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Abstract—In this paper we propose and analyze techniques 

for academic routine and exam time table generation for 

open credit system. The contributions of this paper are 

multi-folds. Firstly, a technique namely Decision tree based 

Routine Generation (DRG) algorithm is proposed to 

generate an academic routine.  Secondly, based on the DRG 

concept, Exam-time Tabling algorithm (ETA) is developed 

to implement conflict free exam-time schedule. In open 

credit course registration system any student may choose 

any course in any semester after completion of pre-requisite 

course(s). This makes the research more challenging and 

complex to accomplish. Academic routine and exam time-

table generation are in general NP-Hard problems, i.e., no 

algorithm has been developed to solve it in reasonable 

(polynomial) amount of time. Different methods based on 

heuristics are developed to generate good time-table. In this 

research we developed heuristic based strategies that 

generate an efficient academic routine and exam time-table 

for a university that follow open credit system. OLAP 

representation helps to classify the courses along with the 

proposed algorithm to eliminate some constraints. Day-

based pattern, minimum manhattan distance between 

courses of same teacher; minimum conflicted course 

distribution has been stage-managed to classify the courses. 

Our ETA algorithm is based on decision tree and sequential 

search techniques.

Index Terms— OLAP, Crosstable, Conflict List, Favorite 

Slot, Faculty Choice, Course Color, Day-time slot pattern. 

I. INTRODUCTION

 This paper depict Decision Tree based Routine 

Generation (DRG) algorithm to generate a university 

class routine within a tolerable range of some constraints 

and conflict free Exam-Time Tabling algorithm (ETA). A 

decision-tree based classification algorithm has been 

introduced to solve this NP-Hard Problem [22]. CPL 

(constraint logic programming) is a respected technology 

for solving hard problems which include many (non-

linear) constraints [1]. Constraints propagation technique 

has been applied to overcome the preferential 

requirements for slots of teachers, courses from pre-

advising by students and class room allocation. Versatile 

choices for courses may lead to a deadlock situation. 

Golz used priorities heuristic ordering [2] where 

Abdennadher introduced an optimized cost-based rule 

mining [3,4] to solve these type of problems. On the other 

hand, knowledge based in a hyper heuristic course 

scheduling using case based reasoning is used to 

maximize the rule covering area [5]. Further expansion is 

possible to accomplish the exam-time tabling using 

OLAP technique [16]. Exam-time tabling is another 

highly constrained combinatorial optimization problem. 

The major objective is to confirm 100% conflict free 

exam schedule with a fixed interval of days. Limited 

room capacity and room availability problems must be 

overcome to place exams on each time slot. The 

computational time is reduced by using heuristic based 

search in comparison with the permutation of courses for 

exam-time tabling. Identification of a novel heuristic is 

the most challenging task. Using OLAP, proposed 

conflict free Exam-Time Tabling algorithm (ETA) 

produces substantial results to accommodate all students 

with zero conflict tolerance. 

DRG presents key features of generating class routine 

with minimum computational time. Heterogeneous 

distribution of courses is classified with maximum 

satisfaction of all constraints. Section II describes about 

previous related works and preliminaries in details. 

Section III illustrates the problem dimensions with the 

data filtering technique used in the paper to summarize 

further manipulation; pursued by the proposed algorithm, 

DRG, and the classification procedure to find the feasible 

solution in Section IV followed by Exam-Time Tabling 

algorithm (ETA) in section V. Extensive computational 
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results are conducted to study the performance analysis 

for both algorithms in section VI. Finally the paper 

concludes the work in section VII. 

II. PRELIMINARIES & RELATED WORK

A university class routine generation problem – as 

considered in this work – consists of assigning each 

course in a set of slots (classes) in a limited class rooms 

within the teachers’ favorite time slots. This highly 

constrained problem is optimized by simulated annealing 

and genetic algorithm [6,7]. Seven different major and 

minor objectives are discovered and deadlock situation is 

overcome by randomly exploring the composite 

neighborhood [8]. The most closely related attempt with 

this work appears to be the constraint programming 

approach used by Boizumault [9] and the simulated 

annealing approaches explored by Dowsland and 

Thompson [10,11]. The principal innovation in DRG is 

the sequential use of these two methods. DRG may select 

some poor slots, with respect to teachers or students, 

under a tolerable conflict range. A similar sequential 

approach has been taken in DRG on other problems: 

White and Zhang [12] used constraint programming to 

second a starting point for tabu search in solving course 

timetabling problems. For a high school timetabling 

Yoshikawa tested several combinations of two stage 

algorithms, including a greedy algorithm followed by 

simulated annealing and a constraint programming phase 

followed by a randomized greedy hill climbing algorithm 

(which is deemed to be the best combination of those 

used). In a similar vein, Burke, Newell and Weare [13] 

used their work on sequential construction heuristics [14] 

to generate initial solutions for their memetic algorithm 

[15]. 

Wide variety of courses increases the emergence to 

provide adequate exam-time tables for the educational 

institutions. The development of an examination 

timetable requires the institution to schedule a number of 

examinations in a given set of time slots, so as to satisfy a 

given set of constraints. A common constraint for any 

educational institution is that none of the students can 

have more than one exam scheduled at the same time. 

