
Decision Tree Based Routine Generation (DRG)

Algorithm: A Data Mining Advancement to

Generate Academic Routine and Exam-time

Tabling for Open Credit System

Ashiqur Md. Rahman
North South University, Computer Science and Engineering Department, Dhaka, Bangladesh

Email: ashiq_rahman@yahoo.com

Sheik Shafaat Giasuddin and Rashedur M Rahman
North South University, Computer Science and Engineering Department, Dhaka, Bangladesh

Email: rshafaat@gmail.com, rashedurrahman@yahoo.com

Abstract—In this paper we propose and analyze techniques

for academic routine and exam time table generation for

open credit system. The contributions of this paper are

multi-folds. Firstly, a technique namely Decision tree based

Routine Generation (DRG) algorithm is proposed to

generate an academic routine. Secondly, based on the DRG

concept, Exam-time Tabling algorithm (ETA) is developed

to implement conflict free exam-time schedule. In open

credit course registration system any student may choose

any course in any semester after completion of pre-requisite

course(s). This makes the research more challenging and

complex to accomplish. Academic routine and exam time-

table generation are in general NP-Hard problems, i.e., no

algorithm has been developed to solve it in reasonable

(polynomial) amount of time. Different methods based on

heuristics are developed to generate good time-table. In this

research we developed heuristic based strategies that

generate an efficient academic routine and exam time-table

for a university that follow open credit system. OLAP

representation helps to classify the courses along with the

proposed algorithm to eliminate some constraints. Day-

based pattern, minimum manhattan distance between

courses of same teacher; minimum conflicted course

distribution has been stage-managed to classify the courses.

Our ETA algorithm is based on decision tree and sequential

search techniques.

Index Terms— OLAP, Crosstable, Conflict List, Favorite

Slot, Faculty Choice, Course Color, Day-time slot pattern.

I. INTRODUCTION

 This paper depict Decision Tree based Routine

Generation (DRG) algorithm to generate a university

class routine within a tolerable range of some constraints

and conflict free Exam-Time Tabling algorithm (ETA). A

decision-tree based classification algorithm has been

introduced to solve this NP-Hard Problem [22]. CPL

(constraint logic programming) is a respected technology

for solving hard problems which include many (non-

linear) constraints [1]. Constraints propagation technique

has been applied to overcome the preferential

requirements for slots of teachers, courses from pre-

advising by students and class room allocation. Versatile

choices for courses may lead to a deadlock situation.

Golz used priorities heuristic ordering [2] where

Abdennadher introduced an optimized cost-based rule

mining [3,4] to solve these type of problems. On the other

hand, knowledge based in a hyper heuristic course

scheduling using case based reasoning is used to

maximize the rule covering area [5]. Further expansion is

possible to accomplish the exam-time tabling using

OLAP technique [16]. Exam-time tabling is another

highly constrained combinatorial optimization problem.

The major objective is to confirm 100% conflict free

exam schedule with a fixed interval of days. Limited

room capacity and room availability problems must be

overcome to place exams on each time slot. The

computational time is reduced by using heuristic based

search in comparison with the permutation of courses for

exam-time tabling. Identification of a novel heuristic is

the most challenging task. Using OLAP, proposed

conflict free Exam-Time Tabling algorithm (ETA)

produces substantial results to accommodate all students

with zero conflict tolerance.

DRG presents key features of generating class routine

with minimum computational time. Heterogeneous

distribution of courses is classified with maximum

satisfaction of all constraints. Section II describes about

previous related works and preliminaries in details.

Section III illustrates the problem dimensions with the

data filtering technique used in the paper to summarize

further manipulation; pursued by the proposed algorithm,

DRG, and the classification procedure to find the feasible

solution in Section IV followed by Exam-Time Tabling

algorithm (ETA) in section V. Extensive computational

12 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.1.12-22

results are conducted to study the performance analysis

for both algorithms in section VI. Finally the paper

concludes the work in section VII.

II. PRELIMINARIES & RELATED WORK

A university class routine generation problem – as

considered in this work – consists of assigning each

course in a set of slots (classes) in a limited class rooms

within the teachers’ favorite time slots. This highly

constrained problem is optimized by simulated annealing

and genetic algorithm [6,7]. Seven different major and

minor objectives are discovered and deadlock situation is

overcome by randomly exploring the composite

neighborhood [8]. The most closely related attempt with

this work appears to be the constraint programming

approach used by Boizumault [9] and the simulated

annealing approaches explored by Dowsland and

Thompson [10,11]. The principal innovation in DRG is

the sequential use of these two methods. DRG may select

some poor slots, with respect to teachers or students,

under a tolerable conflict range. A similar sequential

approach has been taken in DRG on other problems:

White and Zhang [12] used constraint programming to

second a starting point for tabu search in solving course

timetabling problems. For a high school timetabling

Yoshikawa tested several combinations of two stage

algorithms, including a greedy algorithm followed by

simulated annealing and a constraint programming phase

followed by a randomized greedy hill climbing algorithm

(which is deemed to be the best combination of those

used). In a similar vein, Burke, Newell and Weare [13]

used their work on sequential construction heuristics [14]

to generate initial solutions for their memetic algorithm

[15].

Wide variety of courses increases the emergence to

provide adequate exam-time tables for the educational

institutions. The development of an examination

timetable requires the institution to schedule a number of

examinations in a given set of time slots, so as to satisfy a

given set of constraints. A common constraint for any

educational institution is that none of the students can

have more than one exam scheduled at the same time.

Many other constraints were presented by Marlot in [17].

Sequential construction heuristics have been applied to

the publicly available data in a variety of forms by

selecting exams from a randomly chosen subset of all

exams by Burke [14] where Carter [19, 20] allow limited

backtracking de-allocation of exams. On the other hand

Caramia [18] includes an optimization step after each

exam allocation. Sequential construction heuristics order

the exams in some way and attempt to allocate each exam

to an ordered session by satisfying all the constraints.

