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Abstract— This paper focuses on memory addressing envi-
ronments that support the notion of a single address space. 
We consider the problem of hampering access attempts to 
the private objects of a given thread, when these attempts 
are generated by unauthorized threads of different 
processes. We introduce two different forms of access privi-
lege representation - handles and gates - which are designed 
to coexist within the boundaries of the same protection sys-
tem. The handle concept is a generalization of the classical 
protected pointer concept. A handle associates several keys 
(passwords) with an object name. Each key grants a specific 
access right to the named object. A gate is a compact repre-
sentation of access privileges, which uses a single bit to en-
code an access right. Handles are protected from forgery by 
key sparseness. They can be freely mixed in memory with 
ordinary data. On the other hand, gates are sensitive data 
that must be kept segregated in private memory regions of 
the protection system. The dualism of handles and gates 
makes it possible to take advantage of the simplicity of 
access right distribution and object sharing between 
threads, which is characteristic of key-based protection sys-
tems, and to avoid the negative impact on overall system 
performance, which results from the large key size and the 
high costs of lengthy processing that are connected with key 
validation. 
 
Index Terms—access right, process, protection, revocation, 
single address space, thread 
 

I.  INTRODUCTION 

In a classical model of process interaction and coop-
eration, a thread is defined as an elementary, active entity 
capable of accessing and modifying the passive entities of 
the system, called objects. A process is the result of the 
joint activities of several tightly coupled threads. Interac-
tions between threads of different processes are compara-
tively rare, and efficiency in these interactions is not a 
stringent requirement. As far as protection is concerned, 
mechanisms are required to hamper access attempts to the 
private objects of a given thread, if these attempts are 
generated by unauthorized threads of different processes. 
Protection mechanisms are not required between threads 
of the same process. A thread of a given process can free-
ly access all the objects of the other threads in this 
process. These objects are considered as part of a single 
pool. 

In a traditional virtual memory system, each process is 
executed within the boundaries of its own address space. 
This address space acts as a repository for all the objects 

accessible by the process. Private object protection is 
guaranteed by address space separation [21]; a process 
cannot even name the private objects of any other 
process. If threads of two or more different processes 
need to share access to a given object, and this object is 
placed at different addresses in the virtual spaces of these 
processes, complex synonym problems arise. This hap-
pens in a virtual-addressed cache [1], [5] as well as for 
instance in the circuitry for virtual-to physical address 
translation [14], [15]. One solution is to place the object 
at a virtual address that is fixed for all the processes in-
volved in object sharing. This solution implies that a con-
sensus has been reached among these processes [13]. On 
the other hand, within the boundaries of a single process, 
all threads access the same address space, and conse-
quently, object sharing between these threads is 
straightforward [37].  

In a different, single-address-space system, all 
processes reference a common virtual space [2], [17], 
[25]. The meaning of a virtual address is unique, and is 
independent of the process issuing this address. The va-
lidity of the name (virtual address) of a given object ex-
tends to all processes, and each process uses this name to 
reference the object. No ad-hoc mechanism is required 
for object sharing between threads of different processes 
[8], [9], however, the introduction of mechanisms for 
private object protection is mandatory [7], [23], [33]. 

With reference to a single-address-space environment, 
we will consider a classical protection system paradigm 
that associates threads with protection domains [24]. The 
protection domain of a given thread specifies the objects 
that the thread can access and the access rights that the 
thread holds to each of these objects. Objects are typed 
and the definition of the type of a given object states the 
operations that can be applied to this object, a set of 
access rights, and the associations between the operations 
and the access rights. Let X be an object type, R0, R1, …, 
Rr-1 be the operations defined by X, and AR0, AR1, …, 
ARn-1 be the access rights defined by X. A thread can ex-
ecute operation Ri on object B of type X only if the do-
main of this thread includes all those access rights to B 
that are required to execute Ri successfully.  

