
Towards High Availability and Performance
Database Clusters for Archived Stream

Zhengbing Hu

Huazhong Normal University,Department of Information Technology,Wuhan,China
Email:kievpastor@yahoo.com

Kai Du

National University of Defense Technology, Changsha, China
Email: keyes.du@gmail.com

Abstract— Some burgeoning web applications, such as web
search engines, need to track, store and analyze massive
real-time users’ access logs with high availability of 24*7.
The traditional high availability approaches towards
general-purpose transaction applications are always not
efficient enough to store these high-rate insertion-only
archived streams. This paper presents an integrated
approach to store these archived streams in a database
cluster and recover it quickly. This approach is based on
our simplified replication protocol and high performance
data loading and query strategy. The experiments show that
our approach can reach efficient data loading and query
and get shorter recovery time than the traditional database
cluster recovery methods.

Index Terms—High availability, Archived Stream, Database
Clusters

I. INTRODUCTION

Some burgeoning applications have appeared which
needs the high availability and extra high performance of
data insertion operations. The records of web behavior,
such as the records of personal search behavior in search
engines, online stock transactions or call details, are the
classical archived streams [11]. For instance, Google can
improve the users’ search experiences based on
Personalized Search [3]. In this way, the data to be
collected includes the user’s web access path, access time
of each page, and so on. This information should be
written into a large database in a real-time mode and
queried repeatedly when the user uses the search engine
again. Another example is the record of call details.
Every day a telecom company needs to store the users’
call details such as the call’s start and end time, called
number. All of these archived streams applications have
the following common characteristics:
 A round-the-clock Internet company needs a high

availability of 24*7. However high availability is
a great challenge for a large-scale Internet
company like Google since a large number of
equipments are needed to archive streams which
always leads to low reliability of the whole
system.

 High-rate data streams need a high performance
and near real-time record insertion method.
Google processes about 4200 requests every
second [4] and needs a high performance
insertion program to record all the users’
behavior.

 The recorded data can be viewed as historical
data because it will not be updated any more but
only be queried repeatedly after being stored.
Furthermore the strict data integrity is always not
needed as in a classical DBMS since the loss of a
small part data will not influence the statistic
query result to the massive historical data.

We call these applications as log-intensive web
applications. [11] is the first one which optimizes
querying on the live and archived streams, but doesn’t
study the insertion performance and system’s availability.
[14] studies the availability of an updatable data
warehouse filled with less-update data. It optimizes the
2PC and 3PC [2] to reduce the disk IO cost by
eliminating the force-write logs. This improves the
runtime and recovery performance. However it is still
based on the general-purpose 2PC which is not efficient
enough to our high-rate insertion-only archived streams.
So this paper will design an efficient algorithm based on
reducing disk IO and a simpler consistency protocol to
archive the high-rate streams.

The first contribution of this paper is to study how to
optimize the insertion operations. Writing no online-log
and archived-log in databases and committing data in
bulk is adopted in our approach. The second one is to
provide a simple consistency protocol based on the no-
update feature of the data. The third one is to design an
efficient recovery method to recover failure replicas and
bring them online quickly.

The organization of this paper is as follows: Section II
is the problem statement and related work. Section III
describes the system architecture, efficient transaction
processing and simplified consistency protocol. Section
IV introduces the recovery approach; Section V is the
experiments; Section VI is the conclusion.

II. PROBLEM STATEMENT AND RELATED WORK

1332 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcp.4.12.1332-1339

Let’s consider the classical log-intensive applications:
when the users are accessing the web sites, all the users’
behavior may be stored and a group of record items <R1,
R2, … Rn> are generated at all times. These record items
must be real-time stored and be queried by subsequent
web access. A high available and efficient system needs
to be built for these applications. Database clusters are an
effective way to complete this. A database cluster C is m
database servers N1, N2,… Nm, each having its own
processors and hard disks, and running a “black-box”
DBMS [1]. The “Read One Write All Available” policy
[2] is always adopted. It means that when a read request
is received, it is dispatched to any one node in the
available nodes set ANS={ Nj | Nj is available node and
1≤ j ≤ m}; when a write request is received, the data
items <R1, R2, … Rn> are inserted into all nodes of the
available nodes set ANS.