Many other constraints were presented by Marlot in [17]. 

Sequential construction heuristics have been applied to 

the publicly available data in a variety of forms by 

selecting exams from a randomly chosen subset of all 

exams by Burke [14] where Carter [19, 20] allow limited 

backtracking de-allocation of exams. On the other hand 

Caramia [18] includes an optimization step after each 

exam allocation. Sequential construction heuristics order 

the exams in some way and attempt to allocate each exam 

to an ordered session by satisfying all the constraints. 

Using a memetic algorithm for exam timetabling Burke, 

Newall and Weare [15] proposed a hybrid algorithm 

consist of a simulated annealing phase to improve the 

quality of solution, and a hill climbing phase for further 

improvement. To avoid local maxima problem these 

solutions require random jitter [21] whereas the proposed 

algorithm has no impact on randomization. 

III. PROBLEM DESCRIPTION & DATA FILTERING

The routine maps a set of courses chosen by students 

and teachers to a specific room and time-slot. A major 

objective, in developing an automated system, is to 

minimize the hassle of separating conflicted courses from 

choices by students. In this paper the major identified 

problems are (a) Number of lectures per week for each 

course are fixed, (b) Room overlapping is prohibited, (c) 

Fitting the routine with teacher’s favorite timeslots, and 

(d) trying to assert different timeslots to same level of 

courses. On the other hand, the minor objectives are (e) 

day-timeslots pattern for the course, (f) room capacity, 

(g) avoiding gaps between classes of same teacher, if 

possible, (h) single class for student per day and (i) 

ensuring compactness of interclass time difference. 

The required scattered data contains total courses 

(course choices from pre-advising by students) C = {c1,

c2, c3, …, cn} where the dependencies between courses 

are also maintained. Here course dependency can be 

defined as Ci, Ci  Cj where Ci, Cj  C. For this paper 

the students’,   S = {S1, S2, S3, …, Sz}, course choices can 

be derived as  Sj = {ci} where  i, ci C and 1  i  n and 

|Sj| = max_course_choice for the student as shown in Fig. 

1. Teachers’ favorite timeslots are grouped according to 

day-timeslots pattern. Here group A and B is formed for 

the teacher tk, where T = {t1, t2, t3, …, tm}, A(tk) = 

{favorite time_slots of tk | sequential time slots for 

Saturday, Monday and Wednesday} and B(tk) = {favorite 

time slots of tk | sequential time slots for Sunday, Tuesday 

and Thursday}, whereas time_slots = {1, 2, …, 30} 

contains 5 sequential slots per day starting from Saturday. 

Here Friday is considered as an off-day. Priority of the 

teacher has been introduced by P(tk) = {1, 2, …, 10} 

where a higher value represents higher priority. An 

exceptional priority is also introduced as 11 reflecting 

part-time faculty, whose projected time cannot be 

changed.  Fig. 2. and Fig. 3. shows the teachers’ wish-list 

and the course distribution among the teachers’. Target of 

this work is to find the values of the “class slot routine”

field of the Fig. 3. The resultant routine vector, V = 

{{ci}q}  i, ci C and 1  i  n and 1  q  30, consists of 

the course classification as per day required for each 

course and class room availability. 

In this paper, this huge dimensionality of dataset is 

reduced by initiating an OLAP (On-Line Analytical 

Processing) representation [16]. Here a Crosstable (Cr) of 

(n × n) courses are initialized. Cr (n × n) = {conflicti, j}

where 1  i,j  n and ‘n’ is the total number of courses 

requested by the student (or is ‘n’ number of courses 

offered by the department). Here the conflict of Cri,j is a 

positive integer that reflects the common students 

between ci and cj. The diagonal values of Cri,i show the 

total number of students requesting for the course ci.

Cri,j,  [1  j  n] is the total conflict for the course ci [

i, i  j]. Maximum “chaos” (conflict) courses can be 

easily sorted out   from   this two dimensional   conflict 

distribution (Crosstable). 

To minimize the potential for time conflict, an 

admissible heuristic (h) is imposed to regroup the courses 

according to their dissimilarity. Graph Coloring 
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algorithm is used to cluster where the conflict in 

Crosstable confirms the weights of the edges in the 

graph. Here the admissible heuristic is applied as the 

maximum number of colors needed to find the minimum 

number of groups of courses. Here faculty redundancy is 

also considered as weight, that is, same faculty of 

different courses cannot be in the same group. 

Student 

ID 
Course ID Semester ID 

S1 C1 1 

S1 C3 1 

S2 C1 1 

S2 C3 1 

S3 C2 1 

S3 C4 1 

S3 C5 1 

S4 C4 1 

Figure 1. Courses Pre-Advised by the Students. 

Teacher ID 
Favorite 

Slots 
Priority 

t1 7,8,9,13,17,18,19,22,23,24 7 

t2 2,12,22,29 11 

t3 5,10,15,20,25,30 9 

t4 2,5,8,9,12,15,18,22,23,24,25 10 

Figure 2. Teachers’ Slots Preferences along with Priority. 

Teacher 

ID
Course ID 

Class 

Slot 

Routine 

Sem. 