Using a memetic algorithm for exam timetabling Burke,

Newall and Weare [15] proposed a hybrid algorithm

consist of a simulated annealing phase to improve the

quality of solution, and a hill climbing phase for further

improvement. To avoid local maxima problem these

solutions require random jitter [21] whereas the proposed

algorithm has no impact on randomization.

III. PROBLEM DESCRIPTION & DATA FILTERING

The routine maps a set of courses chosen by students

and teachers to a specific room and time-slot. A major

objective, in developing an automated system, is to

minimize the hassle of separating conflicted courses from

choices by students. In this paper the major identified

problems are (a) Number of lectures per week for each

course are fixed, (b) Room overlapping is prohibited, (c)

Fitting the routine with teacher’s favorite timeslots, and

(d) trying to assert different timeslots to same level of

courses. On the other hand, the minor objectives are (e)

day-timeslots pattern for the course, (f) room capacity,

(g) avoiding gaps between classes of same teacher, if

possible, (h) single class for student per day and (i)

ensuring compactness of interclass time difference.

The required scattered data contains total courses

(course choices from pre-advising by students) C = {c1,

c2, c3, …, cn} where the dependencies between courses

are also maintained. Here course dependency can be

defined as Ci, Ci Cj where Ci, Cj C. For this paper

the students’, S = {S1, S2, S3, …, Sz}, course choices can

be derived as Sj = {ci} where i, ci C and 1 i n and

|Sj| = max_course_choice for the student as shown in Fig.

1. Teachers’ favorite timeslots are grouped according to

day-timeslots pattern. Here group A and B is formed for

the teacher tk, where T = {t1, t2, t3, …, tm}, A(tk) =

{favorite time_slots of tk | sequential time slots for

Saturday, Monday and Wednesday} and B(tk) = {favorite

time slots of tk | sequential time slots for Sunday, Tuesday

and Thursday}, whereas time_slots = {1, 2, …, 30}

contains 5 sequential slots per day starting from Saturday.

Here Friday is considered as an off-day. Priority of the

teacher has been introduced by P(tk) = {1, 2, …, 10}

where a higher value represents higher priority. An

exceptional priority is also introduced as 11 reflecting

part-time faculty, whose projected time cannot be

changed. Fig. 2. and Fig. 3. shows the teachers’ wish-list

and the course distribution among the teachers’. Target of

this work is to find the values of the “class slot routine”

field of the Fig. 3. The resultant routine vector, V =

{{ci}q} i, ci C and 1 i n and 1 q 30, consists of

the course classification as per day required for each

course and class room availability.

In this paper, this huge dimensionality of dataset is

reduced by initiating an OLAP (On-Line Analytical

Processing) representation [16]. Here a Crosstable (Cr) of

(n × n) courses are initialized. Cr (n × n) = {conflicti, j}

where 1 i,j n and ‘n’ is the total number of courses

requested by the student (or is ‘n’ number of courses

offered by the department). Here the conflict of Cri,j is a

positive integer that reflects the common students

between ci and cj. The diagonal values of Cri,i show the

total number of students requesting for the course ci.

Cri,j, [1 j n] is the total conflict for the course ci [

i, i j]. Maximum “chaos” (conflict) courses can be

easily sorted out from this two dimensional conflict

distribution (Crosstable).

To minimize the potential for time conflict, an

admissible heuristic (h) is imposed to regroup the courses

according to their dissimilarity. Graph Coloring

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 13

© 2010 ACADEMY PUBLISHER

algorithm is used to cluster where the conflict in

Crosstable confirms the weights of the edges in the

graph. Here the admissible heuristic is applied as the

maximum number of colors needed to find the minimum

number of groups of courses. Here faculty redundancy is

also considered as weight, that is, same faculty of

different courses cannot be in the same group.

Student

ID
Course ID Semester ID

S1 C1 1

S1 C3 1

S2 C1 1

S2 C3 1

S3 C2 1

S3 C4 1

S3 C5 1

S4 C4 1

Figure 1. Courses Pre-Advised by the Students.

Teacher ID
Favorite

Slots
Priority

t1 7,8,9,13,17,18,19,22,23,24 7

t2 2,12,22,29 11

t3 5,10,15,20,25,30 9

t4 2,5,8,9,12,15,18,22,23,24,25 10

Figure 2. Teachers’ Slots Preferences along with Priority.

Teacher

ID
Course ID

Class

Slot

Routine

Sem.

ID

Class

per

Week

t1 c1 7,17 1 2

t1 c4 8,18,24 1 3

t2 c2 2,12 1 2

t3 c3 5,15 1 2

t4 c5 5,15,25 1 3

Figure 3. Courses and Classes Distribution for the Teachers.

The output of Graph Coloring Algorithm assigns a color

to all courses individually in Fig. 5(a); same colored

courses are treated as a group. Fig. 4. shows the resultant

Crosstable. Each group may consist more than the

threshold limit members with tolerable conflict range.

Here the number of the rooms is considered as the

threshold value. In this work the tolerable conflict range

is set to 0.

Course

ID
c1 c2 c3 c4 c5

Total

Conflict

c1 40 5 7 0 0 12

c2 5 50 0 2 1 8

c3 7 0 35 5 0 12

c4 0 2 5 40 1 8

c5 0 1 0 1 45 2

t1 t2 t3 t1
t4

Figure 4. Crosstable for n × n Courses.

This easy formation of coloring may lead to a measure

of the undesirability of having classes overlapped in the

routine. It will be effective to try to fit the most “chaos”

courses of high priority teachers in the routine first.

Random selection may be used to select teacher having

same priority. The data used in this work to test the

algorithm is real.

Constraint programming model and data filtering

techniques for routine generation motivate the increasing

interest to develop an exam-time tabling. In routine

generation algorithm the colored courses refer the non-

conflicting sets of courses. Faculty redundancy is not

considered as constraint any more but the room capacity.