DEFINITION 1. (Failure or Available Node) When
a database node meets an instance or media failure, and it
can’t provide query or insertion function to any data, this
node is a failure node. Otherwise the node is an available
node.

DEFINITION 2. (K-safety Fault Tolerance Model)
K-safety [Jim] means that if up to K sites can fail, and the
system can still continue to service. The minimum
number of sites required for K-safety is K + 1, namely in
the case where the K + 1 workers store the same
replicated data. In a database cluster of N1, N2,… Nm with
wholly replicated data, it is a m-1-safety model.

Based on definition 1, we could divide the cluster C
={N1, N2,… Nm }into two sets: available nodes set: ANS
={ Nj | Nj is available node and 1≤ j ≤ m} and failure
nodes set: FNS = C –ANS = { Nk | Nk is failure node and
1≤ k ≤ m }. Then what should be completed is as the
following: 1) Efficiently insert the record items <R1,
R2, … Rn> into all nodes in ANS and query any node in
ANS. 2) Efficiently recover the nodes in FNS. 3) Bring
the recovered node in FNS online and change both ANS
and FNS.

In [8], bulk loading the data into databases is adopted
to optimize the insertion performance, however they
didn’t touch upon the topic of high availability and the
recovery procedure. About 2) and 3), there is much
related work on it. The primary/secondary replica
protocol [20] in commercial databases [21,22,23]ships
updates logs from the primary to the secondary and this
way can’t support up-to-date read queries on the
secondary replicas and decrease the insertion
performance because of the frequent IO access in our log-
intensive web applications. The 2PC [2] can keep all
replicas up-to-date, but has poor runtime performance for
its runtime force-writes logs and poor recovery
performance based on complex ARIES [7, 14].

In order to avoid force-writes, ClustRa [13] uses a
neighbor write-ahead logging technique, in which a node
redundantly logs records to main memory both locally
and on a remote neighbor which in fact writes distributed
logs; HARBOR[14] avoids the logs thoroughly by
revising the 2PC protocol, but the revised 2PC protocol is
still too complex to these insertion-intensive and no-

update applications. [15, 16] is not based on 2PC and
propose a simple protocol, but it needs to maintain an
undo/redo log.

 The object of this paper is to design an efficient
integrated approach to solve the problem of high
availability and high performance for these real-time log-
intensive web applications. The basic idea is to insert the
data in bulk1 without online log in databases and set a
consistency fence for every table in the data processing
phase. And in the recovery phase, based on this
simplified data processing mode, a recovery method is
designed to get recovery data from other normal nodes or
the coordinator.

III. TRANSACTION PROCESSING

In this section, we first introduce the framework to
solve the three problems addressed in Section II. Then
how to process the two types of transactions-- insertion
and query is described. At last a simple replication
protocol is discussed.

A. System Framework: Transaction Types and Unique
External Timestamp

As is discussed in Section I, in the log-intensive
workloads, all the transactions can be classified as two
types: insertion and query transactions since there are no
update transactions. The insertion means inserting high-
rate data into databases. The query means querying the
massive non-update history data.

In order to implement the high performance insertions,
we adopt the following: 1) Buffer and insert the data into
a database in bulk. The experiments show that bulk
insertions always outperform standard single insertions
by an order of magnitude. 2) Write no online logs in
databases for insertions. Since the IO cost is always the
bottleneck of databases, the regular force-write logs
should be cut for the sake of performance. 3) Insert
multiple objects in parallel. Eliminating the dependency
of the insertions on different objects could be reached by
simply canceling the foreign key constraints. 4) Recovery
methods based on no-log must be developed.

According to 1), a coordinator is added upon a
database cluster to buffer and insert data in bulk in Fig.1.
For every object or table, an insertion thread is always
running and it inserts the buffered data into all available
nodes. Since the coordinator processes the same data
more easily than any underlying database, it consumes
less CPU and IO. Thus only one thread for one table is
enough to a balanced system. For every query request, a
query thread dynamically starts and stops with that query.
By the way, the insertion threads will refresh the meta-
info TF and ANS (introduced in Section III.B) about the
databases and the query threads will read this on time.