ID

Class 

per 

Week 

t1 c1 7,17 1 2 

t1 c4 8,18,24 1 3 

t2 c2 2,12 1 2 

t3 c3 5,15 1 2 

t4 c5 5,15,25 1 3 

Figure 3. Courses and Classes Distribution for the Teachers. 

The output of Graph Coloring Algorithm assigns a color 

to all courses individually in Fig. 5(a); same colored 

courses are treated as a group. Fig. 4. shows the resultant 

Crosstable. Each group may consist more than the 

threshold limit members with tolerable conflict range. 

Here the number of the rooms is considered as the 

threshold value. In this work the tolerable conflict range 

is set to 0.  

Course 

ID
c1 c2 c3 c4 c5

Total 

Conflict 

c1 40 5 7 0 0 12 

c2 5 50 0 2 1 8

c3 7 0 35 5 0 12 

c4 0 2 5 40 1 8

c5 0 1 0 1 45 2

t1 t2 t3 t1
t4

Figure 4.  Crosstable for n × n Courses. 

This easy formation of coloring may lead to a measure 

of the undesirability of having classes overlapped in the 

routine. It will be effective to try to fit the most “chaos” 

courses of high priority teachers in the routine first. 

Random selection may be used to select teacher having 

same priority. The data used in this work to test the 

algorithm is real. 

Constraint programming model and data filtering 

techniques for routine generation motivate the increasing 

interest to develop an exam-time tabling. In routine 

generation algorithm the colored courses refer the non- 

conflicting sets of courses. Faculty redundancy is not 

considered as constraint any more but the room capacity. 

For ETA the graph consisting edge weight between two 

courses Dy,z = Cy + Cz – Cri,j where Cy and Cz represents 

the number of students of Ci and Cj courses respectively. 

(a)                                                        (b)  

Figure 5(a).    Courses Graph Color for DRG.    (b).    Courses Graph 

Color for ETA.

i,j Dy,z  total_room_capacity and |Dy,z|

room_capacity shown in Fig. 5(b). Important factor of 

grouping courses is that the number of members in each 

group must not exceeds the total number of room 

availability. The minimum requirement of days for 100% 

concurrent conflict free exam is greater than or equal to 

the number of groups that is the numbers of color 

requires coloring the graph. If each day consists of more 

than one slot of examination and the provided day is less 

than the numbers of color then the Crosstable is able to 

ensure the numbers of consecutive examinations for an 

individual or groups of students on the day. Each exam 

slot holds a group of courses only, with zero conflict. But 

the consecutive slot may embrace some conflicts among 

the groups due to differ in color. By using dynamic data 

structure the number of consecutive examinations 

between different groups of courses can be easily sorted 

out described in section V. 

IV. THE DECISION TREE BASED ROUTINE GENERATION 

(DRG) ALGORITHM

The aim of the proposed DRG algorithm is to classify 

all the courses with a degree of satisfaction. Enormous 

permutation of courses may lead to a time consuming 

process. So a standardized branch & bound condition 

may be applied to reduce the problem surface area. The 

DRG sequentially follows 4 sets of cascading decision 

trees. Depending upon the emergence and success rate, 

the result of one tree is propagated to another tree as 

shown in Fig. 6. These transitions may lead to a solution 

but also may degrade the satisfaction threshold. A control 

portion helps to justify the problem solution needed to be 

more explored or not. 

Each transition from one decision tree to another 

shrinks the overall problem surface area by eliminating 

the classified courses. Classical decision tree takes certain 

decision depending upon some gain factor. Beside this, 

the proposed trees concentrate on the reduced problem 
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dimension which helps to classify the unclassified 

courses with tolerable time complexity. 

The key factor for each of the four decision trees is (a) 

PDRG: Teacher Priority, (b) CDRG: Highest conflicted 

course, (c) TDRG: Tolerable conflict and (d) NTRG: 

Neighbor slots by ignoring teacher’s wish list. A 

university routine is created and remains unchanged for a 

particular semester. If the placed courses do not match 

the favorite slots of the teacher, the evolved 

dissatisfaction is much higher for a higher prioritized 

teacher. So, we used PDRG as our first decision tree. 

From an observation it is clear that the placing conflicted 

course in a dense routine vector is difficult as it can 

introduce student conflict in the routine. So, it will wise 

to consider the higher conflicted courses first as they are 

the principle component which reflects the major 

problem surface area. By doing this the problem surface 

area is reduced easily. For this reason CDRG is the 

second selection. The decision tress TDRG and PDRG 

are quite similar. But TDRG introduces considerable 

student conflict in to the routine vector. 

Figure 6.     Program flow of DRG 

 Therefore, TDRG plays the third role in the whole 

algorithm. After all the three decision trees, the 

unclassified and partially classified courses shows, there 

is no place (slot) according to the teacher’s favorite slots. 

Exploring over the contour of the teachers favorite slots 

is necessary in order to achieve the course’s class per 

week constraints. Only student conflict is considered in 

TDRG where the day-time pattern is maintained strictly. 

On the other hand, NTDRG will dissatisfy the teachers & 

may not follow the day-time pattern. Hence, NTDRG is 

the final decision tree. 