For ETA the graph consisting edge weight between two

courses Dy,z = Cy + Cz – Cri,j where Cy and Cz represents

the number of students of Ci and Cj courses respectively.

(a) (b)

Figure 5(a). Courses Graph Color for DRG. (b). Courses Graph

Color for ETA.

i,j Dy,z total_room_capacity and |Dy,z|

room_capacity shown in Fig. 5(b). Important factor of

grouping courses is that the number of members in each

group must not exceeds the total number of room

availability. The minimum requirement of days for 100%

concurrent conflict free exam is greater than or equal to

the number of groups that is the numbers of color

requires coloring the graph. If each day consists of more

than one slot of examination and the provided day is less

than the numbers of color then the Crosstable is able to

ensure the numbers of consecutive examinations for an

individual or groups of students on the day. Each exam

slot holds a group of courses only, with zero conflict. But

the consecutive slot may embrace some conflicts among

the groups due to differ in color. By using dynamic data

structure the number of consecutive examinations

between different groups of courses can be easily sorted

out described in section V.

IV. THE DECISION TREE BASED ROUTINE GENERATION

(DRG) ALGORITHM

The aim of the proposed DRG algorithm is to classify

all the courses with a degree of satisfaction. Enormous

permutation of courses may lead to a time consuming

process. So a standardized branch & bound condition

may be applied to reduce the problem surface area. The

DRG sequentially follows 4 sets of cascading decision

trees. Depending upon the emergence and success rate,

the result of one tree is propagated to another tree as

shown in Fig. 6. These transitions may lead to a solution

but also may degrade the satisfaction threshold. A control

portion helps to justify the problem solution needed to be

more explored or not.

Each transition from one decision tree to another

shrinks the overall problem surface area by eliminating

the classified courses. Classical decision tree takes certain

decision depending upon some gain factor. Beside this,

the proposed trees concentrate on the reduced problem

14 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

dimension which helps to classify the unclassified

courses with tolerable time complexity.

The key factor for each of the four decision trees is (a)

PDRG: Teacher Priority, (b) CDRG: Highest conflicted

course, (c) TDRG: Tolerable conflict and (d) NTRG:

Neighbor slots by ignoring teacher’s wish list. A

university routine is created and remains unchanged for a

particular semester. If the placed courses do not match

the favorite slots of the teacher, the evolved

dissatisfaction is much higher for a higher prioritized

teacher. So, we used PDRG as our first decision tree.

From an observation it is clear that the placing conflicted

course in a dense routine vector is difficult as it can

introduce student conflict in the routine. So, it will wise

to consider the higher conflicted courses first as they are

the principle component which reflects the major

problem surface area. By doing this the problem surface

area is reduced easily. For this reason CDRG is the

second selection. The decision tress TDRG and PDRG

are quite similar. But TDRG introduces considerable

student conflict in to the routine vector.

Figure 6. Program flow of DRG

 Therefore, TDRG plays the third role in the whole

algorithm. After all the three decision trees, the

unclassified and partially classified courses shows, there

is no place (slot) according to the teacher’s favorite slots.

Exploring over the contour of the teachers favorite slots

is necessary in order to achieve the course’s class per

week constraints. Only student conflict is considered in

TDRG where the day-time pattern is maintained strictly.

On the other hand, NTDRG will dissatisfy the teachers &

may not follow the day-time pattern. Hence, NTDRG is

the final decision tree.

A. Priority regulated DRG (PDRG)

The first decision tree accumulates the high prioritized

teacher tk and most conflicted course ci of tk to the routine

vector with maximum fitness value. The max_fit function

tries to discover the day-time pattern for the course. If the

consequential day-time slots are already occupied by

other courses, it checks the corresponding course color. If

the color of the courses is same it classifies the course ci

with a degree. Here the fitness value of a course is

referred as degree. The highest returned degree of a day-

time slot, as maximum fitness value, is selected as the

course class for ci. This operation provides a pattern-

based course distribution, A(tk) or B(tk), in the routine

although some courses may be placed partially as per

their class_per_week and max_class_per_slot constraints.

In this manner, the low priority teachers may suffer by

not getting the classes in a sequential manner. But in

practice 26% of the total courses can be placed with zero

conflict and with a high level of satisfaction. The level of

satisfaction is a quantitative measure of placement for a

course with respect to the teachers’ favorite slots. The

definitive PDRG tree is shown in Fig. 7. The partially

placed and not yet placed courses then elected as

cascaded input to second level of exploration. The pseudo

code presented in algorithm 1 describes actions to be

taken by Priority regulated DRG algorithm (PDRG). The

computational time of this operation requires O (n × m)

where the maximum number of courses per teacher is ‘n’

and the number of faculties is ‘m’.

PDRG()

{

// select the high prioritized teacher;

// select most conflicted course of the teacher;

// select the corresponding faculty’s low frequent favorite

// time slot

1. Find max-patterned day time slots;

 IF the time slot is empty PLACE the course;

2. ELSE find the color of the course that already placed

 on the slot;

2.1. IF the color is same AND on the range of the

room AND the course is not already placed on

that day before, PLACE the course;

2.2. ELSE select the next max-pattern;

3. every time after PLACEing the course, remove the

slot from the faculty favorite slot list;

4. repeat the step 1,2 until the course slot remain

unchanged;

}
Algorithm 1. Priority regulated DRG (PDRG)

B. Chaos eradication DRG (CDRG)

In this decision tree, the less demanded time slots (with

respect to number of rooms) are labeled as “cold”

whereas high demanded ones are labeled as “hot”.

