

B. Eeperimental Analysis

Correct classification of known and unknown

intrusions is one of the central problems for network-

based intrusion detection. Many supervised and
unsupervised learning algorithms already applied to

classifying intrusions but their performance were not very

satisfactory due to the challenging problem of detection
novel attacks with low false alarms. In order to evaluate

the performance of improved self adaptive Bayesian

algorithm (ISABA) for intrusion detection, we performed
5-class classification using KDD99 benchmark dataset.

The training and testing data are taken randomly from the

KDD99 dataset with different ratios of positive versus
negative instance. The training data are used to train the

algorithms, and the test data are used to evaluate the

performance of the algorithms. Table I shows the number
of examples in 10% training data and 10% testing data of

KDD99 dataset. There are some new attack examples in

testing data, which is no present in the training dataset.

TABLE I.
NUMBER OF EXAMPLES IN TRAINING AND TESTING DATA

Attack Types
Training

Examples

Testing

Examples

Normal 97277 60592

Probing 4107 4166

Denial of Service 391458 237594

User to Root 52 70

Remote to User 1126 8606

Total Examples 494020 311028

In the experiments, first we performed the

classification on KDD99 testing data using naïve

Bayesian classifier (NB), adaptive Bayesian algorithm

(ABA), and improved self adaptive Bayesian algorithm

(ISABA) and compare their results shown in Table II. It

is clear that the proposed new algorithm is approximately

2 times faster in training and testing than conventional

algorithms.

28 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

TABLE II.
TRAINING AND TESTING TIME COMPARISON

 Training Time (s) Testing Time (s)

Naïve Bayesian

Classifier
42.9 18.4

Adaptive Bayesian

Algorithm
24.6 9.6

Improved Self Adaptive

Bayesian Algorithm
28.4 7.5

The performance comparison between NB and ISABA

on KDD99 (using 41 attributes) testing data is listed in

Table III, which shows that the ISABA performs

balanced and high classification rates on 5 attack classes

of KDD99 data and minimize the false positives.

TABLE III.
PERFORMANCE COMPARISON BETWEEN NB AND ISABA

 Normal Probe DoS U2R R2L

Naïve Bayesian

Classifier (DR %)
99.25 99.13 99.69 64 99.11

Naïve Bayesian

Classifier (FP %)
0.08 0.45 0.04 0.14 8.02

Improved Self Adaptive

Bayesian Algorithm

(DR %)

99.62 99.22 99.49 99.17 99.15

Improved Self Adaptive

Bayesian Algorithm

(FP %)

0.05 0.36 0.03 0.10 6.91

We tested our proposed algorithm using the reduced

dataset of 12 attributes and 17 attributes in KDD99

dataset, which increase the classification rate for intrusion

classes that are summarized in Table IV.

TABLE IV.
PERFORMANCE OF ISABA USING REDUCED DATASETS

 12 Attributes 17 Attributes

Normal 99.97 99.96

Probe 99.91 99.95

DoS 99.99 99.98

U2R 99,36 99.46

R2L 99.53 99.69

We also compare the detection performance among
Support Vector Machines (SVM), Neural Network (NN),

Genetic Algorithm (GA), Naïve Bayesian Classifier

(NB), and improved self adaptive Bayesian algorithm
(ISABA) on KDD99 dataset [40],[41],[42]. In total, 40

attributes of KDD99 dataset have been used. Each

connection can be categorized into five main classes (one
normal class and four main intrusion classes: probe, DoS,

U2R, and R2L). The experimental setting uses 494020

data samples for training and 311028 data samples for
testing. The comparative results are summarized in Table

V.

TABLE V.
COMPARISON OF SEVERAL ALGORITHMS

 SVM NN GA NB ISABA

Normal 99.4 99.6 99.3 99.55 99.82

Probe 89.2 92.7 98.46 99.43 99.72

DoS 94.7 97.5 99.57 99.69 99.49

U2R 71.4 48 99.22 64 99.47

R2L 87.2 98 98.54 99.11 99.35

Figure 1. ROC curves for alert classification systems.