A. Priority regulated DRG (PDRG) 

The first decision tree accumulates the high prioritized 

teacher tk and most conflicted course ci of tk to the routine 

vector with maximum fitness value. The max_fit function 

tries to discover the day-time pattern for the course. If the 

consequential day-time slots are already occupied by 

other courses, it checks the corresponding course color. If 

the color of the courses is same it classifies the course ci

with a degree. Here the fitness value of a course is 

referred as degree. The highest returned degree of a day-

time slot, as maximum fitness value, is selected as the 

course class for ci. This operation provides a pattern-

based course distribution, A(tk) or B(tk), in the routine 

although some courses may be placed partially as per 

their class_per_week and max_class_per_slot constraints. 

In this manner, the low priority teachers may suffer by 

not getting the classes in a sequential manner. But in 

practice 26% of the total courses can be placed with zero 

conflict and with a high level of satisfaction. The level of 

satisfaction is a quantitative measure of placement for a 

course with respect to the teachers’ favorite slots. The 

definitive PDRG tree is shown in Fig. 7. The partially 

placed and not yet placed courses then elected as 

cascaded input to second level of exploration. The pseudo 

code presented in algorithm 1 describes actions to be 

taken by Priority regulated DRG algorithm (PDRG). The 

computational time of this operation requires O (n × m) 

where the maximum number of courses per teacher is ‘n’ 

and the number of faculties is ‘m’.

PDRG( )

{

// select the high prioritized teacher; 

// select most conflicted course of the teacher; 

// select the corresponding faculty’s low frequent favorite 

// time slot 

1. Find max-patterned day time slots; 

 IF the time slot is empty PLACE the course; 

2. ELSE find the color of the course that already placed  

    on the slot; 

2.1. IF the color is same AND on the range of the 

room AND the course is not already placed on 

that day before,  PLACE the course; 

2.2. ELSE select the next max-pattern; 

3. every time after PLACEing the course, remove the 

slot from the faculty favorite slot list; 

4. repeat the step 1,2 until the course slot remain 

unchanged; 

}
Algorithm 1. Priority regulated DRG (PDRG) 

B.  Chaos eradication DRG (CDRG) 

In this decision tree, the less demanded time slots (with 

respect to number of rooms) are labeled as “cold” 

whereas high  demanded   ones  are  labeled  as  “hot”. 

Among the remaining most conflicted courses (may not 

or partially placed) with low frequent time slots of the 

corresponding teacher are chosen for the second decision 

tree. If the considerable slot is empty then the course is 

placed in that slot, otherwise the colors have to be 

matched. If the color of the courses placed in the slot 

matches with the concerning course, the latter course is 
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classified, and if not other options are taken into 

consideration for the teacher. The considerable courses in 

CDRG are the overlooked courses from PDRG, where 

PDRG confirms the day-time pattern is not possible for 

the courses due to color and the scattered choice of slots 

by the teachers. So day-time slots pattern are ignored in 

this operation. After using this second decision tree few 

courses may remain unchanged. Nevertheless this time 

the number of remaining courses is much less than the 

previous one. Around 32% of the remaining courses are 

placed successfully by CDRG. The combined effort of 

decision trees still provides high confidence. Fig. 8. 

demonstrates the Chaos eradication DRG. The pseudo  

Figure 7.     Decision Tree of PDRG 

code presented in algorithm 2 describes actions to be 

taken by Chaos eradication DRG (CDRG). Now this tree 

holds time complexity of O((n – d) × (m – l)) where the 

maximum number of courses per teacher is ‘n’, the 

number of faculties is ‘m’ and ‘d’ is the already classified 

courses of each teacher by the PDRG and ‘l’ is the 

number teacher whose all courses were placed in the 

routine by PDRG. 

CDRG( ) 

{

// select the most conflicted courses not yet placed or  

// partially placed; 

// select the remaining low frequent favorite slot of the  

// faculty; 

1. IF the slot is empty PLACE the course; 

2. ELSE  find the color of the course that already  

    placed on the slot;  

2.1. IF the color is same AND on the range of the 

room AND the course is not already placed on 

that day before,  PLACE the course; 

2.2. ELSE select the next low frequent favorite slot 

of the faculty; 

3. Repeat the step 1,2 until the course remain  

    unchanged state; 

}
Algorithm 2. Chaos eradication DRG (CDRG) 

C.  Tolerable DRG (TDRG) 

The first two decision trees are aimed at automated 

generations of a better assignment. The second approach 

seeks to find an assignment of vector which may be more 

difficult to locate in the search space using the already 

assigned vector. The third decision tree allows the 

remaining courses according to the priority of the 

teachers to find a place into the routine within a tolerable 

conflict range of the subsequent teachers’ favorite slots. 

Here the course color is overlooked. This classification 

now introduces errors into the system by considering the 

tolerable students conflicts only. Important issue is that, 

this manipulation may iterate several times to include as 

many courses possible to place in to the routine. 22% of 

the unclassified and partially classified courses are 

labeled with a tolerable error.  

