
Key-Lock Mechanisms for Object Protection in
Single-Address-Space Systems

Lanfranco Lopriore

Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, Università di Pisa
via G. Caruso 16, 56122 Pisa, Italy

Email: l.lopriore@iet.unipi.it

Abstract— This paper focuses on memory addressing envi-
ronments that support the notion of a single address space.
We consider the problem of hampering access attempts to
the private objects of a given thread, when these attempts
are generated by unauthorized threads of different
processes. We introduce two different forms of access privi-
lege representation - handles and gates - which are designed
to coexist within the boundaries of the same protection sys-
tem. The handle concept is a generalization of the classical
protected pointer concept. A handle associates several keys
(passwords) with an object name. Each key grants a specific
access right to the named object. A gate is a compact repre-
sentation of access privileges, which uses a single bit to en-
code an access right. Handles are protected from forgery by
key sparseness. They can be freely mixed in memory with
ordinary data. On the other hand, gates are sensitive data
that must be kept segregated in private memory regions of
the protection system. The dualism of handles and gates
makes it possible to take advantage of the simplicity of
access right distribution and object sharing between
threads, which is characteristic of key-based protection sys-
tems, and to avoid the negative impact on overall system
performance, which results from the large key size and the
high costs of lengthy processing that are connected with key
validation.

Index Terms—access right, process, protection, revocation,
single address space, thread

I. INTRODUCTION

In a classical model of process interaction and coop-
eration, a thread is defined as an elementary, active entity
capable of accessing and modifying the passive entities of
the system, called objects. A process is the result of the
joint activities of several tightly coupled threads. Interac-
tions between threads of different processes are compara-
tively rare, and efficiency in these interactions is not a
stringent requirement. As far as protection is concerned,
mechanisms are required to hamper access attempts to the
private objects of a given thread, if these attempts are
generated by unauthorized threads of different processes.
Protection mechanisms are not required between threads
of the same process. A thread of a given process can free-
ly access all the objects of the other threads in this
process. These objects are considered as part of a single
pool.

In a traditional virtual memory system, each process is
executed within the boundaries of its own address space.
This address space acts as a repository for all the objects

accessible by the process. Private object protection is
guaranteed by address space separation [21]; a process
cannot even name the private objects of any other
process. If threads of two or more different processes
need to share access to a given object, and this object is
placed at different addresses in the virtual spaces of these
processes, complex synonym problems arise. This hap-
pens in a virtual-addressed cache [1], [5] as well as for
instance in the circuitry for virtual-to physical address
translation [14], [15]. One solution is to place the object
at a virtual address that is fixed for all the processes in-
volved in object sharing. This solution implies that a con-
sensus has been reached among these processes [13]. On
the other hand, within the boundaries of a single process,
all threads access the same address space, and conse-
quently, object sharing between these threads is
straightforward [37].

In a different, single-address-space system, all
processes reference a common virtual space [2], [17],
[25]. The meaning of a virtual address is unique, and is
independent of the process issuing this address. The va-
lidity of the name (virtual address) of a given object ex-
tends to all processes, and each process uses this name to
reference the object. No ad-hoc mechanism is required
for object sharing between threads of different processes
[8], [9], however, the introduction of mechanisms for
private object protection is mandatory [7], [23], [33].

With reference to a single-address-space environment,
we will consider a classical protection system paradigm
that associates threads with protection domains [24]. The
protection domain of a given thread specifies the objects
that the thread can access and the access rights that the
thread holds to each of these objects. Objects are typed
and the definition of the type of a given object states the
operations that can be applied to this object, a set of
access rights, and the associations between the operations
and the access rights. Let X be an object type, R0, R1, …,
Rr-1 be the operations defined by X, and AR0, AR1, …,
ARn-1 be the access rights defined by X. A thread can ex-
ecute operation Ri on object B of type X only if the do-
main of this thread includes all those access rights to B
that are required to execute Ri successfully.

A basic problem when designing protection systems is
how to express relationships between objects and access
rights. An effective solution is to associate one or more
passwords with each protected object, one password for
each access right defined by the type of this object. A

1322 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcp.4.12.1322-1331

protected pointer {B, W} consists of an object name B
and a password W. If the password matches one of the
object passwords, the protected pointer grants the corres-
ponding access right to object B.

Protected pointers have a potentially negative effect on
the overall performance of the system. Several protected
pointers are necessary to certify possession of a complex
access privilege expressed in terms of several access
rights. This negatively affects memory requirements, es-
pecially in a single-address-space environment, on ac-
count of the large size of object names ensuing from the
large address space. (A large address space is necessary
to avoid unacceptable limitations on the amount of virtual
space available for each process [6].) Furthermore, one or
more passwords must be validated each time an operation
is executed on a given object, to ascertain whether the
thread issuing this operation holds the required access
permissions. Password validation negatively affects ex-
ecution times, for instance if an operation is executed as
part of a loop. Space and time problems are exacerbated
by the large password size necessary to prevent processes
from forging keys.

This paper proposes solutions to these performance
drawbacks. Firstly, we present a relaxation of the close
relationship that exists within a protected pointer between
an object name and a single password. We propose a va-
riant of the protected pointer concept, called a handle,
which makes it possible to associate an object name with
several passwords (called keys [18]). Handles are pro-
tected from forgery by key sparseness, and can be freely
mixed in memory with ordinary data.