The ROC (relative operating characteristic) curve

shows the relationship between detection rate and false

positives on 10% KDD99 testing data in figure 1.

VI. CONCLUSION AND FUTURE WORKS

The main advantage of this proposed algorithm is to

generate a minimal rule set for network intrusion

detection, which can detect network intrusions based on

previous activities. Proposed algorithm analyzes the

large volume of network data and considers the complex

properties of attack behaviors to improve the performance

of detection speed and detection accuracy. This paper

presents a new intrusion detection algorithm based on

intelligent machine learning algorithms. In this paper we

have concentrated on the development of the performance

of naïve Bayesian classifier, which adjusts the weights of

training examples until either all the test examples are

correctly classified or the target accuracy on test

examples is achieved. The experimental results marked

that this algorithm minimized false positives, as well as

maximize balance detection (classification rates) on the 5

classes of KDD99 data. The future research issues will be

applying domain knowledge of security to improve the

detection accuracy, and visualizing the procedure of

intrusion detection in real world problem domains.

ACKNOWLEDGMENT

Support for this research received from Ministry of
Science and Information & Communication Technology,

Government of Bangladesh. We would like to thank Prof.

Dr. Chowdhury Mofizur Rahman, United International

University, Bangladesh for fruitful discussions and

valuable help in the implementation of this algorithm.

REFERENCES

[1] James P. Anderson, “Computer security threat monitoring

and surveillance,” Technical report, James P. Anderson

Co., Fort Washington, Pennsylvania, April 1980.

[2] Cannady J., “Artificial neural networks for misuse

detection,” Proceedings of the ’98 National Information

System Security Conference (NISSC’98), Arlington:

Virginia Press, 1998, pp. 443-456.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

ISABA

NB

GA

NN

SVM

False Positives

D
e
te

c
ti
o
n
 R

a
te

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 29

© 2010 ACADEMY PUBLISHER

[3] Shon T, Seo J, and Moon J, “SVM approach with a genetic

algorithm for network intrusion detection,” Proceedings of

the 20th International Symposium on Computer and

Information Sciences (ISCIS 05), Berlin: Springer Verlag,

2005, pp. 224-233.

[4] Yu Y, and Huang Hao, “An ensemble approach to

intrusion detection based on improved multi-objective

genetic algorithm,” Journal of Software, Vol.18, No.6,

June 2007, pp.1369-1378.

[5] J. Luo, and S. M. Bridges, “Mining fuzzy association rules

and fuzzy frequency episodes for intrusion detection,”

International Journal of Intelligent Systems, 2000, pp. 687-

703.

[6] W.K. Lee, and S. J. Stolfo, “A data mining framework for

building intrusion detection model,” Proceedings of the

IEEE Symposium on Security and Privacy, Oakland, CA:

IEEE Computer Society Press, 1999, pp. 120-132.

[7] Kononenko I, “Comparison of inductive and naïve

Bayesian learning approaches to automatic knowledge

acquistion,” in Wieling, B. (Ed), Current trend in

knowledge acquistion, Amsterdam, IOS press, 1990.

[8] Langely, P., Iba, W., Thomas, and K., “An analysis of

Bayesian classifier,” in Proceedings of the 10th national

Conference on Artificial Intelligence (San Matro, CA:

AAAI press) 1992, pp. 223-228.

[9] Denning, and Dorothy E., “An Intrusion Detection Model,”

Proceedings of the Seventh IEEE Symposium on Security

and Privacy, May 1986, pp. 119-131.

[10] Sebring, Michael M., Whitehurst, and R. Alan., “Expert

Systems in Intrusion Detection: A Case Study,” The 11th

National Computer Security Conference, October, 1988.

[11] Smaha, and Stephen E., “Haystack: An Intrusion Detection

System,” The 4th Aerospace Computer Security

Applications Conference, Orlando, FL, December, 1988.