Figure  8.   Decision Tree of CDRG 

The flowchart presentation of this decision tree is 

shown in Fig. 9. The pseudo code presented in algorithm 

3 describes actions to be taken by Tolerable DRG 

(TDRG). The average time complexity of TDRG is 

approximately O (t × (n – (d + o)) × (m – (l + p)) where 

the maximum number of courses per teacher is ‘n’, the 

number of faculties is ‘m’ and ‘d’ is the already classified 

courses of each teacher by the PDRG and ‘l’ is the 

number teacher whose all courses were placed in the 

routine by PDRG. ‘o’ is the number of courses placed by 

CDRG and ‘p’ is the number of teachers whose courses 

are completely placed by CDRG. Here ‘t’ is the number 

of TDRG iterates.

TDRG( ) 

{

// select the most conflicted courses not yet placed or  
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// partially placed of a high prioritized teacher; 

// select the remaining low frequent favorite slot of the  

// faculty; 

1. IF the slot is empty PLACE the course; 

2. ELSE IF  on the range of the room AND conflict 

among the courses are in tolerable range AND the 

course is not already placed on that day before,  

PLACE the course; 

3. ELSE select the next low frequent favorite slot of the 

faculty; 

4. Repeat the step 2,3 until the course remain  

    unchanged state; 

}
Algorithm 3. Tolerable DRG (TDRG) 

D.  Neighboring Tour DRG (NTDRG) 

The fourth possibility search allows the courses to look 

over the contour of the teachers’ favorite slots to find the 

least conflicted slots. Although the students’ scattered 

choices is overlooked in TDRG but the placed courses do 

not displease teachers’ preference. The final decision tree 

is modeled in such a manner so that the rest of unplaced 

courses are going to be graded into the routine vector 

within a minimum distance of the teachers’ choice. 

Manhattan Distance (MD) is calculated for this placement 

of courses. MD = total slot gap of tk on each day i.e. the 

total unused slots of a teacher on a particular day. 

Manhattan Distance is a vital performance measuring tool 

to find the slot gaps per day for an individual teacher. The 

optimization can be done by keeping Cumulative 

Manhattan Distance (cMD) for the teachers as low as 

possible where cMD = all used day by t MD(t) It is assured 

that the courses were not yet placed on that day earlier. 

From the remaining courses, a course is selected 

according to the priority of the teacher.  

Figure 9.   Decision Tree of TDRG

Complement of the intersection between the classification 

value of that course and the corresponding teachers’ used 

slots are considered as new host slots. The neighboring 

slots of the new hosts are the most likely candidates. 

Among the candidates the most “cold” (less desired slots) 

slots are considered as candidates. 

Considerable issues in this placement are tolerable 

conflict range, allocable number of rooms and day-time 

misjudgment. Fig. 10. demonstrates the overall scenario 

of Neighboring Tour DRG (NTDRG). The approximate 

time complexity is O(2 × (n – (d + o + u)) × (m – (l + p + 

v))  O((n – (d + o + u)) × (m – (l + p + v)) where the 

maximum number of courses per teacher is ‘n’, the 

number of faculties is ‘m’ and ‘d’ is the already classified 

courses of each teacher by the PDRG and ‘l’ is the 

number of teacher whose all courses were placed in the 

routine by PDRG. ‘o’ is the number of courses placed by 

CDRG and ‘p’ is the number of teachers whose courses 

are completely placed by CDRG. ‘u’ is the number of 

courses placed by TDRG and ‘v’ is the number of 

teachers whose courses are completely placed by TDRG. 

The pseudo code presented in algorithm 4 describes 

actions to be taken by Neighboring Tour DRG (NTDRG).

NTDRG( ) 

{

// select the courses not yet placed or partially placed; 

// select the corresponding faculty routine; 

1. Find the candidate slot (where candidate slot is the 

neighboring slots of the used slots of the faculty); 

2. IF  on the range of the room AND conflict among the 

courses are in tolerable range AND the course is not 

already placed on that day before,  PLACE the 

course; 

3. ELSE select the next candidate slot of the faculty; 

4. Repeat the step 2,3 until the course remain   

    unchanged state; 

}
Algorithm 4. Neighboring Tour DRG (NTDRG).

Figure 10.     Decision Tree of NTDRG

These four sequential decision trees feed forward to an 

acceptable solution. It is ensured that the course is not yet 
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place on that very day whenever the “PLACE” decision 

is taken. The Overall Complexity is shown in equation 

(1). 

= PDRG + CDRG + TDRG + NTDRG  

= O(mn) + O( (n-d)(m-l) ) + O( t(n-(d+o))(m- 

   (l+p)) ) + O( (n-(d+o+u))(m-(l+p+v)) ) 

= mn + mn – nl – md + dl + t(mn – nl – np – md 

+ dl + dp – mo + ol + op) + mn – nl – np – nv 

– md + dl + dp + dv – mo + ol + op + ov – mu 

+ ul + up + uv 

= (t + 3)mn - (d + td + to + d + o + u)m – (l + tl  

 + l + tp + v)n + (dl + tdl + tdp + tol + top + dl  

 + dp + dv + ol + op + ov + ul + up + uv) 

 = A.mn – B.m – C.n + K  --------------------- (1) 

 where,  

 A = t + 3; 

 B = (t + 2)d + (t + l)o + u; 

 C = (t + 2)l + tp + v; 

and  K = dl + tdl + tdp + tol + top + dl + dp + dv + ol  

   + op + ov + ul + up + uv 

The cumulative time complexity of DRG is O(A.mn - 

B.m - C.n), The cumulative time complexity of DRG 

mainly depend upon the number of iterations in TDRG 

algorithm and number of courses placed by each and 

every decision tree. The algorithm degrades due to the 

fact that the students have a freedom to choose any 

course (assuming that the prerequisite course is 

completed).  