Secondly, we introduce an alternative representation of
access privileges. In this new representation, gates are
used to encode each access right in a single bit. Gates are
sensitive data that must be kept segregated in private
memory regions of the protection system. Handles and
gates are designed to coexist within the boundaries of the
same protection system.

Our design satisfies two essential requirements:
• The resulting system should encompass the advan-

tages deriving from the simplicity of access right dis-
tribution and object sharing between threads, which
characterize password-based protection systems.

• The negative impact on the overall system perfor-
mance that ensues from large passwords and repeated
actions of password validation should be kept to a
minimum.

The remainder of this paper is structured as follows.

Section II presents our view of handle-based protection.
Section III introduces the dualism of gates and handles,
and illustrates gate use in object access with special refer-
ence to object sharing between threads. Section IV eva-
luates the results and discusses the relationships existing
between our mechanisms for object protection and a
number of other mechanisms proposed in the literature.
Finally, Section V summarizes the most important fea-
tures of the approach to object protection proposed in the
previous sections. The focus is on the significant advan-
tages of keys and locks for representing the state of a pro-
tection system.

II. HANDLE-BASED PROTECTION

Let B be an object of type X, and AR0, AR1, …, ARn-1
be the access rights defined by X. We associate a set of
locks L0, L1, …, Ln-1 with B, one lock for each access right
defined by X. A handle H = {B, K0, K1, …, Kk–1} consists
of object name B and a set of keys K0, K1, …, Kk-1 for this
object. Key Ki in handle H is valid if it matches one of the
locks, say lock Lj, associated with B. Let ARj be the
access right corresponding to lock Lj. In such situations,
possession of H certifies possession of access right ARj
on object B. The quantity k is handle-specific; different
handles may well include a different number of keys.

The locks of a given object are part of the private por-
tion of the internal representation of this object. A form
of lock segregation in memory is necessary, so that no
thread can access the locks and read or modify them. This
result is obtained as follows. For each given object B, we
reserve an area within the boundaries of the virtual space
region of the protection system. This memory area is
called the lock array LCKB. The LCKB address is a func-
tion of object name B. The j-th element of LCKB contains
the j-th lock, Lj. Fig. 1 shows the memory configuration
of object B with special reference to the relations between
handle H, lock array LCKB and the internal representation
of the object, IRB.

If the key size is large enough, threads are not able to
forge keys nor can they violate the integrity of the protec-
tion system. In such situations, if a thread attempts to
assemble a handle by associating an object name with an
arbitrary key, the probability that this key matches one of
the locks associated with the object is negligible. Let us
refer to a memory configuration of k contiguous memory
cells reserved to store the keys of a given handle. If a
thread erroneously attempts to use a non-existing key, say

Figure 1. Configuration of handle H, lock array LCKB and internal representation IRB of object B.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1323

© 2009 ACADEMY PUBLISHER

the (k + 1)-th key, key validation will use the contents of
a memory cell that does not actually contain a key. Of
course, the validation is destined to fail.

An interesting property of handles is the absence of
any restriction on the physical position of the handle
components in memory. A process that holds handle H is
free to store the components of this handle in arbitrary
virtual space positions, while keeping track of the associ-
ations between these components in the program algo-
rithms. The memory cells reserved for storage of object
name B and keys K0, K1, …, Kk–1 of handle H for instance
do not need to be contiguous.

A. Using Handles
Let us refer to thread T which is attempting to execute

operation R on object B, and let ARj be the access right
that allows the successful execution of R. When T issues
the call to R, it exhibits a handle H = {B, K0, K1, …, Kk–1}
referencing B as an argument of the call. The execution of
R ascertains whether H includes access right ARj. To do
this, the internal representation of B is accessed and lock
Lj corresponding to ARj is compared with keys K0, K1, …,
Kk–1. If a match is found, execution is allowed, otherwise
a protection exception is raised and execution fails.

High costs in terms of execution times are associated
with these iterated key-lock comparisons. We will now
introduce gates as an alternative representation of access
privileges for an effective solution to this performance
problem.

III. GATES

A gate G is a pair {B, AR}, where B is the name of an
object and the access right field AR contains the specifi-
cation of a set of access rights to B. We hypothesize that
an upper limit exists for the number of access rights that
can be defined by any given object type. In this hypothe-
sis, the length of AR is fixed and type-independent. Let
X be the type of object B. In gate G, the j-th bit of AR is
associated with the j-th access right, ARj, defined by X. If
this bit is set, then G includes ARj.

Let H = {B, K0, K1, …, Kk–1} be a handle for object B.
Gate G is equivalent to H if the access rights specified by
the AR field are those and only those specified by the
keys in H. This means that (i) if the j-th bit of AR is set,
then a key in H matches lock Lj corresponding to access
right ARj; and (ii) if the j-th bit of AR is clear, then no
key in H matches Lj.

The concept of equivalency of gates and handles can
be extended to two or more handles referencing the same
object. Let H’ = {B, K’0, K’1, …, K’k’–1} and H” = {B,
K”0, K”1, …, K”k”–1} be two handles referencing object
B, for instance. Gate G = {B, AR} is equivalent to the
H’, H” pair if the access rights specified by the AR field
are those and only those specified by the keys in H’ and
H”. This means that (i) if the j-th bit of AR is set, then at
least one key in {K’0, K’1, …, K’k’–1, K”0, K”1, …,
K”k”–1} matches lock Lj corresponding to access right
ARj; and (ii) if the j-th bit of AR is clear, then no key in

{K’0, K’1, …, K’k’–1, K”0, K”1, …, K”k”–1} matches Lj.