[12] Vaccaro, H.S., and Liepins, G.E., “Detection of Anomalus

Computer Session Activity,” The 1989 IEEE Symposium

on Security and Privacy, May, 1989.

[13] Heberlein, and Let al., “A Network Secutiry Mnitor,”

Proceedings of the IEEE Computer Society Symposium,

Research in Security and Privacy, May 1990, pp. 296-303.

[14] Lunt, and Teresa F., “IDES: An Intelligent System for

Detecting Intruders,” Proceedings of the Symposium on

Computer Security; Threats, and Countermeasures; Rome,

Italy, November 22-23, 1090, pp.110-121.

[15] Teng, Henry S., Chen, Kaihu, Lu, and Stephen C-Y,

“Adaptive Real-time Anomaly Detection using Inductively

Generated Sequential Patterns,” 1990 IEEE Symposium on

Recearch in Security and Privacy, Oakland, CA, pp. 296-

304.

[16] Snapp, Steven R, and Ho., “DIDS (Distributed Intrusion

Detection System) – Motivation, Architecture, and An

Early Prototype,” The 14th National Computer Security

Conference, October, 1991, pp.167-176.

[17] Jackson, Kathleen, DuBois, David H., Stallings, and Cathy

A., “A Phased Approach to Network Intrusion Detection,”

14th National Computing Security Conference, 1991.

[18] Lunt, and Teresa F., “Detecting Intrusion in Computer

Systems,” 1993 Conference on Auditing and Computer

Technology, SRI International.

[19] Paxson, and Vern, “Bro: A System for Detecting Network

Intruders in Real-Time,” Proceedings of The 7th USENIX

Security Symposium, San Antonio, TX, 1998.

[20] Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack,

Leonard, Wu, and Ningning, “ADAM: Detecting Intrusion

by Data Mining,” Proceedings of the IEEE Workshop on

Information Assurance and Security, West Point, New

York June 5-6, 2001.

[21] Jackson, T., Levine, J., Grizzard, J., Owen, and H., “An

investigation of a compromised host on a honeynet being

used to increase the security of a large enterprise network,”

Proceedings of the 2004 IEEE Workshop on Information

Assurance and Security, IEEE, 2004.

[22] Krasser, S., Grizzard, J., Owen, H., and Levine. J., “The

use of honeynets to increase computer network security

and user awareness,” Journal of Security Education,

Volume 1, pp. 23-37, 2005.

[23] Thomas H. Ptacek, and Timothy N. Newsham, “Insertion,

evasion and denial of service: Eluding network intrusion

detection,” Technical report, Secure Networks Inc., 1998.

[24] D.Y. Yeung, and Y.X. Ding, “Host-based intrusion

detection using dynamic and static behavioral model”,

Pattern Recognition, 36, pp. 229-243, 2003.

[25] SunSoft. SunSHIELD Basic Security Model. SunSoft.

1995.

[26] Diego Zamboni. “Using Internal Sensors for Computer

Intrusion Detection,” PhD thesis, Purdue University, 2001.

[27] Tadeusz Pietraszek, and Chris Vanden Berghe. “Defending

against injection attacks through context-sensitive string

evaluation”, In Recent Advances in Intrusion Detection

(RAID2005), volume 3858 of Lecture Notes in Computer

Science, pp. 124-145, Seattle, WA, 2005. Springer-Verlag.

[28] Sebastiaan Tesink, “Improving Intrusion Detection System

throung Machine Learning,” Technical Report Series no.

07-02, ILK Research Group, Tilburg University, March

2007.

[29] J. R. Quinlan, “Induction of Decision Tree,” Machine

Learning Vol. 1, pp. 81-106, 1986.

[30] J. R. Quinlan, “C4.5: Programs for Machine Learning,”

Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[31] L. Breiman, J. H. Friedman, R. A. Olshen and C.J. Stone,

“Classification and Regression Trees,” Statistics

probability series, Wadsworth, Belmont, 1984.