Another two mechanisms are designed to implement
fault tolerance and consistency protocol. The first is the

1 The statistical query result of the massive log data will
not be influenced by the small part of data buffered in
bulk. It is a basic assumption of the log-intensive
applications in Section 1.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1333

© 2009 ACADEMY PUBLISHER

unique external timestamp. Since a record data item
usually has a time field log_time, we can construct a
unique id for every record by adding a field log_number
which can differentiate the different records with the
same log_time value. Thus every record has a virtual
combined unique identifier log_id through binding
log_time and log_number. The allied timestamp is also
used in [14]. However it is generated in the database core
when the insert transaction is committed which will
destroy the autonomy of the underlying databases.

B. Insertion Processing
In this section, the insertion process of high-rate data

will be firstly described. Then how to load the data
efficiently through three means will be discussed.

The data insertion processing is illustrated in Fig 2.
The data to be loaded into databases is buffered into the
input buffer B-in, and when B-in is full, it will be
changed into output buffer B-out (①② in Fig.2). Then
the data in B-out will be written into multiple database
replicas simultaneously(③ in Fig.2). After the insertion
thread receives all the messages of replicas(④ in Fig.2),
it refreshes the Time Fence (TF) and Available Node Set
(ANS, is the same as A in Section II)(⑤ in Fig.2). Only if
the insertion thread meets a database replica failure, it
will write B-out into local log files (⑥ in Fig.2). Thus
before the failed replica is recovered, a group of insertion
log files will be generated and maintained.

The Time Fence (TF) is the log_id of the latest record
inserted into the database. Every table has a TF. It is used
to synchronize the query threads and insertion threads.

Buffering the tuples, writing data in bulk, and writing
to databases without logs, are the three key methods to
improve the insertion performance. The object of
buffering the tuples in B-in and B-out is to decrease the
times of access to the underlying databases. In order to
raise the concurrency of loading, we maintain one B-in
and B-out for every table. Writing data to databases in
bulk is a subsequent step of buffering. Loading data
directly into database data files without common online
logs is the third step. This step remarkably improves the
loading performance by eliminating disk IO access of
writing logs. This leverages the databases’ high
performance data loading technology which is
implemented in common databases like Oracle’s Direct
Path Loading in OCI [9] and DB2’s LOAD [10].

However this direct loading technology will commit
the data directly and this will lose the consistency of a
distributed transaction. How to guarantee the consistency
of an insertion operation on multiple replicas will be
described in detail in Section III.B.

From the above analysis, we could draw a conclusion
that no logs are generated both on the coordinator node
and database nodes in processing data insertion just as
[14]. Since the volume of the log is at least larger than the

data in a database, this method reduces at least 50% IO of
the normal fashion. It is a more efficient approach than
the [15] which needs to store logs both on middleware
and database nodes.

C. Query Processing
The process of queries includes two steps. Step one is

rewriting the SQL. In order to synchronize the result sets
of every database replicas, an extra condition of log_id
should be added according to the TF of every table which
is set by the insertion thread. The revising rule is as Table
1. Thus all query threads have a strict uniform logical
view about the data in the several replicas even though
the same data may be not inserted synchronously by an
insertion thread. TF[table_a] means table_a’s TF.

Insertion Thread

TF ANS

Insertions Queries

Query Thread

Coordinator

Database
Replicas

Database
Replicas

Coordinator

④ ④

①

 ②
 ⑥

⑤ ③

Log TF ANS

①Buffer data in B-in ④Reply to manager
②Move data to B-out ⑤Refresh TF and ANS
③Write data to DBs ⑥Write logs (on failure)

Figure 1. System Framework

Figure 2. System Framework

1334 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Step two is dispatching the revised SQL to an available
replica in the ANS. This can be done in terms of some
load balance policy like current requests number, CPU
usage ratio and so on.

Since “Read One Write All Available” is adopted, the

direct loading in Section III.B will lose the atomicity
because several database replicas always can’t commit an
insertion at the same time. However, from the rewriting
rule we can see that only until all replicas (except the
failure replicas) have committed the data, the TF will be
refreshed and the insertion is really committed. So the
query will have a synchronized view of the data on every
available node.