A. Protection Tables
As pointed out in Section II, handles are protected

from forgery since it is practically impossible to guess a
valid key. As a consequence they can be freely stored in
unprotected memory regions. On the other hand, if we
allow a process to gain unrestricted access to a given
gate, this process will be in a position to modify the
access right field of this gate and add new access rights,
or even cause the gate to reference a different object.
Thus, the enforcement of a form of gate segregation in
memory is mandatory. This result is obtained by restrict-
ing the storage of gates to reserved memory areas that are
part of the private memory space of the protection sys-
tem.

The protection system associates a protection table
PTP with each given process P. This table aims to contain
the gates held by P, which are shared by all the threads
that form this process. Each entry of the protection table
can store a gate. Two actions are permitted on a protec-
tion table, i.e. to write a gate into a given protection table
entry and to read the gate contained in a given entry. The
write of a gate occurs as a result of a conversion of a han-
dle to gate form. This effect can be obtained by executing
a protection system primitive called Convert() (the ac-
tions involved in the execution of this primitive are ana-
lyzed below). A gate read occurs as part of access privi-
lege verification, in the execution of a protection system
primitive called Verify(). The protection table entries can
only be accessed using Convert() and Verify().

At any given time, a register of the protection system,
the running process register RPR, contains the name P of
the running process, i.e. the process of thread T being
executed at this time. Thus, the contents of RPR identify
the protection table PTP that is used each time T performs
an access attempt to a protected object. This is done to
verify whether T holds the required access privilege.
When thread T relinquishes the processor and another
thread T’ is assigned the processor, if T and T’ are part of
the same process the contents of RPR do not change. On
the other hand, if the two threads belong to different
processes, say P and P’, then the name P’ of the new
process is written into RPR.

Thus, the threads of a given process P can only access
the entries of the protection table PTP associated with this
process. These threads cannot take advantage of the
access privileges held by a different process, which are
specified by the gates stored in the protection table of this
process. This condition is essential for private object pro-
tection across process boundaries.

 B. Handle to Gate Conversions
Let P be the name of the running process, specified by

the contents of the running process register RPR, and let
PTP be the protection table associated with P. The Con-
vert() primitive of the protection system makes it possible
to convert handle H into an equivalent gate G and store
this gate in an entry, say entry E, of PTP. This primitive
has the form

Convert(addrH, n)

1324 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Argument addrH is the address of the memory area con-
taining the components B, K0, K1, …, Kk–1 of handle H.
Argument n is the index of entry E in PTP. Let BE and
ARE denote the object name field and the access right
field of E. Execution of Convert() compares quantity B
with the contents of BE; if no match is found, quantity B
is inserted into BE and ARE is cleared. Then, each key
Ki, i = 0, 1, …, k – 1, is compared with the locks asso-
ciated with object B, which are stored in lock array LCKB.
If a match is found and Lj is the matching lock, then the j-
th bit of ARE is set. Fig. 2 shows the actions caused by
execution of Convert() with special reference to the activ-
ities involved in the generic iteration for key Ki, if a
match is found between this key and lock Lj. As a conse-
quence of the match, the protection table entry reserved
for gate G is accessed and bit j of the access right field of
this entry is set.

It should be noted that if entry E already contains a
gate for object B, execution of Convert() adds the access
rights specified by the handle at address addrH to those
already included in E. This additive behavior of Convert()
allows us to give the form of a single gate to several, dis-
tinct handles that reference the same object. Let H’ and
H” be two handles that reference object B, for instance,
and let addrH’ and addrH” be the addresses of the mem-
ory areas containing the components of these handles.
Two subsequent executions of Convert() can be used to
produce a gate equivalent to the H’, H” pair, as follows:

Convert(addrH’, n)
Convert(addrH”, n)

The first call to Convert() produces a gate equivalent to
H’ and stores this gate in the n-th entry of PTP. The
second call modifies the access right field of this entry to
include the access rights specified by H”.

C. Access Right Verification
The Verify() protection system primitive allows us to

ascertain the presence of a given access privilege in a
given gate. This primitive has the form

Verify(n, B, m)
Argument n is the index of an entry E of protection table
PTP associated with the running process P. Argument m
is a mask whose size is equal to the size of the access

right field of a gate. Execution of Verify() returns true if
both the following conditions are met: (i) the object name
field BE of entry E contains quantity B; and (ii) for each
bit in mask m, if this bit is set, then the corresponding bit
of the access right field ARE of E is set. The mask field
allows us to ascertain the availability of complex access
privileges expressed in terms of several access rights by a
single execution of Verify(). To this aim, we will assem-
ble a mask featuring several bits set, i.e. the bits corres-
ponding to each of these access rights.

D. Using Gates
In a protection environment supporting a duality of

handles and gates, let us refer to thread T holding handle
H for object B, and let us consider the actions needed to
execute operation R on this object. Thread T reserves an
entry E of protection table PTP for the storage of a gate G
equivalent to H. Then, the Convert() primitive is executed
to generate this gate. Thread T is now in a position to
certify possession of access right ARj which allow suc-
cessful execution of operation R by transmitting the index
n of E in PTP as an argument of the call to R. In the ex-
ecution of this operation, quantity n is used to call the
Verify() primitive and perform the required access right
checks.