Firstly PDRG faces problem if same prioritized 

teachers focus into same favorite time slots. By using 

CDRG this situation may prevail over considering a level 

of discontinuity into the day-time pattern for the courses. 

In second run, if the low “chaos” course holds high 

prioritized teacher then the classification may dissatisfy 

the teacher. For the third rotation the conflict may arise 

for the students for not considering the color. For 

NTDRG, if the host slot is elected as the first (V{{ci}q}

i, ci C and 1  i  n and 1  q  30 where q =  6, 11, 16, 

21, 26 is the first slots of the day) and last (V{{ci}q}  i, 

ci C and 1  i  n and 1  q  30 where q = 5, 10, 15, 20, 

25 is the last slots of the day) slot of the day, the previous 

and the next consecutive slots are from different days. So, 

this day jump increases huge distance for the teacher 

which may lead to an unfeasible classification. After 

NTDRG a few courses may remain partially classified or 

unclassified due to three major factors (1) Number of 

rooms not adequate, (2) Teacher’s preferred time slot is 

not applicable and (3) Student conflict may cross 

tolerable conflict range. 

The resultant unclassified or partially classified 

courses, after all decision trees exploration, represent the 

problem can not be solved without the extensive 

relaxation of the constraints mentioned earlier. Un-

classification or partially classification may tag to a 

course not only for the conflict but also for room 

availability. So, such event may occur where there is no 

conflict among the courses but the low prioritize course 

(due to teacher’s priority in PDRG or low conflicted 

score in CDRG or little bit higher considerable conflict 

score in TDRG ) is not able to be placed in to the routine 

vector for room limitation. Same situation may arise for 

other two constraints. So, to eliminate the partially 

classified or unclassified courses the above mentioned 

factors have to be compromised that is by increasing the 

room capacity or expanding teacher’s favorite time or 

ignoring students’ conflicts. 

V. EXAM-TIME TABLING ALGORITHM (ETA) 

Typical constraint programming method is applied to 

the above exam-time tabling problem. By considering the 

equal or less number of members only from the power set 

of the groups of courses, the ETA calculates the total 

number of conflicts and the total number of students on 

each group. The proposed algorithm also tries to place the 

course groups on a specific exam slot. The total numbers 

of valid power set are the combination of the groups 

along with the given slots for the exam. Valid range in 

calculating the number of members is 1 to equal to given 

slot value ‘s’ i.e.  GnCs + GnCs-1 +… + GnC1 where ‘Gn’ is 

the total number of course groups. By sorting the groups 

in descending order according to their total student to 

conflict ratio, the ETA tries to judge the most appropriate 

groups to place in to the exam-time table first. Here if the 

conflict signifies zero then the total student to conflict 

ratio remains equal to the total number of the students. 

Among the sorted power set list the most supported 

single member is selected to be placed on each day of the 

exam-time table by using greedy algorithm i.e. by 

choosing the most profitable groups first. Support vector 

is calculated from the ratio of the total student and 

conflict. If the provided day for exam scheduling is less 

and the groups of courses and number of slots is more 

than one on each day, then the placed group will try to 

calculate the most appropriate unplaced groups and select 

the group to form the pair. This situation may produce 

concurrent conflicts but conflicts among the courses on 

each slot remain zero. These newly paired groups are 

eliminated from the list so that other placed groups can 

select their feasible member groups. Considering the 

scenario described in Fig. 4, the resultant colorized 

course groups are G1 = {c1, c4}
80 and G2 = {c2, c3}

85 and

the power set of the groups are {G1}, {G2}, {G1, G2}. 

Here the highest considerable set are those, whose 

number of members are less or equal to the provided slots 

for exam per day. Total student to conflict ratio of the 

selective power sets are 80, 85 and 165/19, where the 

ETA mainly concentrates on. If the provided days for the 

exam are equal to the number of groups then the most 

appropriate exam schedule is Day 1 = G1 and Day 2 = 

G2. There is an 11.5% possibility of having concurrent 

exam, if the provided days for exam are less then the 

number of colorized course groups. The pseudo code 

presented in algorithm 5 describes actions to be taken by 

Exam-Time Tabling Algorithm (ETA).

ETA( ) 

{

1. Color the courses and from the group; 
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2. Find the power set of the groups according to the 

provided exam slots per day; 

3. Sort the power set in descending order according to 

their total student to conflict ratio treated as “Gain”; 

4. PLACE the highest “Gain”ed course on each day of   

    exam; 

5. Find the most appropriate pair for the group; 

6. Optimize the exam routine by imposing the MST  

(Minimum Spanning Tree – by using Prims 

algorithm; Here the graph of the groups contains 

edges with conflicts) to spread away the concurrent 

exams for the student.    

}
Algorithm 5. Exam-Time Tabling Algorithm (ETA).