D. Replication Protocol
Replication protocol is to keep copies (replicas)

consistent despite updates [5, 6]. The traditional two-
phase commit protocol (2PC) [24] or its variation [14]
can be used to synchronize the data, but it is too complex
and expensive for its communication overhead in our
high-rate log-intensive workloads. Recently some
efficient eager replication protocols [17,18]based on
group communication primitives have started to appear.
Most of these new protocols [18] can partly solve the
problem of throughput and scalability but haven’t
improved the latency. All these general-purpose
replication protocols seem too complex for the simple
transaction semantics of log-intensive workload and
always inefficient for their storing SQL queue or log and
complex locks.

In the log-intensive workload, the atomicity and
consistency of an insertion transaction is guaranteed by
every table’s TF. When a table_a’s insertion thread
receives the replies of every replica, it must wait until it
attains an exclusive (write) lock of table_a’s TF. After
that it can refresh the table_a’s TF and the ANS. Before a
query thread revises a query SQL, it must wait until it
attains a share (read) lock of table_a’s TF. Thus the
committed data will not be seen until all replicas have
committed it. This simply guarantees insertion
transactions’ atomicity because no query will see the data
before the TF is changed. The consistency of one copy
serializability [19] also is kept by this mean which can be
proved like the following:

Theorem 1 The Time Fence (TF) approach is one
copy serializable.

Proof: Assume three transactions R1(a), R2(a)and
W(a), the first two are queries on table a, the last is
insertion on table a. Then the Theorem can be revised like
this: if a transaction serialization is R1(a) ,W(a),R2(a),

then the result set of R1(a) is older than R2(a). This can
be proved based on how to refresh table a’s TF.
According to the transaction serialization, we have TF
R1(a)≤TF W(a)≤TF R2(a) . Then taking into account the
revising rule of the query SQL, the added predicates of
R1(a) is older than R2(a), so the result set of R1(a) is
older than R2(a). □

This TF approach is optimized than the revised 2PC in
[14] for two reasons: 1) 2PC needs four network
communications while TF only needs two. 2) 2PC takes
into account the complex problem like concurrency
control, deadlock, rollback which will not occur in
archived streams applications. The reason is that the log-
intensive web applications don’t need so strict ACID
semantic and complex transaction model in classical
OLTP applications, but need a high-rate massive simple
processing model.

IV. RECOVERY APPROACH

The recovery approach is based on the insertion data
log files (generated in ⑥ in Fig.2). We design a recovery
algorithm on a granularity of tables. This algorithm is
constituted of a recovery manager thread rm_thread and
many recovery threads recovery_thread(node_id,
table_id). The rm_thread always runs on the background
and monitor which failure database needs to be recovered.
If it finds some one, it will create one recovery_thread for
every table on that database. After a recovery_thread
recovers a table, it will inform the rm_thread. The
recovery procedure of every recovery_thread can be
divided into three phases in Section IV.A.

A. Phase 1: Recover From the Latest Save Point
When an insertion is pushed to a replica, the data will

be directly written in pieces into the data files of the
database. When the database meets an instance failure,
one part of data of the insertion request is stored in the

TABLE II.
RECOVERY ALGORITHM

Recovery Algorithm

rm_thread
start:
for every recovering replica with node_id do
 for every table with on node_id do
 if no recovery_thread(node_id, table_id)
 then create recovery_thread(node_id, table_id)
 end of for
end of for
if recovery_thread(node_id, table_id) is ok
then
 inform insertion_thread(table_id) that table(node_id, table_id) is
recovered
 if on every node_id is recovered
 then remove the table_id’s log files
else goto start

recovery_thread(node_id, table_id)
phase 1: recover the oldest log file of table_id to node_id
phase 2: recover the other log files of table_id to node_id
phase 3: inform rm_thread that recovery of table_id on node_id is
ok and catch up the current insertion

TABLE I.
REWRITE QUERY RULE

Original Rewritten

SELECT tuples FROM table_a
WHERE original_predicates;

SELECT tuples FROM table_a
WHERE original_predicates
AND log_time <
TF[table_a].log_time
AND log_number
<TF[table_a].log_number;

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1335

© 2009 ACADEMY PUBLISHER

database while other in the memory is lost. In order to
save the stored data and avoid duplicating it, we should
get the log_id of the latest stored data. We call this log_id
as “the latest save point(LSP)”. The LSP can be got in
this standard SQL clause:

SELECT MAX(log_time), MAX(log_number)
INTO LSP.log_time, LSP.log_number FROM table_a;

Just as mentioned in Section III.B, we can leverage the
oldest insertion log file of the logs group. The pseudo
code is just like:

LOAD DIRECT FILE= the oldest file of table_id
WHERE log_time ≤ LSP.log_time
AND log_number < LSP.log_number;
Thus all the data left in the oldest insertion log file is

loaded into the recovering database. Then the other
insertion log files can be directly loaded into the database.