 As seen in Subsection II.A, in the absence of gates, a
sequence of key-lock comparisons is necessary each time
an operation is executed on a protected object to validate
the object access. In contrast, in an environment featuring
a dualism of handles and gates, key-lock comparisons are
only necessary once for each protected object, when Con-
vert() is executed to generate a gate for this object. An
inline expansion of Verify() can be significantly faster
than several key-lock comparisons. The resulting reduc-
tion in processing time costs is especially significant for
an object access that requires the possession of a complex
access privilege expressed in terms of several, distinct
access rights. As seen in Subsection III.C, the presence of
a privilege of this type can be ascertained by a single ex-
ecution of Verify(), by choosing an appropriate configura-
tion for the mask argument, m.

Convert() execution times are negatively affected by
the fact that the validation of each given key Ki of handle
H requires a comparison of this key with each lock asso-

Figure 2. Actions involved in the execution of the Convert(addrH, n) primitive, in the iteration for key Ki.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1325

© 2009 ACADEMY PUBLISHER

ciated with B, iteratively, until a matching lock Lj is
found. One solution is to extend Ki to include a lock index
field containing the index j of Lj in lock array LCKB. In
this case, a single key-lock comparison is sufficient to
validate Ki (if Ki and Lj do not match, validation fails).
Protection system integrity is guaranteed by the fact that
any erroneous configuration of the lock index field inva-
lidates the key. Fig. 3 shows an extension of the configu-
ration of Fig. 1 obtained by adding lock indexes to keys.

E. Sharing Objects
All the threads of a given process share the same pro-

tection table. It follows that, if one of these threads con-
verts a handle into gate form, all the other threads can use
the gate resulting from the conversion. Let T’ and T” be
two threads of process P, let PTP be the protection table
of this process, and let us suppose that thread T’ holds a
handle H referencing object B. Suppose that T’ executes
the Convert() primitive to generate a gate G equivalent to
H and stores this gate in an entry of PTP. Thread T” will
now be able to take advantage of the contents of this en-
try and access B. Fig. 4 shows the two threads T’ and T”.
Thread T” accesses object B by taking advantage of a
gate G for this object which was generated by thread T’.

Thus, the protection table mechanism supports the
sharing of an object between threads of the same process.
In such situations, a single handle is sufficient to encode
the access privileges of all these threads, provided that
one of them converts the handle into a gate form. The
cost in terms of execution times is that of a single Con-

vert(), irrespectively of the number of threads involved in
the object sharing activity. Access privilege validation
requires execution of the Verify() primitive on each object
access. As pointed out previously, the cost of Verify() in
terms of execution times is negligible.

On the other hand, the sharing of an object between
processes explicitly requires handle transmission. Let T’
be a thread of process P’ and T” be a thread of process
P”, and let us suppose that T’ holds a handle H for object
B. The sharing of B between T’ and T” requires that T’
transmits a copy of H to T”. This thread can now convert
H into a gate and store this gate in an entry of its own
protection table, PTP”. Thus, T” gains access to B. Fig. 5
shows thread T” of process P” accessing object B after
converting a handle H for this object into the form of a
gate, G”. Thread T” cannot take advantage of gate G’
generated by thread T’, as this thread belongs to a differ-
ent process, P’.

In summary, the protection system enforces no degree
of protection on the private objects of a given thread
against accesses generated by the other threads of the
same process. On the other hand, the protection system
prevents a thread of a given process from accessing the
private objects of the threads of a different process, un-
less access is permitted by an explicit handle copy.

IV. DISCUSSION, AND RELATION TO PREVIOUS WORK

A. Capability-Based Protection Systems
Several methods have been proposed in the literature

Figure 3. Configuration of handle H, lock array LCKB and internal representation IRB of object B in the presence of lock indexes.

Figure 4. Sharing objects between threads of the same process.

1326 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

to represent the state of the protection system in memory.
A classical approach is based on the concept of a capabil-
ity [20], [22]. This is a pair {B, AR}, where B is the
name of a protected object and AR is the specification of
a set of access rights on B. Capability possession makes it
possible to access B and accomplish the operations per-
mitted by the access rights in AR. A protection domain
is specified in terms of a collection of capabilities. When
a thread attempts to access object B and execute operation
R, it must present a capability for this object, and the
access right field of this capability must include the
access rights permitting the execution of R. Several com-
puter systems using forms of capability-based protection
have been developed, e.g. the Cambridge CAP Computer
[36], the Plessey System 250 [11], the Intel iAPX 432
[27], the EROS system [30] and the IBM AS/400 [31].

Capabilities can be freely copied, and the protection
system does not mediate capability transmission between
domains. Access privileges tend to migrate throughout
protection domains [32], and the protection system has no
means of keeping track of the domains that received a
given privilege [29]. Consequently, the review and revo-
cation of access privileges is hard if not impossible.

To represent a capability in memory we have to assign
an identifier to each given object, and this identifier must
be unique throughout the system. In a single-address-
space environment, this can be obtained by using the vir-
tual address of the first memory location reserved for
object storage. Let us refer to object B of type T, for in-
stance. We shall impose an upper limit to the number n of
access rights that can be defined by any given object type.

The access right field of a capability for B will be en-
coded in n bits. If the j-th bit is set, then the capability
includes the j-th access right, ARj, defined by type T.