For better exam-time table ETA also calculates the 

conflicts among the each day-placed group and considers 

these groups as a vertex. Further optimization can be 

done by using PRIMS algorithm. In this case PRIMS 

algorithm will increase the Manhattan distance (MD) of 

the closest conflicting groups where the non conflicting 

groups also hold an edge with zero weight. This 

optimization stage is used to maximize the day gap of 

exams for the students. So by using PRIMS algorithm, 

ETA founds the minimum spanning tree of group of 

courses where the nearest group exams hold less common 

students. Manhattan Distance (MD) represents the value 

of total student to conflict ratio between the groups of the 

days. The cumulative time complexity of ETA is  O(sGn

+ Gn2) depends upon the provided slots per day (s) 

strictly. 

VI. EXPERIMENTAL RESULTS

A. Algorithm Analysis 

 The Decision tree based Routine Generation algorithm 

(DRG) is a set of 4 sequential feed-forwarded trees. 

Important observation has been made by considering the 

fitness value where it represents the best matching score 

among these selected day-time pattern slots for a selected 

teacher. An example is shown in Fig. 1, 2, 3, 4 and 5(a) 

where the first decision tree (PDRG) selects t2 because of 

high priority and t2 (11) holds the courses {c2}. The day-

time pattern shows {{2,12,22},{29}} = {2,12}, {12,22} 

or {2,22} as the best match for the course c2 from t2

favorite time slots. Here after imposing the day-time 

pattern with respect to number of class per week for the 

course, the calculated ordered sets of fitness value are 

{2,12}, {12,22}, {2,22} and {29} where the first three 

sets hold highest and equal fitness value corresponding 

with class per week. As no courses have been placed yet 

vector V is empty i.e.; V({ci}2) = { } & V({ci}12) = { } & 

V({ci}22) = { } & within room limit hence, the fitness 

value({2,12}) = fitness value({12,22}) = fitness 

value({2,22}), where the fitness value is an integer 

number representing the maximum possibility to take the 

classes on the provided time slots. So, PDRG places c2 in 

slot {2,12}, i.e. V({c2}2) and V({c2}12) where {2,12} is a 

random selection.  

 Again PDRG selects t4 with the priority 10 as its next 

candidate which holds the courses {c5}. Here the day-

time pattern is, {{2,12,22},{5,15,25}..} = 

{2,12,22},{5,15,25} extracted from the t4’s favorite slots. 

As V({ci}2) = {c2} & V({ci}12) = {c2} V({ci}22) = { } & 

V({ci}5) = { } & V({ci}15) = { } V({ci}25) = { } and the 

fitness value({2,12,22}) < fitness value({5,15,25}). 

Therefore c5 is placed in slot {5,15,25}, i.e. V({c5}5) and 

V({c5}15) and V({c5}25) where V({ci}2) and V({ci}12) is 

not empty. In similar approach the for the teacher t3 the 

course c3 is placed V({c3}10) and V({c3}20) where 

V({c3}5), V({c3}15) and V({c3}25) is ignored due to 

different course color. And for t1 the courses {c1, c4} hold 

12 and 8 as total conflicts respectively. Selected course c1

can be placed {7,17}, {8,18}, {9,19}, {13,23}, {22}, 

{24} accordingly to the t1 favorite slots. Course c1 is 

placed in V({c1}7) and V({c1}17). And from the 

remaining time slots none the generated pattern provide 

sufficient classes for the course c4 where the required 

number of classes is 3. So the course c4 is placed on 

V({c4}8) and V({c4}18) and c4 is tagged as partially placed 

course needed to be explored more. Random selection 

among courses for exploration is acceptable if more than 

one course holds same conflict score.  

 This class based reasoning left 1 partially placed 

course, need to be walked around more. Next decision 

tree CDRG is now in operation with fewer courses as 

compared with the beginning and slot 24 will be allocated 

for the course c4. The important issue is, although the 

classes are placed in zigzag fashion but all the selected 

slots for the course c4 are from the favorite slots of the 

faculty respectively. So, the denoted term teacher 

satisfaction is 100% for the case and overlapping classes 

for the student is zero (i.e., student satisfaction).  The 

results of above example are shown in Fig. 11. In practice 

the situation may be more complex with many courses. 

 By using the same data filtering technique for Exam-

Time tabling the proposed algorithm ETA generates the 

power set of courses according to their course color 

extracted from the cross_table(Cr) where the teacher 

redundancy is ignored Fig. 5(b). So, the resultant set is, 

{c1}, {c2}, {c3}, {c4}, {c5}, {c1, c4} and {c2, c3}. If the 

provided exam days are 3 and exam slots per day are 2 

the for 100% conflict free exam per slots are day 1 : {c1,

c4}, day 2 :  {c2, c3} and day 3 : {c5}.