A basic problem when designing protection systems is 
how to express relationships between objects and access 
rights. An effective solution is to associate one or more 
passwords with each protected object, one password for 
each access right defined by the type of this object. A 
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protected pointer {B, W} consists of an object name B 
and a password W. If the password matches one of the 
object passwords, the protected pointer grants the corres-
ponding access right to object B.  

Protected pointers have a potentially negative effect on 
the overall performance of the system. Several protected 
pointers are necessary to certify possession of a complex 
access privilege expressed in terms of several access 
rights. This negatively affects memory requirements, es-
pecially in a single-address-space environment, on ac-
count of the large size of object names ensuing from the 
large address space. (A large address space is necessary 
to avoid unacceptable limitations on the amount of virtual 
space available for each process [6].) Furthermore, one or 
more passwords must be validated each time an operation 
is executed on a given object, to ascertain whether the 
thread issuing this operation holds the required access 
permissions. Password validation negatively affects ex-
ecution times, for instance if an operation is executed as 
part of a loop. Space and time problems are exacerbated 
by the large password size necessary to prevent processes 
from forging keys.  

This paper proposes solutions to these performance 
drawbacks. Firstly, we present a relaxation of the close 
relationship that exists within a protected pointer between 
an object name and a single password. We propose a va-
riant of the protected pointer concept, called a handle, 
which makes it possible to associate an object name with 
several passwords (called keys [18]). Handles are pro-
tected from forgery by key sparseness, and can be freely 
mixed in memory with ordinary data.  

Secondly, we introduce an alternative representation of 
access privileges. In this new representation, gates are 
used to encode each access right in a single bit. Gates are 
sensitive data that must be kept segregated in private 
memory regions of the protection system. Handles and 
gates are designed to coexist within the boundaries of the 
same protection system.  

Our design satisfies two essential requirements: 
• The resulting system should encompass the advan-

tages deriving from the simplicity of access right dis-
tribution and object sharing between threads, which 
characterize password-based protection systems. 

• The negative impact on the overall system perfor-
mance that ensues from large passwords and repeated 
actions of password validation should be kept to a 
minimum. 

The remainder of this paper is structured as follows. 

Section II presents our view of handle-based protection. 
Section III introduces the dualism of gates and handles, 
and illustrates gate use in object access with special refer-
ence to object sharing between threads. Section IV eva-
luates the results and discusses the relationships existing 
between our mechanisms for object protection and a 
number of other mechanisms proposed in the literature. 
Finally, Section V summarizes the most important fea-
tures of the approach to object protection proposed in the 
previous sections. The focus is on the significant advan-
tages of keys and locks for representing the state of a pro-
tection system. 

II.  HANDLE-BASED PROTECTION 

Let B be an object of type X, and AR0, AR1, …, ARn-1 
be the access rights defined by X. We associate a set of 
locks L0, L1, …, Ln-1 with B, one lock for each access right 
defined by X. A handle H = {B, K0, K1, …, Kk–1} consists 
of object name B and a set of keys K0, K1, …, Kk-1 for this 
object. Key Ki in handle H is valid if it matches one of the 
locks, say lock Lj, associated with B. Let ARj be the 
access right corresponding to lock Lj. In such situations, 
possession of H certifies possession of access right ARj 
on object B. The quantity k is handle-specific; different 
handles may well include a different number of keys. 

The locks of a given object are part of the private por-
tion of the internal representation of this object. A form 
of lock segregation in memory is necessary, so that no 
thread can access the locks and read or modify them. This 
result is obtained as follows. For each given object B, we 
reserve an area within the boundaries of the virtual space 
region of the protection system. This memory area is 
called the lock array LCKB. The LCKB address is a func-
tion of object name B. The j-th element of LCKB contains 
the j-th lock, Lj. Fig. 1 shows the memory configuration 
of object B with special reference to the relations between 
handle H, lock array LCKB and the internal representation 
of the object, IRB. 