Capability segregation
In capability-based protection systems, we must pre-

vent unauthorized modifications of capabilities [28]. We
must preclude a process from tampering with the internal
representation of a capability and amplifying the access
privileges granted by this capability, for instance by add-
ing new access rights.

Capability segregation can be obtained by reserving
specific memory areas for capability storage [11], [36].
These areas can be modeled as objects of a machine type
that we shall call the CapabilitySegment type. The opera-
tions of this type are implemented by ad-hoc machine
instructions, the capability instructions. These instruc-
tions make it possible to write capability values into ca-
pability segments and to read capability values from ca-
pability segments, for instance.

A different approach relies on special memory devices
that associate a 1-bit tag with each memory cell. If set,
the tag of a given cell specifies that this cell contains a
capability [3], [35]. When a machine instruction is ex-
ecuted this produces the tag checks required for memory
access validation. For instance, if a capability is accessed
in memory and the tag of the storage cell involved in the
access is clear, a protection exception is generated and
execution fails

Both the capability segment approach and the tagged
memory approach require the support of specialized pro-
cessors. This is in sharp contrast to the current trend of

Figure 5. Sharing objects between threads of different processes.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1327

© 2009 ACADEMY PUBLISHER

processor standardization. If capability segments are
used, significant drawbacks arise from the dualism of
data segments and capability segments in terms of the
complexity of object layout in memory. In such situa-
tions, the internal representation of an object is often
structured as a tree of other objects. The root of this tree
is a capability segment which we call the object descrip-
tor. The capabilities in the object descriptor reference one
or more data segments, which are reserved for storing the
values of the data members. For an object whose internal
representation includes other member objects, the object
descriptor also includes the capabilities for the descriptors
of these member objects. This complex structure compli-
cates programming as well as compiler writing. Of
course, the problem is mitigated if capability segregation
is obtained by taking advantage of tagged storage, at the
expense of using specialized memory devices and in-
creasing hardware complexity. Furthermore, in a tagged
memory environment, ad-hoc solutions must be devised
for capability and data storage in the secondary memory,
because of the need to save cell tags.

Of course, there is some similarity between the con-
cepts of a capability and a gate. However, gates need to
be stored in reserved memory areas, i.e. the protection
tables, which are part of the protection system. On the
other hand capabilities must be segregated from the data,
but can be freely stored in the memory regions of general
processes. For instance, a thread is free to move a capa-
bility from capability segment S’ to capability segment
S”, provided that this thread holds a capability for S’
permitting to read capabilities, and a capability for S”
permitting to write capabilities.

On the other hand, handles do not need to be segre-
gated in memory at all. They are ordinary data values that
can be stored in any storage region, in the primary memo-
ry as well as in the secondary memory. Significant advan-
tages follow in terms of the complexity of object repre-
sentation. The descriptor of a given object can now con-
tain both the data members and the handles for the mem-
ber objects, for instance.

In fact, handles and gates are two different methods of
access right representation that are designed to coexist
within the boundaries of the same protection environ-
ment. Handles are aimed at distribution of access privi-
lege between processes, and gates are aimed at improving
efficiency in access right verification and object sharing
between threads of the same process.

B. Protected Pointers
Protected pointers (also called password capabilities)

have been proposed as a solution to the problems con-
nected with the use of capability segregation techniques
based on capability segments or tagged memory banks
[4], [26]. As pointed out in Section I, protected pointers
do not need to be segregated in memory. They are pro-
tected from alteration and forgery by the practical impos-
sibility of successfully guessing valid passwords.

Revocation
Protected pointers are an effective solution to the prob-

lem of access privilege revocation. By eliminating a giv-

en password from the list of valid passwords associated
with the given object, we exercise a form of partial revo-
cation [12] involving only those access rights that corres-
pond to this password. Revocation is transitive, as its
effects automatically extend to all threads holding a pro-
tected pointer expressed in terms of this password.

In our handle-based environment, similar effects can
be obtained by changing the locks associated with a given
object. Let Lj be the lock corresponding to access right
ARj. By modifying Lj we invalidate all handles that speci-
fy ARj in terms of a key matching this lock. We can even
associate several locks with the same access right. In this
case, if we modify one of these locks, we produce a selec-
tive revocation of access rights. Let Lj’ and Lj” be two
locks for access right ARj. By changing one of these
locks, say Lj’, we invalidate only those handles that speci-
fy ARj in terms of a key matching Lj’, whereas the validi-
ty of all handles whose keys match Lj” is not affected by
the revocation.
Memory requirements

Protected pointers have high costs in terms of memory
requirements. This is mainly a consequence of the close
correspondence between passwords and access rights, so
that a protected pointer grants a single access right and
several protected pointers are necessary to certify posses-
sion of a complex access privilege expressed in terms of
several access rights.

Let g be the size (in bytes) of an object name, w be the
size of a password, and p = g + w denote the size of a
protected pointer. The possession of a complex access
privilege defined in terms of several access rights, say n
access rights, implies possession of as many protected
pointers, with a total memory requirement of n ⋅ p bytes.
In the presence of a 64-bit processor, g is 8 bytes. For 64-
bit passwords and two access rights, the memory re-
quirement of the protection information is 32 bytes. For
three access rights, the memory requirement is 48 bytes.