PDRG CDRG TDRG NTDRG 
Final 

Finding 

Unclassified 0 0 - - 0 

Partially 

classified 
1 0 - - 0 

Day-time 

patterned 

classified 

4 1 - - 5 

Student 

conflict 
0 0 - - 0 

Unsatisfied 

time 
0 1 - - 1 

Figure 11.      Simulation result of DRG 

 Further more if the provided days for exam are 2 and 

slots are 2 then the exam-time tabling is like, day 1 : slot 

1 {c1, c4}, slot 2 {c5} and day 2 : slot 1 {c2}, slot 2 {c3}, 
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where day 1 consists zero conflict of exam on each slots 

but 1 consecutive exam of an student. Fig. 12 shows the 

overall outcome of the ETA algorithm for this special 

scenario.

B. Experimental Results 

 Test results for DRG algorithm are carried out on a PC 

with Pentium IV/1.6 GHz processor and 256 MB of 

memory. Table I. shows the computational results for 

semester 1 and semester 2 with 66 and 61 courses 

correspondingly. Where for semester 1, around 24 

teachers, with minimum 10 classes per week and at least 

3 courses and 120 students with 430 combinations of 

choices of courses are considered as input. For semester 

2, around 23 teachers, with minimum 10 classes per week 

and at least 3 courses and 106 students with 414 

combinations of choices of courses are considered as 

input. 

Day 

Slot 1 

Cr. 

(total 

std) 

Slot 2 

Cr. 

(total 

std)

Slot 3 

Cr. 

(total 

std) 

Con- 

current  

Exam 

Conflict 

Overall 

Gain 

Day = 3 

Slot = 2 

1 c1 (40) c4 (40) - 0 80 

2 c2 (50) c3 (35) - 0 85 

3 c5 (45) - - 0 45 

Day = 2 

Slot = 2 

1
c2 (50) 

c3 (35) 
c5 (45) - 1 130 

2 c1 (40) c4 (40) - 0 80 

Day = 1 

Slot = 2 
1 - - - - 

Not 

Possible 

Day = 1 

Slot = 3 
1

c1 (40) 

c4 (40) 
c5 (45) 

c2 (50) 

c3 (35) 
21 10 

Figure 12.      Simulation result of ETA 

 In Table I. and Fig. 11 unclassified courses refers to the 

number of courses that were not classified by any 

decision trees, partially classified courses gives the 

number of courses partially classified (the number classes 

already placed into the routine is less then the required 

classes). Day-time pattern shows the numbers of courses 

that followed the day-time pattern. student conflict 

estimates the percentage of unsatisfied requirements for 

courses by students. Unsatisfied time refers the number of 

time slots automatically generated beyond teachers’ 

favorite choice. Final Finding refers the final output for 

every subsection after using the all cascade trees. The 

main objective of this classification is to achieve the state 

where the value the unclassified course is equal to zero. 

Final value of unsatisfied time and student conflict shows 

the teacher and student satisfaction respectively.

Randomization or prediction on classification is not used 

in DRG. So the output of this  O(A.mn - B.m - C.n) 

based deterministic algorithm strictly depends upon the 

input.  

Test results for ETA are generated depending upon 61 

courses with average 25 students per course within 9 

exam days and 2 slots per day for semester 2. Table II. as 

well as Fig. 12 describes the outcome of the Exam-time 

Tabling Algorithm. Here the “slots” represents the total 

numbers of consecutive exam on a single day. Time 

duration is 3 hours for exam-time tabling whereas same 

slot holds 1 hour as class duration in DRG. Total student 

to conflict ratio on a particular exam day is referred as 

overall gain. Around 3.8% of the total students hold 

concurrent exam schedule whereas scheduled courses on 

each slot are 100% conflict free. The overall gain also 

confirms the profit for taking the course groups together 

as a candidate on a single day. High satisfaction of the 

students attests a high-quality exam-time tabling. 

VII. CONCLUSION

Timetabling problem usually varies significantly from 

institution to institution in terms of specific requirements 

and constraints [22]. Many current successful university 

timetabling systems are often applied only in the 

institutions where they were designed. The meta-

heuristic, heuristic and hybrid methods are used to 

solving timetabling problems so as case base reasoning. 

The main idea is to try and design an algorithm that will 

choose the right decision tree to carry out a certain task in 

a certain situation. 

This paper outlines the algorithm Decision Tree based 

Routine Generation (DRG) using OLAP representation, 

to construct a university class routine and conflict free 

Exam-Time Tabling algorithm (ETA) to produce conflict 

free exam schedule with a fixed interval of days. It 

should be noted that the DRG algorithm brings the 

complexity to a considerable level and this solution 

classifies 96% - 97% of the courses as well 93% - 95% 

satisfaction for teacher. For this data set, students’ 

satisfaction is 100% but in general 90% - 93% 

satisfaction may be achievable by using DRG. 

Preferential requirements (teacher satisfaction) on time 

variables are met around 93%. Again the ETA algorithm 

provides satisfactory exam-time table with 100% 

satisfaction. The results also illustrate that the proposed 

algorithms achieve significant performance gains over 

different data set. 

The proposed algorithms are designed in such a manner 

so that they are easy to code and imply significant 

importance to construct generalized automated time-

tabling software. Author(s) of the paper realize the 

difference in constraints level in different institutes; 

however in future generalized automated time-tabling 

software will be examined. This paper does not consider 

any classical benchmark problems. It is important to 

analyze the performance with other established 

algorithms. Incorporating those heterogeneous constraints 

with the proposed data structure will also be examined in 

future.
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