If the key size is large enough, threads are not able to 
forge keys nor can they violate the integrity of the protec-
tion system. In such situations, if a thread attempts to 
assemble a handle by associating an object name with an 
arbitrary key, the probability that this key matches one of 
the locks associated with the object is negligible. Let us 
refer to a memory configuration of k contiguous memory 
cells reserved to store the keys of a given handle. If a 
thread erroneously attempts to use a non-existing key, say 

 
Figure 1.  Configuration of handle H, lock array LCKB and internal representation IRB of object B. 
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the (k + 1)-th key, key validation will use the contents of 
a memory cell that does not actually contain a key. Of 
course, the validation is destined to fail.  

An interesting property of handles is the absence of 
any restriction on the physical position of the handle 
components in memory. A process that holds handle H is 
free to store the components of this handle in arbitrary 
virtual space positions, while keeping track of the associ-
ations between these components in the program algo-
rithms. The memory cells reserved for storage of object 
name B and keys K0, K1, …, Kk–1 of handle H for instance 
do not need to be contiguous.  

A.  Using Handles  
Let us refer to thread T which is attempting to execute 

operation R on object B, and let ARj be the access right 
that allows the successful execution of R. When T issues 
the call to R, it exhibits a handle H = {B, K0, K1, …, Kk–1} 
referencing B as an argument of the call. The execution of 
R ascertains whether H includes access right ARj. To do 
this, the internal representation of B is accessed and lock 
Lj corresponding to ARj is compared with keys K0, K1, …, 
Kk–1. If a match is found, execution is allowed, otherwise 
a protection exception is raised and execution fails.  

High costs in terms of execution times are associated 
with these iterated key-lock comparisons. We will now 
introduce gates as an alternative representation of access 
privileges for an effective solution to this performance 
problem. 

III.  GATES 

A gate G is a pair {B, AR}, where B is the name of an 
object and the access right field AR contains the specifi-
cation of a set of access rights to B. We hypothesize that 
an upper limit exists for the number of access rights that 
can be defined by any given object type. In this hypothe-
sis, the length of AR is fixed and type-independent. Let 
X be the type of object B. In gate G, the j-th bit of AR is 
associated with the j-th access right, ARj, defined by X. If 
this bit is set, then G includes ARj.  

Let H = {B, K0, K1, …, Kk–1} be a handle for object B. 
Gate G is equivalent to H if the access rights specified by 
the AR field are those and only those specified by the 
keys in H. This means that (i) if the j-th bit of AR is set, 
then a key in H matches lock Lj corresponding to access 
right ARj; and (ii) if the j-th bit of AR is clear, then no 
key in H matches Lj. 

The concept of equivalency of gates and handles can 
be extended to two or more handles referencing the same 
object. Let H’ = {B, K’0, K’1, …, K’k’–1} and H” = {B, 
K”0, K”1, …, K”k”–1} be two handles referencing object 
B, for instance. Gate G = {B, AR} is equivalent to the 
H’, H” pair if the access rights specified by the AR field 
are those and only those specified by the keys in H’ and 
H”. This means that (i) if the j-th bit of AR is set, then at 
least one key in {K’0, K’1, …, K’k’–1, K”0, K”1, …,    
K”k”–1} matches lock Lj corresponding to access right 
ARj; and (ii) if the j-th bit of AR is clear, then no key in 

{K’0, K’1, …, K’k’–1, K”0, K”1, …, K”k”–1} matches Lj. 

A.  Protection Tables 
As pointed out in Section II, handles are protected 

from forgery since it is practically impossible to guess a 
valid key. As a consequence they can be freely stored in 
unprotected memory regions. On the other hand, if we 
allow a process to gain unrestricted access to a given 
gate, this process will be in a position to modify the 
access right field of this gate and add new access rights, 
or even cause the gate to reference a different object. 
Thus, the enforcement of a form of gate segregation in 
memory is mandatory. This result is obtained by restrict-
ing the storage of gates to reserved memory areas that are 
part of the private memory space of the protection sys-
tem.  