[32] John Shafer, Rakesh Agarwal, and Manish Mehta,

“SPRINT: A Scalable Parallel Classifier for Data

Maining,” in Proceedings of the VLDB Conference,

Bombay, India, September 1996.

[33] D. Turney, “Cost-Sensitive Classification: Empirical

Evaluation of a Hybrid Genetic Decision Tree Induction

Algorithm,” Journal of Artificial Intelligence Research, pp.

369-409, 1995.

[34] J. Bala, K. De Jong, J. Haung, H. Vafaie and H. Wechsler,

“Hybrid Learning using Genetic Algorithms and Decision

Trees for Pattern Classification,” in Proceedings of 14th

International Conference on Artificial Intelligence, 1995.

[35] C. Guerra-Salcedo, S. Chen, D. Whitley, and Stephen

Smith, “Fast and Accurate Feature Selection using Hybrid

Genetic Strategies,” in Proceedings of the Genetic and

Evolutionary Computation Conference, 1999.

[36] S. R. Safavian and D. Landgrebe, “A Survey of Decision

Tree Classifier Methodology, ” IEEE Transactions on

Systems, Man and Cybernetics 21(3), pp. 660-674, 1991.

[37] Duda, R., P.E. Hart, and D.G. Stork, “Pattern

classification,” Second edn. John Wiley & Sons, 2001.

[38] Dewan Md. Farid, and Mohammad Zahidur Rahman,

“Learning Intrusion Detection Based on Adaptive Bayesian

Algorithm,” Proceedings of 11th International Conference

on Computer and Information Technology (ICCIT 2008),

Khulna, Bangladesh, 25-27 December, 2008, pp.652-656.

[39] The KDD Archive. KDD99 cup dataset. 1999.

http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Da

ta

[40] Mukkamala S, Sung AH, and Abraham A, “Intrusion

dection using an ensemble of intelligent paradigms,”

30 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

Proceedings of Journal of Network and Computer

Applications, 2005, 2(8): pp. 167-182.

[41] Chebrolu S, Abraham A, and Thomas JP, “Feature

deduction and ensemble design of intrusion detection

systems.” Computer & Security, 2004, 24(4), pp. 295-307.

[42] Lee WK, Stolfo SJ, and Mok KW, “A data mining

framework for building intrusion detection models,”

Proceedings of the ’99 IEEE Symp. On Security and

Privacy, Oakland: IEEE Computer Society. 1999, pp. 120-

132.

Dewan Md. Farid was born in 1979. He received the B.Sc.

Engineering in Computer Science and Engineering from Asian

University of Bangladesh in 2003 and Master of Science in

Computer Science and Engineering from United International

University, Bangladesh in 2004. He is continuing Ph.D. at

Department of Computer Science and Engineering,

Jahangirnagar University, Bangladesh. His major field of study

is artificial intelligence, machine leaning, and data mining.

He is a faculty member at Department of Computer Science

and Engineering, United International University, Bangladesh.

He has published two conference papers, which include

Learning Intrusion Detection Based on Adaptive Bayesian

Algorithm, etc.

Mr. Farid is a member of Bangladesh Computer Society and

Research Scholar Association, Jahangirnagar University. In

2008, he received the Fellowship of National Science and

Information & Communication Technology (NSICT) from

Ministry of Science and Information & Communication

Technology, Government of Bangladesh.

Mohammad Zahidur Rahma is currently a Professor at

Department of Computer Science and Engineering,

Jahangirnager University, Banglasesh. He obtained his B.Sc.

Engineering in Electrical and Electronics from Bangladesh

University of Engineering and Technology in 1986 and his

M.Sc. Engineering in Computer Science and Engineering from

the same institute in 1989. He obtained his Ph.D. degree in

Computer Science and Information Technology from University

of Malaya in 2001. He is a co-author of a book on E-commerce

published from Malaysia. His current research includes the

development of a secure distributed computing environment and

e-commerce.

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 31

© 2010 ACADEMY PUBLISHER