In our key-lock environment, there are significant re-
ductions in memory costs since a single handle can con-
tain several distinct keys. An access privilege defined in
terms of n access rights can be specified using a handle
featuring n keys. The total memory requirement of this
handle is g + n ⋅ k bytes, where g denotes the size of an
object name and k denotes the key size. In the presence of
a 64-bit processor and 64-bit locks, the memory require-
ment for two access rights is 24 bytes, with a memory
space saving of 25 per cent compared to a solution using
protected pointers. For three access rights, the memory
requirement is 32 bytes, and the memory space saving
increases to 33 per cent.

Space costs can be further reduced since the compo-
nents of a given handle can be placed in arbitrary posi-
tions in the memory space. A thread holding several han-
dles for the same object does not need to replicate the
identifier of this object for each of these handles. The
thread will rebuild the association between the identifier
and the lock before calling the Convert() primitive. In
such situations, the thread gathers these quantities into a
suitable memory area and transmits the address of this
area to Convert() using the addrH argument.

1328 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

C. Active Protection Domains
Mungi [10], [19] is a single-address-space operating

system relying on password capabilities for object protec-
tion. In Mungi, an object is a collection of memory pages,
and the access rights defined for each object include read,
write, execute and destroy. The object address and length
are stored together with the owner password in a system
table, called the object table. An owner password grants
full access rights. A password derivation scheme applied
to the owner password makes it possible to obtain weaker
passwords.

Each user process is asked to organize its own pass-
word capabilities into capability lists conforming to a
standard format. The resulting data structure is called the
active protection domain of that user process. This data
structure is traversed by the kernel to validate each object
access. When a process attempts to execute an operation
on a given object, the kernel reads the passwords asso-
ciated with this object from the object table and then
searches the active protection domain of this process for a
capability whose password matches one of the object
passwords. If this search is successful and the password
has sufficient strength, the access is validated; otherwise
a protection fault is raised. The rationale behind active
protection domains is that a thread should not have to
deal with protection explicitly as long as it is accessing its
own private objects.

The designers of the Mungi system argue that the costs
of active protection domains in terms of execution times
and complication of the overall system architecture are
justified by the need to relieve the programmer from the
burden of explicitly managing access privileges for pri-
vate objects. In fact, the Mungi protection model forces
user programs to adhere to fixed pervasive forms of
access privilege organization. The need to arrange pass-
word capabilities into capability lists of a standard format
within the boundaries of an active protection domain
places undue restrictions on the programmer. These re-
strictions tend to hamper the principal advantage of
password capabilities, i.e. the absence of any need to se-
gregate password capabilities in memory.

In contrast, in our system if a thread wishes to execute
an operation on a given object it must convert a handle
for this object into a gate form. Then, the thread invokes
the operation by specifying the index of the protection
table entry that stores the gate resulting from the conver-
sion. This explicit action of access privilege presentation
is needed for private objects as well as for shared objects.
Our protection paradigm does not distinguish private ob-
ject accesses from shared object accesses.

In our opinion, the advantages in terms of overall sys-
tem performance and system simplicity that ensue from
our form of explicit access privilege management largely
exceed the disadvantages, especially with the appropriate
help from the compiler. Handle management and handle-
to-gate conversions are easy compiler tasks. Few modifi-
cations are necessary to add access privilege management
to a program written in the absence of protection, to make
this program suitable to operate in an environment featur-
ing handles and gates. Essentially, these modifications

take place in the definition of the operations of the pro-
tected types. From the point of view of a process using a
given object, handle usage can be assimilated to pointer
usage. The compiler will be able to make the actions con-
nected to access privilege presentation largely transparent
to the programmer. Placing new burdens on the compiler
is a current trend, which is exploited in many different
aspects of computer design, including translation looka-
side buffer management, cache control and data prefetch-
ing [16], [34], [38].

V. CONCLUDING REMARKS

Focusing on a memory addressing environment sup-
porting the notion of a single address space, we have con-
sidered the problem of hampering access attempts to the
private objects of a given thread, when these attempts are
generated by unauthorized threads of different processes.
A classical solution uses protected pointers to certify pos-
session of access privileges. A protected pointer consists
of an object name and a password. If the password is va-
lid, the protected pointer grants the corresponding access
right to the named object. This solution is prone to heavy
performance drawbacks, in terms of both memory re-
quirements and execution times. This is a consequence of
the large password size that is necessary to prevent for-
gery and the repeated actions of password validation. Our
main design goal was to reduce the impact of these draw-
backs.

We have presented two different methods for access
right representation, handles and gates, which were de-
signed to coexist within the boundaries of the same pro-
tection environment. Handles are mainly aimed at access
privilege distribution between threads of different
processes; gates are aimed at improving efficiency in
access right verification and object sharing between
threads of the same process.
• Handles are a generalization of the protected pointer

concept, obtained by associating the name of an ob-
ject with several keys. Handles are protected from
forgery by key sparseness.

• Gates are an alternative, compact representation of
access privileges reserving a single bit for each
access right. Gates are sensitive data that must be
protected from alteration and forgery. This is done
by segregating them into private memory regions of
the protection system and restricting their manipula-
tion to the execution of the primitives of the protec-
tion system. The Convert() primitive makes it possi-
ble to transform a handle into an equivalent gate.
Equivalency between gates and handles is defined in
terms of inclusion of access rights. The Verify() pri-
mitive makes it possible to check a gate for the pres-
ence of a given set of access rights.