From the above procedure, we can find that both the
recovery of multiple tables in one database and the
recovery of multiple failure databases can be done in
parallel.

B. Phase 2: Catch Up with Data Logs
This phase is a subsequent step of phase 1 and simpler.

The pseudo code is:
LOAD DIRECT FILE=other files of table_id;
In this phase, we can optimize the recovery by merging

several small files into big files. This can improve the
recovery performance due to decreasing the access times
to the recovering database. The size of every big file is
determined by the load of network, disk, cpu of two sides.
The effect of merging will be shown in Section V.

C. Phase 3: Catch Up with Current Insertion
After loading all the log files of table_id, the

recovery_thread will inform the rm_thread and the
insertion_thread(table_id). The insertion_thread will push
the current insertion to the database of node_id. After the
insertion_thread has completed this insertion, it will
refresh the TF of table_id and added the recovered
database into the ANS of table_id. From that time on, the
insertion and query transaction can send to the table of
table_id of the recovered database.

If all recovering databases have recovered on this table
of table_id, the insertion_thread(table_id) will no longer
write log files.

D. Recover From Media Failure
When a database meets a media failure, such as some

data files can’t be read or written, the recovering
procedure is more complex than the former sections. It
can be implemented like the following two steps:

1) Recover the data files based on partitions. Partition
[12] is a database technology to divide massive data into
small segments 2 . First of all, two types of partitions
should be defined: current and historical partitions. The
current partition is the partition which the data is loaded
into, and other partitions are historical partitions which

2 The record data with a good even distributed feature on the time
dimension can take advantage of the query process and recovery
performance of partitions on time.

aren’t changed any more. The historical partitions should
be recovered in preference to the current. The recovery
procedure for them is to drop the local bad partition,
export the corresponding partition from a remote normal
node 3 , and import the partition. Exporting remote
partitions can be done without locks since the historical
partitions will not be changed. For the current partition,
locking the remote partition is needed before exporting it
since it is inserted. This will decrease the loading
performance sharply. So we devise a new method to get
the historical part of the current partition by querying the
partition of a remote node:

SELECT * FROM table_a on remote node
WHERE log_time≤first_file.log_time
AND log_number<first_file.log_number
AND log_time≥last_par.log_time
AND log_number>last_par.log_number;
Here the first_file is the first log file written by the

insertion_thread(table_a), and the last_par is the latest
normal partition before the current partition.

2) Recover the missing update data with the instance
failure recovery procedure. After recovering the
historical and current partitions, the remaining recovery
is as the same as in Section IV.A-C.

V. EXPERIMENTS

In this Section, we first give the experimental setting in
Section V.A. In Section V.B we analyze the relation of
insertion performance with the bulk size and the number
of concurrent users. In Section V.C we experimentally
compare the performance of our proposed recovery
method against ARIES and analyze the time of the three
recovery phases. In Section V.D we discuss the
transaction performance during failure and recovery.

A. Experimental Setting
A database cluster with three nodes is built and every

one has the same data. A coordinator node is added. All
the four nodes have two CPUs of Xeon 2G, 4G RAM,
two 70G SCSI disks and are installed on Redhat AS 3.0.
The three database nodes are installed with Oracle
10.1.0.4. And all the codes are written in GNU C++.

The experimental data comes from the access records
of some commercial search engine. Every record data has
about 329 bytes and 20MB data includes 63636 records.
Every record item has log_time and log_number fields
and other columns.

B. Runtime Performance
The runtime transaction performance can be discussed

in two types: one user and many concurrent users. From
another aspect, writing logs or not is another key factor
which influences the insertion performance. Since the
query processing will not write logs, its performance
variation will not be shown in the figures.