The protection system associates a protection table 
PTP with each given process P. This table aims to contain 
the gates held by P, which are shared by all the threads 
that form this process. Each entry of the protection table 
can store a gate. Two actions are permitted on a protec-
tion table, i.e. to write a gate into a given protection table 
entry and to read the gate contained in a given entry. The 
write of a gate occurs as a result of a conversion of a han-
dle to gate form. This effect can be obtained by executing 
a protection system primitive called Convert() (the ac-
tions involved in the execution of this primitive are ana-
lyzed below). A gate read occurs as part of access privi-
lege verification, in the execution of a protection system 
primitive called Verify(). The protection table entries can 
only be accessed using Convert() and Verify(). 

At any given time, a register of the protection system, 
the running process register RPR, contains the name P of 
the running process, i.e. the process of thread T being 
executed at this time. Thus, the contents of RPR identify 
the protection table PTP that is used each time T performs 
an access attempt to a protected object. This is done to 
verify whether T holds the required access privilege. 
When thread T relinquishes the processor and another 
thread T’ is assigned the processor, if T and T’ are part of 
the same process the contents of RPR do not change. On 
the other hand, if the two threads belong to different 
processes, say P and P’, then the name P’ of the new 
process is written into RPR. 

Thus, the threads of a given process P can only access 
the entries of the protection table PTP associated with this 
process. These threads cannot take advantage of the 
access privileges held by a different process, which are 
specified by the gates stored in the protection table of this 
process. This condition is essential for private object pro-
tection across process boundaries. 

 B.  Handle to Gate Conversions 
Let P be the name of the running process, specified by 

the contents of the running process register RPR, and let 
PTP be the protection table associated with P. The Con-
vert() primitive of the protection system makes it possible 
to convert handle H into an equivalent gate G and store 
this gate in an entry, say entry E, of PTP. This primitive 
has the form 

Convert(addrH, n) 
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Argument addrH is the address of the memory area con-
taining the components B, K0, K1, …, Kk–1 of handle H. 
Argument n is the index of entry E in PTP. Let BE and 
ARE denote the object name field and the access right 
field of E. Execution of Convert() compares quantity B 
with the contents of BE; if no match is found, quantity B 
is inserted into BE and ARE is cleared. Then, each key 
Ki, i = 0, 1, …, k – 1, is compared with the locks asso-
ciated with object B, which are stored in lock array LCKB. 
If a match is found and Lj is the matching lock, then the j-
th bit of ARE is set. Fig. 2 shows the actions caused by 
execution of Convert() with special reference to the activ-
ities involved in the generic iteration for key Ki, if a 
match is found between this key and lock Lj. As a conse-
quence of the match, the protection table entry reserved 
for gate G is accessed and bit j of the access right field of 
this entry is set. 

It should be noted that if entry E already contains a 
gate for object B, execution of Convert() adds the access 
rights specified by the handle at address addrH to those 
already included in E. This additive behavior of Convert() 
allows us to give the form of a single gate to several, dis-
tinct handles that reference the same object. Let H’ and 
H” be two handles that reference object B, for instance, 
and let addrH’ and addrH” be the addresses of the mem-
ory areas containing the components of these handles. 
Two subsequent executions of Convert() can be used to 
produce a gate equivalent to the H’, H” pair, as follows: 

Convert(addrH’, n) 
Convert(addrH”, n) 

The first call to Convert() produces a gate equivalent to 
H’ and stores this gate in the n-th entry of PTP. The 
second call modifies the access right field of this entry to 
include the access rights specified by H”. 