We have obtained the following results:
• Handles can be freely mixed in memory with ordi-

nary data. Significant advantages arise in terms of the
ease of programming and simplification of the mem-
ory layout of protected objects. Distribution of access
privileges between threads of different processes is
obtained by means of simple handle copy actions .

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1329

© 2009 ACADEMY PUBLISHER

These actions require no intervention by the protec-
tion system. The components of a given handle do
not need to be stored in contiguous memory cells.
The key granting a given access right on a given ob-
ject can be stored separately from the object name,
for example in the data area reserved for the execu-
tion of an operation permitted by this access right.

• With respect to solutions using protected pointers,
handles reduce the space requirements of the infor-
mation for memory management. By associating an
object name with several keys, a single handle is ne-
cessary to certify possession of a complex access
privilege expressed in terms of several access rights.
The resulting improvements in memory costs are es-
pecially significant in a single-address-space envi-
ronment, owing to the large size of object names that
arise from the large size of memory addresses.

• Gates are an effective solution to the time perfor-
mance problems that ensue in the execution of an op-
eration on a given object, if a handle is used to certi-
fy possession of the access privilege necessary to ac-
complish this operation. High costs in terms of ex-
ecution times are connected with the iterated actions
of key-lock comparison that are necessary to validate
the handle. In contrast, if a gate is used, the compact
representation of the access right field permits a fast
verification of access privilege possession.

• The additive behaviour of the Convert() primitive
makes it possible to convert several handles into a
single gate, if all these handles reference the same
object. The resulting gate can be effectively used for
object access by all the threads of the same process.
In this way, gates effectively support object sharing
within process boundaries.

The results presented in this paper have been evaluated
from a number of points of view, including memory costs
and the execution time overheads connected with protec-
tion. Owing to a lack of experimental results, the discus-
sion has been largely based on a comparison with pre-
vious work.

Significant advantages are associated with the use of
keys and locks to represent a protection system. These
advantages are especially valuable as far as ease of access
right management and object sharing between threads are
concerned. Protected pointers have a negative impact on
overall system performance. An effective implementation
of a dualism of handles and gates could be an effective
solution. In our opinion, access right representation tech-
niques relying on forms of key-lock protection deserve
fresh consideration. This especially applies to single-
address-space environments, where the introduction of
mechanisms for private object protection is mandatory.
We hope that our work will have a significant impact in
this direction.

REFERENCES

[1] R. Ashok, S. Chheda, C. A. Moritz, “Cool-Mem: combin-
ing statically speculative memory accessing with selective
address translation for energy efficiency,” Proceedings of
the 10th International Conference on Architectural Sup-

port for Programming Languages and Operating Systems,
San Jose, California, October 2002, pp. 133–143.

[2] A. Bartoli, G. Dini, L. Lopriore, “Single address space
implementation in distributed systems,” Concurrency:
Practice and Experience, vol. 12, no. 4 (April 2000), pp.
251–280.

[3] N. P. Carter, S. W. Keckler, W. J. Dally, “Hardware sup-
port for fast capability-based addressing,” Proceedings of
the Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
San Jose, California, October 1994, pp. 319–327.

[4] M. D. Castro, R. D. Pose, C. Kopp, “Password-capabilities
and the Walnut kernel,” The Computer Journal, vol. 51,
no. 5 (September 2008), pp. 595–607.

[5] M. Cekleov, M. Dubois, “Virtual-address caches. Part 1:
problems and solutions in uniprocessors,” IEEE Micro,
vol. 17, no. 5 (September/October 1997), pp. 64–71.

[6] J. Chase, M. Feeley, H. Levy, “Some issues for single ad-
dress space systems,” Proceedings of the Fourth IEEE
Workshop on Workstation Operating Systems, Napa, CA,
October 1993, pp. 150–154.

[7] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska,
“Sharing and protection in a single-address-space operating
system,” ACM Transactions on Computer Systems, vol. 12,
no. 4 (November 1994), pp. 271–307.

[8] L. Deller, G. Heiser, “Linking programs in a single address
space,” Proceedings of the 1999 USENIX Annual Technic-
al Conference, Monterey, CA, USA, June 1999, pp. 283–
294.

[9] G. Dini, L. Lopriore, “Sharing objects in a distributed,
single address space environment,” Future Generation
Computer Systems, vol. 17, no. 3 (November 2000), pp.
247–264.

[10] A. Edwards, G. Heiser, “Components + security = OS
extensibility,” Proceedings of the Sixth Australasian Com-
puter Systems Architecture Conference, Gold Coast, Aus-
tralia, January 2001, pp. 27–34.

[11] D. M. England, “Capability concept mechanisms and struc-
ture in System 250,” Proceedings of the International
Workshop on Protection in Operating Systems, IRIA, Par-
is, 1974, pp. 63–82.

[12] V. D. Gligor, “Review and revocation of access privileges
distributed through capabilities,” IEEE Transactions on
Software Engineering, vol. SE-5, no. 6 (November 1979),
pp. 575–586.

[13] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, J.
Liedtke, “The Mungi single-address-space operating sys-
tem,” Software — Practice and Experience, vol. 28, no. 9
(July 1998), pp. 901–928.

[14] B. Jacob, T. Mudge, “Software-managed address transla-
tion,” Proceedings of the Third International Symposium
on High Performance Computer Architecture, San Anto-
nio, Texas, USA, February 1997, pp. 156–167.