In Fig.3, we can find two conclusions: 1) The
optimized loading’s performance is fifty to hundred fold

3 We can assume that all nodes have the same partitions which is
generally used in real world projects.

1336 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

of the standard INSERT SQL’s and 2PC which is used in
[14]. 2) As we predict, writing less log means better
performance. As the results show, when a database node
writes online log or both online and archived log, the
processing time in average relative to no log is about
1.43:1.14:1. 3) The insertion processing time is
proportional to the size of the data. When the bulk size is
80MB, the insertion performance is the best which is
5.88MB/s or 18,700 records/s.

In Fig.4, the bulk size is 80MB and the time is the
average processing time of multi-users. Three scenes are
simulated: writing online log on databases and the
coordinator (it happens when a database node failed),
writing online log on databases and writing no log. The
ratio is 1.28:1.11:1. It shows that the number of
concurrent users has a weak influence on the relation of
the performance of three conditions.

C. Recovery Performance
In Fig.5, we compare the classical ARIES recovery

method and ours. The results show that when the
recovered data size is less than 4.5MB, the ARIES is
better, but after that point our method gets a better
performance. When the recovered data size is small, the
startup cost of our method is greater than ARIES and
later the complexity of ARIES leads to its long recovery
time. In Fig.6, the time of three recovery phases is shown.
The startup time in phase 1 and the catching up time in
phase 3 is a constant time, while the insertion time in
phase 2 is proportional to the data to be recovered.

D. Performance during Failure and Recovery
The transaction processing performance during the

databases’ failure and recovery is another problem
needed to be discussed. In Fig.7, the x-axis is the time,
the left y-axis is the insertion performance whose
criterion is MB/s, and the right y-axis is the query
performance whose criterion is the completed
transactions per second.

Before the 10th second, the system runs in the normal
state. At the 10th second, one of the three databases fails,
the coordinator detects this and the DBA restarts the
database at the 15th second. During this period, the
insertion performance decreases a little about 13%
because the log files need to be stored on the
coordinator’s disk, and the query performance decreases
about 31% because 1/3 of the three nodes can’t process
the query requests. From 15th second to 25th second, the
recovery phase 1 and 2 complete, and the performance is
just as the 15th second because the recovery will not
decrease the online performance. From 26th to 27th
second, the phase 3 completes, and the performance
return to the normal level.

From Fig.7, we can find that there is no sharp
performance degradation because other transactions will
not be interrupted when one database fails.

0 10 20 30 40
0

2

4

6

8

10

R
ec

ov
er

y
tim

e
(s

ec
on

ds
)

Recovered data size (MB)

 ours
 aries

Figure 5. Recovery performance and recovered size.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Ti
m

e
(s

ec
on

ds
)

number of concurrent users

 db & app log
 db log
 no log

Figure 4. Insertion performance and # of users.

0 500 1000 1500 2000

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(s

ec
on

ds
)

Bulk size (MB)

 No Log
 Online Log
 Online & Archived Log
 Conventional

Figure 3. Insertion performance and bulk size.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1337

© 2009 ACADEMY PUBLISHER

VI CONCLUSIONS

In this paper we have studied the problem of how to
store and recover high-rate archived streams in a database
cluster. According to the log-intensive applications, we
present an optimized data insertion method based on
reducing the disk IO access cost and a simple and
efficient consistency protocol. The experiments results
show that our approach can reach efficient data loading
and query and get shorter recovery time than the
traditional database cluster recovery methods.

ACKNOWLEDGMENT

The authors wish to thank Prof. V.P. Shirochin.This
research was supported by China Postdoctoral Science
Foundation(20070420908) and by the Project-sponsored
by SRF for ROCS, SEM (2008890).

REFERENCES

[1] S. Ganarski, H. Naacke, E. Pacitti, P. Valduriez: Parallel
Processing with Autonomous Databases in a Cluster
System, CoopIS, 2002.

[2] J. Gray, A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufman, 1992.

[3] Google personalized search.
http://www.google.com/psearch

[4] http://news.com.com/Google,+eBay+Strategic+bedfellows/
2100-1024_3-6110304.html

[5] J. Gray and P. Helland and P. O’Neil and D. Shasha: The
Danger of Replication and a Solution, ACM SIGMOD,
1996.