Among the remaining most conflicted courses (may not

or partially placed) with low frequent time slots of the

corresponding teacher are chosen for the second decision

tree. If the considerable slot is empty then the course is

placed in that slot, otherwise the colors have to be

matched. If the color of the courses placed in the slot

matches with the concerning course, the latter course is

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 15

© 2010 ACADEMY PUBLISHER

classified, and if not other options are taken into

consideration for the teacher. The considerable courses in

CDRG are the overlooked courses from PDRG, where

PDRG confirms the day-time pattern is not possible for

the courses due to color and the scattered choice of slots

by the teachers. So day-time slots pattern are ignored in

this operation. After using this second decision tree few

courses may remain unchanged. Nevertheless this time

the number of remaining courses is much less than the

previous one. Around 32% of the remaining courses are

placed successfully by CDRG. The combined effort of

decision trees still provides high confidence. Fig. 8.

demonstrates the Chaos eradication DRG. The pseudo

Figure 7. Decision Tree of PDRG

code presented in algorithm 2 describes actions to be

taken by Chaos eradication DRG (CDRG). Now this tree

holds time complexity of O((n – d) × (m – l)) where the

maximum number of courses per teacher is ‘n’, the

number of faculties is ‘m’ and ‘d’ is the already classified

courses of each teacher by the PDRG and ‘l’ is the

number teacher whose all courses were placed in the

routine by PDRG.

CDRG()

{

// select the most conflicted courses not yet placed or

// partially placed;

// select the remaining low frequent favorite slot of the

// faculty;

1. IF the slot is empty PLACE the course;

2. ELSE find the color of the course that already

 placed on the slot;

2.1. IF the color is same AND on the range of the

room AND the course is not already placed on

that day before, PLACE the course;

2.2. ELSE select the next low frequent favorite slot

of the faculty;

3. Repeat the step 1,2 until the course remain

 unchanged state;

}
Algorithm 2. Chaos eradication DRG (CDRG)

C. Tolerable DRG (TDRG)

The first two decision trees are aimed at automated

generations of a better assignment. The second approach

seeks to find an assignment of vector which may be more

difficult to locate in the search space using the already

assigned vector. The third decision tree allows the

remaining courses according to the priority of the

teachers to find a place into the routine within a tolerable

conflict range of the subsequent teachers’ favorite slots.

Here the course color is overlooked. This classification

now introduces errors into the system by considering the

tolerable students conflicts only. Important issue is that,

this manipulation may iterate several times to include as

many courses possible to place in to the routine. 22% of

the unclassified and partially classified courses are

labeled with a tolerable error.

Figure 8. Decision Tree of CDRG

The flowchart presentation of this decision tree is

shown in Fig. 9. The pseudo code presented in algorithm

3 describes actions to be taken by Tolerable DRG

(TDRG). The average time complexity of TDRG is

approximately O (t × (n – (d + o)) × (m – (l + p)) where

the maximum number of courses per teacher is ‘n’, the

number of faculties is ‘m’ and ‘d’ is the already classified

courses of each teacher by the PDRG and ‘l’ is the

number teacher whose all courses were placed in the

routine by PDRG. ‘o’ is the number of courses placed by

CDRG and ‘p’ is the number of teachers whose courses

are completely placed by CDRG. Here ‘t’ is the number

of TDRG iterates.

TDRG()

{

// select the most conflicted courses not yet placed or

16 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

// partially placed of a high prioritized teacher;

// select the remaining low frequent favorite slot of the

// faculty;

1. IF the slot is empty PLACE the course;

2. ELSE IF on the range of the room AND conflict

among the courses are in tolerable range AND the

course is not already placed on that day before,

PLACE the course;

3. ELSE select the next low frequent favorite slot of the

faculty;

4. Repeat the step 2,3 until the course remain

 unchanged state;

}
Algorithm 3. Tolerable DRG (TDRG)

D. Neighboring Tour DRG (NTDRG)

The fourth possibility search allows the courses to look

over the contour of the teachers’ favorite slots to find the

least conflicted slots. Although the students’ scattered

choices is overlooked in TDRG but the placed courses do

not displease teachers’ preference. The final decision tree

is modeled in such a manner so that the rest of unplaced

courses are going to be graded into the routine vector

within a minimum distance of the teachers’ choice.

Manhattan Distance (MD) is calculated for this placement

of courses. MD = total slot gap of tk on each day i.e. the

total unused slots of a teacher on a particular day.

Manhattan Distance is a vital performance measuring tool

to find the slot gaps per day for an individual teacher. The

optimization can be done by keeping Cumulative

Manhattan Distance (cMD) for the teachers as low as

possible where cMD = all used day by t MD(t) It is assured

that the courses were not yet placed on that day earlier.

From the remaining courses, a course is selected

according to the priority of the teacher.

Figure 9. Decision Tree of TDRG

Complement of the intersection between the classification

value of that course and the corresponding teachers’ used

slots are considered as new host slots. The neighboring

slots of the new hosts are the most likely candidates.

Among the candidates the most “cold” (less desired slots)

slots are considered as candidates.

Considerable issues in this placement are tolerable

conflict range, allocable number of rooms and day-time

misjudgment. Fig. 10. demonstrates the overall scenario

of Neighboring Tour DRG (NTDRG). The approximate

time complexity is O(2 × (n – (d + o + u)) × (m – (l + p +

v)) O((n – (d + o + u)) × (m – (l + p + v)) where the

maximum number of courses per teacher is ‘n’, the

number of faculties is ‘m’ and ‘d’ is the already classified

courses of each teacher by the PDRG and ‘l’ is the

number of teacher whose all courses were placed in the

routine by PDRG. ‘o’ is the number of courses placed by

CDRG and ‘p’ is the number of teachers whose courses

are completely placed by CDRG. ‘u’ is the number of

courses placed by TDRG and ‘v’ is the number of

teachers whose courses are completely placed by TDRG.

The pseudo code presented in algorithm 4 describes

actions to be taken by Neighboring Tour DRG (NTDRG).

NTDRG()

{

// select the courses not yet placed or partially placed;

// select the corresponding faculty routine;

1. Find the candidate slot (where candidate slot is the

neighboring slots of the used slots of the faculty);

2. IF on the range of the room AND conflict among the

courses are in tolerable range AND the course is not

already placed on that day before, PLACE the

course;

3. ELSE select the next candidate slot of the faculty;

4. Repeat the step 2,3 until the course remain

 unchanged state;

}
Algorithm 4. Neighboring Tour DRG (NTDRG).