C.  Access Right Verification 
The Verify() protection system primitive allows us to 

ascertain the presence of a given access privilege in a 
given gate. This primitive has the form 

Verify(n, B, m) 
Argument n is the index of an entry E of protection table 
PTP associated with the running process P. Argument m 
is a mask whose size is equal to the size of the access 

right field of a gate. Execution of Verify() returns true if 
both the following conditions are met: (i) the object name 
field BE of entry E contains quantity B; and (ii) for each 
bit in mask m, if this bit is set, then the corresponding bit 
of the access right field ARE of E is set. The mask field 
allows us to ascertain the availability of complex access 
privileges expressed in terms of several access rights by a 
single execution of Verify(). To this aim, we will assem-
ble a mask featuring several bits set, i.e. the bits corres-
ponding to each of these access rights. 

D.  Using Gates 
In a protection environment supporting a duality of 

handles and gates, let us refer to thread T holding handle 
H for object B, and let us consider the actions needed to 
execute operation R on this object. Thread T reserves an 
entry E of protection table PTP for the storage of a gate G 
equivalent to H. Then, the Convert() primitive is executed 
to generate this gate. Thread T is now in a position to 
certify possession of access right ARj which allow suc-
cessful execution of operation R by transmitting the index 
n of E in PTP as an argument of the call to R. In the ex-
ecution of this operation, quantity n is used to call the 
Verify() primitive and perform the required access right 
checks.  

 As seen in Subsection II.A, in the absence of gates, a 
sequence of key-lock comparisons is necessary each time 
an operation is executed on a protected object to validate 
the object access. In contrast, in an environment featuring 
a dualism of handles and gates, key-lock comparisons are 
only necessary once for each protected object, when Con-
vert() is executed to generate a gate for this object. An 
inline expansion of Verify() can be significantly faster 
than several key-lock comparisons. The resulting reduc-
tion in processing time costs is especially significant for 
an object access that requires the possession of a complex 
access privilege expressed in terms of several, distinct 
access rights. As seen in Subsection III.C, the presence of 
a privilege of this type can be ascertained by a single ex-
ecution of Verify(), by choosing an appropriate configura-
tion for the mask argument, m. 

Convert() execution times are negatively affected by 
the fact that the validation of each given key Ki of handle 
H requires a comparison of this key with each lock asso-

Figure 2.  Actions involved in the execution of the Convert(addrH, n) primitive, in the iteration for key Ki. 
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ciated with B, iteratively, until a matching lock Lj is 
found. One solution is to extend Ki to include a lock index 
field containing the index j of Lj in lock array LCKB. In 
this case, a single key-lock comparison is sufficient to 
validate Ki (if Ki and Lj do not match, validation fails). 
Protection system integrity is guaranteed by the fact that 
any erroneous configuration of the lock index field inva-
lidates the key. Fig. 3 shows an extension of the configu-
ration of Fig. 1 obtained by adding lock indexes to keys. 

E.  Sharing Objects 
All the threads of a given process share the same pro-

tection table. It follows that, if one of these threads con-
verts a handle into gate form, all the other threads can use 
the gate resulting from the conversion. Let T’ and T” be 
two threads of process P, let PTP be the protection table 
of this process, and let us suppose that thread T’ holds a 
handle H referencing object B. Suppose that T’ executes 
the Convert() primitive to generate a gate G equivalent to 
H and stores this gate in an entry of PTP. Thread T” will 
now be able to take advantage of the contents of this en-
try and access B. Fig. 4 shows the two threads T’ and T”. 
Thread T” accesses object B by taking advantage of a 
gate G for this object which was generated by thread T’. 

Thus, the protection table mechanism supports the 
sharing of an object between threads of the same process. 
In such situations, a single handle is sufficient to encode 
the access privileges of all these threads, provided that 
one of them converts the handle into a gate form. The 
cost in terms of execution times is that of a single Con-

vert(), irrespectively of the number of threads involved in 
the object sharing activity. Access privilege validation 
requires execution of the Verify() primitive on each object 
access. As pointed out previously, the cost of Verify() in 
terms of execution times is negligible. 