[15] B. Jacob, T. Mudge, “Virtual memory: issues of implemen-
tation,” Computer, vol. 31, no. 6 (June 1998), pp. 33–43.

[16] I. Kadayif, P. Nath, M. Kandemir, A. Sivasubramaniam,
“Reducing data TLB power via compiler-directed address
generation,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 26, no. 2
(February 2007), pp. 312–324.

[17] E. J. Koldinger, J. S. Chase, S. J. Eggers, “Architectural
support for single address space operating systems,” Pro-
ceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Boston, Massachusetts, October 1992; in
SIGARCH Computer Architecture News, vol. 20, special
issue (October 1992), pp. 175–186.

1330 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

[18] C. S. Laih, L. Harn, J.-Y. Lee, “On the design of a single-
key-lock mechanism based on Newton’s interpolating po-
lynomial,” IEEE Transactions on Software Engineering,
vol. 15, no. 9 (September 1989), pp. 1135–1137.

[19] B. Leslie, N. FitzRoy-Dale, G. Heiser, “Encapsulated user-
level device drivers in the Mungi operating system,” Pro-
ceedings of the Workshop on Object Systems and Software
Architectures, Victor Harbor, South Australia, Australia,
January 2004, pp. 16–30.

[20] H. M. Levy, Capability-Based Computer Systems. Bed-
ford, Mass.: Digital Press, 1984.

[21] A. Lindström, J. Rosenberg, A. Dearle, “The grand unified
theory of address spaces,” Proceedings of the Fifth Work-
shop on Hot Topics in Operating Systems, Orcas Island,
WA, May 1995, pp. 66–71.

[22] L. Lopriore, “Capability based tagged architectures,” IEEE
Transactions on Computers, vol. C-33, no. 9 (September
1984), pp. 786–803.

[23] L. Lopriore, “Protection in a single-address-space envi-
ronment,” Information Processing Letters, vol. 76, no. 1–2
(November 2000), pp. 25–32.

[24] L. Lopriore, “Access control mechanisms in a distributed,
persistent memory system,” IEEE Transactions on Parallel
and Distributed Systems, vol. 13, no. 10 (October 2002),
pp. 1066–1083.

[25] D. S. Miller, D. B. White, A. C. Skousen, R. Tcherepov,
“Lower level architecture of the Sombrero single address
space distributed operating system,” Proceedings of the
18th IASTED International Conference on Parallel and
Distributed Computing and Systems, Dallas, TX, USA,
November 2006, pp. 484–489.

[26] D. Mossop, R. Pose, “Security models in the Password-
Capability System,” Proceedings of the Tencon 2005 IEEE
Region 10 Conference, Melbourne, Australia, November
2005, pp. 1–6.

[27] E. I. Organick, A Programmer’s View of the Intel 432 Sys-
tem. New York: McGraw-Hill, 1983.

[28] J. Rosenberg, J. L. Keedy, D. Abramson, “Addressing
mechanisms for large virtual memories,” The Computer
Journal, vol. 35, no. 4 (August 1992), pp. 369–375.

[29] L. Rousseau, S. Natkin, “A framework of secure object

system architecture,” Proceedings of the Third Workshop
on Object-Oriented Real-Time Dependable Systems, New-
port Beach, CA, February 1997, pp. 108–115.

[30] J. S. Shapiro, J. Vanderburgh, E. Northup, D. Chizmadia,
“Design of the EROS trusted window system,” Proceed-
ings of the 13th USENIX Security Symposium, San Diego,
CA, 2004, pp. 165–178.

[31] F. G. Soltis, P. Conte, Inside the AS/400: Featuring the
AS/400E Series, Second Edition. Loveland, CO: Duke
Press, 1997.

[32] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ander-
sen, J. Lepreau, “The Flask security architecture: system
support for diverse security policies,” Proceedings of the
Eighth USENIX Security Symposium, Washington, DC,
USA, August 1999, pp. 123–139.

[33] M. M. Swift, B. N. Bershad, H. M. Levy, “Improving the
reliability of commodity operating systems,” ACM Trans-
actions on Computer Systems, vol. 23, no. 1 (February
2005), pp. 77–110.

[34] O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, C. A. Mo-
ritz, “Cool-Cache: a compiler-enabled energy efficient data
caching framework for embedded/multimedia processors,”
ACM Transactions on Embedded Computing Systems, vol.
2, no. 3 (August 2003), pp. 373–392.

[35] P. Vasek, K. Ghose, “A comparison of two context alloca-
tion approaches for fast protected calls,” Proceedings of
the Fourth International Conference on High-Performance
Computing, Bangalore, India, December 1997, pp. 16–21.

[36] M. V. Wilkes, R. M. Needham, The Cambridge CAP
Computer and Its Operating System. New York: North
Holland, 1979.

[37] E. Witchel, J. Cates, K. Asanović, “Mondrian memory
protection,” Proceedings of the 10th International Confe-
rence on Architectural Support for Programming Lan-
guages and Operating Systems, San Jose, California, Octo-
ber 2002, pp. 304–316.

[38] E. Witchel, S. Larsen, C. S. Ananian, K. Asanović, “Direct
addressed caches for reduced power consumption,” Pro-
ceedings of the 34th Annual ACM/IEEE International
Symposium on Microarchitecture, Austin, Texas, Decem-
ber 2001, pp. 124–133.

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1331

© 2009 ACADEMY PUBLISHER