Figure 10. Decision Tree of NTDRG

These four sequential decision trees feed forward to an

acceptable solution. It is ensured that the course is not yet

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 17

© 2010 ACADEMY PUBLISHER

place on that very day whenever the “PLACE” decision

is taken. The Overall Complexity is shown in equation

(1).

= PDRG + CDRG + TDRG + NTDRG

= O(mn) + O((n-d)(m-l)) + O(t(n-(d+o))(m-

 (l+p))) + O((n-(d+o+u))(m-(l+p+v)))

= mn + mn – nl – md + dl + t(mn – nl – np – md

+ dl + dp – mo + ol + op) + mn – nl – np – nv

– md + dl + dp + dv – mo + ol + op + ov – mu

+ ul + up + uv

= (t + 3)mn - (d + td + to + d + o + u)m – (l + tl

 + l + tp + v)n + (dl + tdl + tdp + tol + top + dl

 + dp + dv + ol + op + ov + ul + up + uv)

 = A.mn – B.m – C.n + K --------------------- (1)

 where,

 A = t + 3;

 B = (t + 2)d + (t + l)o + u;

 C = (t + 2)l + tp + v;

and K = dl + tdl + tdp + tol + top + dl + dp + dv + ol

 + op + ov + ul + up + uv

The cumulative time complexity of DRG is O(A.mn -

B.m - C.n), The cumulative time complexity of DRG

mainly depend upon the number of iterations in TDRG

algorithm and number of courses placed by each and

every decision tree. The algorithm degrades due to the

fact that the students have a freedom to choose any

course (assuming that the prerequisite course is

completed).

Firstly PDRG faces problem if same prioritized

teachers focus into same favorite time slots. By using

CDRG this situation may prevail over considering a level

of discontinuity into the day-time pattern for the courses.

In second run, if the low “chaos” course holds high

prioritized teacher then the classification may dissatisfy

the teacher. For the third rotation the conflict may arise

for the students for not considering the color. For

NTDRG, if the host slot is elected as the first (V{{ci}q}

i, ci C and 1 i n and 1 q 30 where q = 6, 11, 16,

21, 26 is the first slots of the day) and last (V{{ci}q} i,

ci C and 1 i n and 1 q 30 where q = 5, 10, 15, 20,

25 is the last slots of the day) slot of the day, the previous

and the next consecutive slots are from different days. So,

this day jump increases huge distance for the teacher

which may lead to an unfeasible classification. After

NTDRG a few courses may remain partially classified or

unclassified due to three major factors (1) Number of

rooms not adequate, (2) Teacher’s preferred time slot is

not applicable and (3) Student conflict may cross

tolerable conflict range.

The resultant unclassified or partially classified

courses, after all decision trees exploration, represent the

problem can not be solved without the extensive

relaxation of the constraints mentioned earlier. Un-

classification or partially classification may tag to a

course not only for the conflict but also for room

availability. So, such event may occur where there is no

conflict among the courses but the low prioritize course

(due to teacher’s priority in PDRG or low conflicted

score in CDRG or little bit higher considerable conflict

score in TDRG) is not able to be placed in to the routine

vector for room limitation. Same situation may arise for

other two constraints. So, to eliminate the partially

classified or unclassified courses the above mentioned

factors have to be compromised that is by increasing the

room capacity or expanding teacher’s favorite time or

ignoring students’ conflicts.

V. EXAM-TIME TABLING ALGORITHM (ETA)

Typical constraint programming method is applied to

the above exam-time tabling problem. By considering the

equal or less number of members only from the power set

of the groups of courses, the ETA calculates the total

number of conflicts and the total number of students on

each group. The proposed algorithm also tries to place the

course groups on a specific exam slot. The total numbers

of valid power set are the combination of the groups

along with the given slots for the exam. Valid range in

calculating the number of members is 1 to equal to given

slot value ‘s’ i.e. GnCs + GnCs-1 +… + GnC1 where ‘Gn’ is

the total number of course groups. By sorting the groups

in descending order according to their total student to

conflict ratio, the ETA tries to judge the most appropriate

groups to place in to the exam-time table first. Here if the

conflict signifies zero then the total student to conflict

ratio remains equal to the total number of the students.

Among the sorted power set list the most supported

single member is selected to be placed on each day of the

exam-time table by using greedy algorithm i.e. by

choosing the most profitable groups first. Support vector

is calculated from the ratio of the total student and

conflict. If the provided day for exam scheduling is less

and the groups of courses and number of slots is more

than one on each day, then the placed group will try to

calculate the most appropriate unplaced groups and select

the group to form the pair. This situation may produce

concurrent conflicts but conflicts among the courses on

each slot remain zero. These newly paired groups are

eliminated from the list so that other placed groups can

select their feasible member groups. Considering the

scenario described in Fig. 4, the resultant colorized

course groups are G1 = {c1, c4}
80 and G2 = {c2, c3}

85 and

the power set of the groups are {G1}, {G2}, {G1, G2}.

Here the highest considerable set are those, whose

number of members are less or equal to the provided slots

for exam per day. Total student to conflict ratio of the

selective power sets are 80, 85 and 165/19, where the

ETA mainly concentrates on. If the provided days for the

exam are equal to the number of groups then the most

appropriate exam schedule is Day 1 = G1 and Day 2 =

G2. There is an 11.5% possibility of having concurrent

exam, if the provided days for exam are less then the

number of colorized course groups. The pseudo code

presented in algorithm 5 describes actions to be taken by

Exam-Time Tabling Algorithm (ETA).

ETA()

{

1. Color the courses and from the group;

18 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

2. Find the power set of the groups according to the

provided exam slots per day;

3. Sort the power set in descending order according to

their total student to conflict ratio treated as “Gain”;

4. PLACE the highest “Gain”ed course on each day of

 exam;

5. Find the most appropriate pair for the group;

6. Optimize the exam routine by imposing the MST

(Minimum Spanning Tree – by using Prims

algorithm; Here the graph of the groups contains

edges with conflicts) to spread away the concurrent

exams for the student.