[6] Marta Patino-Martinez1,2, Ricardo Jim ′ enez-Peris,
Bettina Kemme, Gustavo Alonso. Consistent Database
Replication at the Middleware Level. ACM Transactions
on Computers, Vol. V, No. N, Month 2004, Pages 1–43.

[7] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz. ARIES: a transaction recovery method
supporting fine-ranularity locking and partial rollbacks
using write-ahead logging. ACM TODS, 17(1):94–162,
1992.

[8] Y. Dora Cai, Ruth Aydt, Robert J. Brunner. “Optimized
Data Loading for a Multi-Terabyte Sky Survey
Repository”. Super Computing 2005.

[9] http://www.lc.leidenuniv.nl/awcourse/oracle/appdev.920/a
96584/oci16m51.htm

[10] http://publib.boulder.ibm.com/infocenter/db2luw/v8//topic/
com.ibm.db2.udb.doc/admin/t0004590.htm

[11] Sirish Chandrasekaran, Michael Franklin. Remembrance of
Streams Past:Overload-Sensitive Management of Archived
Streams. VLDB 2004.

[12] www.psoug.org/reference/partitions.html
[13] S.-O. Hvasshovd,Torbjrnsen, S. E. Bratsberg,and P.

Holager. The clustra telecom database: High availability,
high throughput, and real-time response. In VLDB, pages
469–477. ACM Press, 1995.

[14] Edmond Lau, Samuel Madden. An Integrated Approach to
Recovery and High Availability in an Updatable,
Distributed Data Warehouse. vldb06

[15] R. Jim′enez-Peris, M. Patino-Martinez, and G. Alonso.
An algorithm for non-intrusive, parallel recovery of
replicated data and its correctness. In SRDS, 2002.

[16] B. Kemme. Database Replication for Clusters of
Workstations. PhD dissertation, Swiss Federal Institute of
Technology, Zurich, Germany, 2000.

[17] Matthias Wiesmann, Fernando Pedone, Andr′e Schiper,
Bettina Kemme,Gustavo Alonso. Transaction Replication
Techniques: a Three Parameter Classification. SRDS 2000.

[18] A. Sousa,J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R.
Oliveira, F. Moura.Testing the Dependability and
Performance of Group Communication Based Database
Replication Protocols. Dependable Systems and Networks
(DSN) 2005.

[19] P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[20] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L.
Shrira. Replication in the harp file system. In SOSP, pages
226–238. ACM Press, 1991.

[21] Microsoft Corp. Log shipping.
http://www.microsoft.com/technet/prodtechnol/sql/2000/re
skit/part4/c1361.mspx.

[22] Oracle Inc. Oracle database 10g Oracle Data Guard.
http://www.oracle.com/technology/deploy/availability/htdo
cs/DataGuardOverview.html.

[23] Sybase, Inc. Replicating data into Sybase IQ with
replication server.
http://www.sybase.com/detail?id=1038854.

[24] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the R* distributed database management
system. ACM TODS,11(4):378–396, 1986.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

db online

recovery phase 3

recovery phase 1 & 2

db restart

db crash

normal phase

Q
ue

ry
 p

er
fo

rm
an

ce
 (T

R
Xs

/s
)

In
se

rti
on

 p
er

fo
rm

an
ce

 (M
B/

s)

Time (seconds)

 Insertion performance

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

100

 Query performance

Figure 7. Transaction processing performance during failure
and recovery

20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

R
ec

ov
er

y
Ti

m
e

(s
ec

on
ds

)

Recovered Data Size (MB)

 Phase 1
 Phase 2
 Phase 3

Figure 6. Decomposition of recovery time

1338 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Zhengbing Hu was born in 1978. He received B.E.,
M.E. and P.h.D degree in National Technical University
of Ukraine. His current research interests include
Network Security, Intrusion Detection System, Artificial
Immune System, Data Minging etc..

Kai Du was born in 1978. He received B.E. and M.E.
PhD degree in National University of Defense
Technology, China. His current research interests include
large-scale data management, data reliability, distributed
computing.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1339

© 2009 ACADEMY PUBLISHER