}
Algorithm 5. Exam-Time Tabling Algorithm (ETA).

For better exam-time table ETA also calculates the

conflicts among the each day-placed group and considers

these groups as a vertex. Further optimization can be

done by using PRIMS algorithm. In this case PRIMS

algorithm will increase the Manhattan distance (MD) of

the closest conflicting groups where the non conflicting

groups also hold an edge with zero weight. This

optimization stage is used to maximize the day gap of

exams for the students. So by using PRIMS algorithm,

ETA founds the minimum spanning tree of group of

courses where the nearest group exams hold less common

students. Manhattan Distance (MD) represents the value

of total student to conflict ratio between the groups of the

days. The cumulative time complexity of ETA is O(sGn

+ Gn2) depends upon the provided slots per day (s)

strictly.

VI. EXPERIMENTAL RESULTS

A. Algorithm Analysis

 The Decision tree based Routine Generation algorithm

(DRG) is a set of 4 sequential feed-forwarded trees.

Important observation has been made by considering the

fitness value where it represents the best matching score

among these selected day-time pattern slots for a selected

teacher. An example is shown in Fig. 1, 2, 3, 4 and 5(a)

where the first decision tree (PDRG) selects t2 because of

high priority and t2 (11) holds the courses {c2}. The day-

time pattern shows {{2,12,22},{29}} = {2,12}, {12,22}

or {2,22} as the best match for the course c2 from t2

favorite time slots. Here after imposing the day-time

pattern with respect to number of class per week for the

course, the calculated ordered sets of fitness value are

{2,12}, {12,22}, {2,22} and {29} where the first three

sets hold highest and equal fitness value corresponding

with class per week. As no courses have been placed yet

vector V is empty i.e.; V({ci}2) = { } & V({ci}12) = { } &

V({ci}22) = { } & within room limit hence, the fitness

value({2,12}) = fitness value({12,22}) = fitness

value({2,22}), where the fitness value is an integer

number representing the maximum possibility to take the

classes on the provided time slots. So, PDRG places c2 in

slot {2,12}, i.e. V({c2}2) and V({c2}12) where {2,12} is a

random selection.

 Again PDRG selects t4 with the priority 10 as its next

candidate which holds the courses {c5}. Here the day-

time pattern is, {{2,12,22},{5,15,25}..} =

{2,12,22},{5,15,25} extracted from the t4’s favorite slots.

As V({ci}2) = {c2} & V({ci}12) = {c2} V({ci}22) = { } &

V({ci}5) = { } & V({ci}15) = { } V({ci}25) = { } and the

fitness value({2,12,22}) < fitness value({5,15,25}).

Therefore c5 is placed in slot {5,15,25}, i.e. V({c5}5) and

V({c5}15) and V({c5}25) where V({ci}2) and V({ci}12) is

not empty. In similar approach the for the teacher t3 the

course c3 is placed V({c3}10) and V({c3}20) where

V({c3}5), V({c3}15) and V({c3}25) is ignored due to

different course color. And for t1 the courses {c1, c4} hold

12 and 8 as total conflicts respectively. Selected course c1

can be placed {7,17}, {8,18}, {9,19}, {13,23}, {22},

{24} accordingly to the t1 favorite slots. Course c1 is

placed in V({c1}7) and V({c1}17). And from the

remaining time slots none the generated pattern provide

sufficient classes for the course c4 where the required

number of classes is 3. So the course c4 is placed on

V({c4}8) and V({c4}18) and c4 is tagged as partially placed

course needed to be explored more. Random selection

among courses for exploration is acceptable if more than

one course holds same conflict score.

 This class based reasoning left 1 partially placed

course, need to be walked around more. Next decision

tree CDRG is now in operation with fewer courses as

compared with the beginning and slot 24 will be allocated

for the course c4. The important issue is, although the

classes are placed in zigzag fashion but all the selected

slots for the course c4 are from the favorite slots of the

faculty respectively. So, the denoted term teacher

satisfaction is 100% for the case and overlapping classes

for the student is zero (i.e., student satisfaction). The

results of above example are shown in Fig. 11. In practice

the situation may be more complex with many courses.

 By using the same data filtering technique for Exam-

Time tabling the proposed algorithm ETA generates the

power set of courses according to their course color

extracted from the cross_table(Cr) where the teacher

redundancy is ignored Fig. 5(b). So, the resultant set is,

{c1}, {c2}, {c3}, {c4}, {c5}, {c1, c4} and {c2, c3}. If the

provided exam days are 3 and exam slots per day are 2

the for 100% conflict free exam per slots are day 1 : {c1,

c4}, day 2 : {c2, c3} and day 3 : {c5}.

PDRG CDRG TDRG NTDRG
Final

Finding

Unclassified 0 0 - - 0

Partially

classified
1 0 - - 0

Day-time

patterned

classified

4 1 - - 5

Student

conflict
0 0 - - 0

Unsatisfied

time
0 1 - - 1

Figure 11. Simulation result of DRG

 Further more if the provided days for exam are 2 and

slots are 2 then the exam-time tabling is like, day 1 : slot

1 {c1, c4}, slot 2 {c5} and day 2 : slot 1 {c2}, slot 2 {c3},

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 19

© 2010 ACADEMY PUBLISHER

where day 1 consists zero conflict of exam on each slots

but 1 consecutive exam of an student. Fig. 12 shows the

overall outcome of the ETA algorithm for this special

scenario.

B. Experimental Results

 Test results for DRG algorithm are carried out on a PC

with Pentium IV/1.6 GHz processor and 256 MB of

memory. Table I. shows the computational results for

semester 1 and semester 2 with 66 and 61 courses

correspondingly. Where for semester 1, around 24

teachers, with minimum 10 classes per week and at least

3 courses and 120 students with 430 combinations of

choices of courses are considered as input. For semester

2, around 23 teachers, with minimum 10 classes per week

and at least 3 courses and 106 students with 414

combinations of choices of courses are considered as

input.

Day

Slot 1

Cr.

(total

std)

Slot 2

Cr.

(total

std)

Slot 3

Cr.

(total

std)

Con-

current

Exam

Conflict

Overall

Gain

Day = 3

Slot = 2

1 c1 (40) c4 (40) - 0 80

2 c2 (50) c3 (35) - 0 85

3 c5 (45) - - 0 45

Day = 2

Slot = 2

1
c2 (50)

c3 (35)
c5 (45) - 1 130

2 c1 (40) c4 (40) - 0 80

Day = 1

Slot = 2
1 - - - -

Not

Possible

Day = 1

Slot = 3
1

c1 (40)

c4 (40)
c5 (45)

c2 (50)

c3 (35)
21 10

Figure 12. Simulation result of ETA

 In Table I. and Fig. 11 unclassified courses refers to the

number of courses that were not classified by any

decision trees, partially classified courses gives the

number of courses partially classified (the number classes

already placed into the routine is less then the required

classes). Day-time pattern shows the numbers of courses

that followed the day-time pattern. student conflict

estimates the percentage of unsatisfied requirements for

courses by students. Unsatisfied time refers the number of

time slots automatically generated beyond teachers’

favorite choice. Final Finding refers the final output for

every subsection after using the all cascade trees. The

main objective of this classification is to achieve the state

where the value the unclassified course is equal to zero.

Final value of unsatisfied time and student conflict shows

the teacher and student satisfaction respectively.

Randomization or prediction on classification is not used

in DRG. So the output of this O(A.mn - B.m - C.n)

based deterministic algorithm strictly depends upon the

input.

Test results for ETA are generated depending upon 61

courses with average 25 students per course within 9

exam days and 2 slots per day for semester 2. Table II. as

well as Fig. 12 describes the outcome of the Exam-time

Tabling Algorithm. Here the “slots” represents the total

numbers of consecutive exam on a single day. Time

duration is 3 hours for exam-time tabling whereas same

slot holds 1 hour as class duration in DRG. Total student

to conflict ratio on a particular exam day is referred as

overall gain. Around 3.8% of the total students hold

concurrent exam schedule whereas scheduled courses on

each slot are 100% conflict free. The overall gain also

confirms the profit for taking the course groups together

as a candidate on a single day. High satisfaction of the

students attests a high-quality exam-time tabling.

VII. CONCLUSION

Timetabling problem usually varies significantly from

institution to institution in terms of specific requirements

and constraints [22]. Many current successful university

timetabling systems are often applied only in the

institutions where they were designed. The meta-

heuristic, heuristic and hybrid methods are used to

solving timetabling problems so as case base reasoning.

The main idea is to try and design an algorithm that will

choose the right decision tree to carry out a certain task in

a certain situation.

This paper outlines the algorithm Decision Tree based

Routine Generation (DRG) using OLAP representation,

to construct a university class routine and conflict free

Exam-Time Tabling algorithm (ETA) to produce conflict

free exam schedule with a fixed interval of days. It

should be noted that the DRG algorithm brings the

complexity to a considerable level and this solution

classifies 96% - 97% of the courses as well 93% - 95%

satisfaction for teacher. For this data set, students’

satisfaction is 100% but in general 90% - 93%

satisfaction may be achievable by using DRG.

Preferential requirements (teacher satisfaction) on time

variables are met around 93%. Again the ETA algorithm

provides satisfactory exam-time table with 100%

satisfaction. The results also illustrate that the proposed

algorithms achieve significant performance gains over

different data set.

The proposed algorithms are designed in such a manner

so that they are easy to code and imply significant

importance to construct generalized automated time-

tabling software. Author(s) of the paper realize the

difference in constraints level in different institutes;

however in future generalized automated time-tabling

software will be examined. This paper does not consider

any classical benchmark problems. It is important to

analyze the performance with other established

algorithms. Incorporating those heterogeneous constraints

with the proposed data structure will also be examined in

future.

ACKNOWLEDGEMENT

The proposed algorithm is employed to construct a

class and exam routine for a reputed university in

Bangladesh. Author(s) of the paper express gratitude to

the university authority for providing indispensable

information.

20 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

REFERENCES

[1] Christelle Guért. Narendra Jussien, Patrice
Boizumault and Christain Prins, “Building university
timetable using constraint logic programming,”
Springer-Verlag LNCS 1153, pp. 130-145, 1996.

[2] Hans-Joachim Goltz, Georg Küchler and Dirk
Matzkae, “Constraint-based timetabling for
universities,” INAP’98, pp. 75-80, 1998.

[3] Slim Abdennadher and Michael Marte, “University
course timetabling using constraint handling rules,”
Journal of Applied Artificial Intelligence, vol. 14, no.
4, pp. 311-326, 2000.

[4] Thom Früwirth, “Constraints handling rules,”
Constraint Programming: Basic and Trandes, LNCS
910, Springer, 1995.

[5] E.K. Burke, B.L. MacCarthy, S. Petrovic and R. Qu,
“Knowledge Discovery in a Hyper-Heuristic for
Course Timetabling Using Case-Based Reasoning,”
PATAT 2002, 4th International Conference, pp. 90-
103, August 2002.

[6] D. Abramson, “Constructing school timetables using
simulated annealing: Sequential and parallel
algorithms,” Management Science, vol. 37, pp. 98-
113, 1991.

[7] A. Schaert, “Tabu search techniques for large high-
school timetabling problems,” 13th National
Conference on Artificial Intelligence AAAI’96, pp.
363-368, 1996.

[8] Luca Di Gaspero and Andra Schaerf, “Multi-

Neighbour Local Search for Course Timetabling,”

PATAT 2002, 4th International Conference, pp. 128-

132, August 2002.

[9] P. Boizumault, Y. Delon, and L. Peridy, “Constraint

logic programming for examination timetabling,”

Journal of Logic programming, vol. 26, pp. 217-233,

1996.

[10] K. Dowslan, “Using simulated annealing for efficient

allocation of students to practical classes,” Applied

Simulated Annealing – Lecture Notes in Economics

and Mathematical System, Springer-Verlag, vol. 396,

pp. 125-150, 1993.

[11] K. Dowslan, “Off-the peg or made-to-measure?

Timebaling and scheduling with sa and ts,”

PATAT’97, Springer – Verlag, pp. 37-52, 1998.
[12] G.M. White and J. Zhang, “Generating complete

university timetables by combining tabu search with
constraint logic,” PATAT’97, Springer – Verlag, pp.
187-198, 1998.

[13] E.K. Burke, J. Newall, and R.F. Weare,

“Initialization strategies and diversity in evolutionary

timetabling,” Evolutionary Computation Journal, vol.

6.1, pp. 81-103, 1998.

[14] E.K. Burke, J. Newall, and R.F. Weare, “A simple

heuristically guided search for the timetable

problem,” Proceeding of the International ICSC

TABLE I.

COMPUTATIONAL RESULTS OF DRG

PDRG CDRG TDRG NTDRG Final Finding

Semester-1

Unclassified courses 5 3 1 0 0

Partially classified courses 45 32 2 2 2

Day-time patterned classified 16 31 63 64 64

Student conflict 0 0 0 0 0

Unsatisfied time 0 0 3 7 9

Semester-2

Unclassified courses 2 2 1 0 0

Partially classified courses 41 26 2 2 2

Day-time patterned classified 18 33 58 59 59

Student conflict 0 0 0 0 0

Unsatisfied time 0 0 5 8 11

TABLE II.

COMPUTATIONAL RESULTS OF ETA

of

Courses on

Slot 1

of

Courses on

Slot 2

Concurrent

Exam Conflict

Total

Student on

Slot 1

Total

Student on

Slot 2

Overall Gain

Semester-2

Day 1 3 4 3 72 63 45

Day 2 3 3 2 77 63 70

Day 3 2 2 5 32 53 17

Day 4 4 4 5 76 87 32.6

Day 5 5 5 11 91 64 14

Day 6 3 2 3 46 18 21.3

Day 7 4 4 7 42 74 16.5

Day 8 2 5 2 28 71 49.5

Day 9 2 3 2 16 68 42

JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010 21

© 2010 ACADEMY PUBLISHER

Symposium on Engineering of Intelligent System,

pp. 574-579, 1998.

[15] E.K. Burke, J. Newall, and R.F. Weare, “A memetic

algorithm for university exam timetabling,” Lecture

Notes in Computer Science, Springer-Verlag, vol.

1153, pp. 241-250, 1996.

[16] Tan, Steinbach and Kumar, Introduction to Data

 Mining, pp. 130-139, 2004.

[17] Liam T.G. Merlot, Natashia Boland, Barry D.

Hughes, and Peter J. Stuckey, “A Hybrid Algorithm

for the Examination Timetabling Problem”,

Proceedings of the 4th International Conference on

the Practice and Theory of Automated Timetabling -

PATAT’2002, Springer – Verlag, pp. 348-371.

[18] M. Caramia, P. Dell'Olmo, and G.F. Italiano, “New

algorithms for examination timetabling”,

Proceedings: Algorithm Engineering 4th International

Workshop, WAE 2000, Germany, September 2000.

“Lecture Notes in Computer Science 1982”,

Springer-Verlag, Berlin Heidelberg New York, pp.

230-241, 2001.

[19] M. Carter, G. Laporte, and J. Chinneck, “A general

examination scheduling system”, Interfaces, pp.

109-120, 1994.

[20] M. Carter, G. Laporte, and S.T. Lee, “Examination

 timetabling: algorithmic strategies & applications”,

 Journal of the Operational Research Society, pp. 373

 - 383, 1996.

[21] Bart Selman, Henry A. Kautz, and Bram Cohen,

“Noise strategies for improving Local search”, 12th

National Conference on Artificial Intelligence

(AAAI-94), pp. 337– 343, 1994.

[22] T. B. Cooper, J. H. Kingston, “The Complexity of

Timetable Construction Problems”, Practice and

Theory of Automated Timetabling, Springer Verlag,

pp. 283-295, 1996.

Ashiqur Md. Rahman received his

B.Sc. Degree in Computer Science and

Engineering from American International

University Bangladesh, Dhaka in

January, 2004. He is currently perusing

his M.Sc. degree from North South

University, Dhaka since January 2006.

He has authored in 4 national and international journal and

conference papers in the area of Data Mining, VHDL,

Cryptography and PVc module design. His current research

interest is in Grid Computing especially in large Grid

Environment.

Shafaat S. Giasuddin received his B.Sc.

Degree in Computer Science from

Ahsanullah University of Science and

technology, Dhaka in November, 2005.

He is currently perusing his M.Sc. degree

from North South University, Dhaka

since January 2006. He has authored in 3

national and international journal and conference papers in the

area of Data Mining, VHDL and Cryptography. His current

research interest is in Data Mining especially in corporate sector

like banking and telecommunication.

Rashedur M. Rahman received his

Ph.D. Degree in Computer Science from

University of Calgary, Canada in

November, 2007. He has received his

M.Sc. degree from University of

Manitoba, Canada in 2002 and Bachelor

degree from Bangladesh University of

Engineering and Technology (BUET) in 2000 respectively. He

is currently working as an Assistant Professor in North South

University, Dhaka, Bangladesh. He has authored more than 25

international journal and conference papers in the area of

parallel, distributed, grid computing and knowledge and data

engineering. His current research interest is in data mining

especially on financial, educational and medical surveillance

data, data replication on Grid, and application of fuzzy logic for

grid resource and replica selection.

22 JOURNAL OF COMPUTERS, VOL. 5, NO. 1, JANUARY 2010

© 2010 ACADEMY PUBLISHER