On the other hand, the sharing of an object between 
processes explicitly requires handle transmission. Let T’ 
be a thread of process P’ and T” be a thread of process 
P”, and let us suppose that T’ holds a handle H for object 
B. The sharing of B between T’ and T” requires that T’ 
transmits a copy of H to T”. This thread can now convert 
H into a gate and store this gate in an entry of its own 
protection table, PTP”. Thus, T” gains access to B. Fig. 5 
shows thread T” of process P” accessing object B after 
converting a handle H for this object into the form of a 
gate, G”. Thread T” cannot take advantage of gate G’ 
generated by thread T’, as this thread belongs to a differ-
ent process, P’. 

In summary, the protection system enforces no degree 
of protection on the private objects of a given thread 
against accesses generated by the other threads of the 
same process. On the other hand, the protection system 
prevents a thread of a given process from accessing the 
private objects of the threads of a different process, un-
less access is permitted by an explicit handle copy. 

IV.  DISCUSSION, AND RELATION TO PREVIOUS WORK 

A.  Capability-Based Protection Systems 
Several methods have been proposed in the literature 

 
Figure 3.  Configuration of handle H, lock array LCKB and internal representation IRB of object B in the presence of lock indexes. 

Figure 4.  Sharing objects between threads of the same process. 
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to represent the state of the protection system in memory. 
A classical approach is based on the concept of a capabil-
ity [20], [22]. This is a pair {B, AR}, where B is the 
name of a protected object and AR is the specification of 
a set of access rights on B. Capability possession makes it 
possible to access B and accomplish the operations per-
mitted by the access rights in AR. A protection domain 
is specified in terms of a collection of capabilities. When 
a thread attempts to access object B and execute operation 
R, it must present a capability for this object, and the 
access right field of this capability must include the 
access rights permitting the execution of R. Several com-
puter systems using forms of capability-based protection 
have been developed, e.g. the Cambridge CAP Computer 
[36], the Plessey System 250 [11], the Intel iAPX 432 
[27], the EROS system [30] and the IBM AS/400 [31]. 

Capabilities can be freely copied, and the protection 
system does not mediate capability transmission between 
domains. Access privileges tend to migrate throughout 
protection domains [32], and the protection system has no 
means of keeping track of the domains that received a 
given privilege [29]. Consequently, the review and revo-
cation of access privileges is hard if not impossible. 

To represent a capability in memory we have to assign 
an identifier to each given object, and this identifier must 
be unique throughout the system. In a single-address-
space environment, this can be obtained by using the vir-
tual address of the first memory location reserved for 
object storage. Let us refer to object B of type T, for in-
stance. We shall impose an upper limit to the number n of 
access rights that can be defined by any given object type. 

The access right field of a capability for B will be en-
coded in n bits. If the j-th bit is set, then the capability 
includes the j-th access right, ARj, defined by type T.  

Capability segregation 
In capability-based protection systems, we must pre-

vent unauthorized modifications of capabilities [28]. We 
must preclude a process from tampering with the internal 
representation of a capability and amplifying the access 
privileges granted by this capability, for instance by add-
ing new access rights.  

Capability segregation can be obtained by reserving 
specific memory areas for capability storage [11], [36]. 
These areas can be modeled as objects of a machine type 
that we shall call the CapabilitySegment type. The opera-
tions of this type are implemented by ad-hoc machine 
instructions, the capability instructions. These instruc-
tions make it possible to write capability values into ca-
pability segments and to read capability values from ca-
pability segments, for instance.  

A different approach relies on special memory devices 
that associate a 1-bit tag with each memory cell. If set, 
the tag of a given cell specifies that this cell contains a 
capability [3], [35]. When a machine instruction is ex-
ecuted this produces the tag checks required for memory 
access validation. For instance, if a capability is accessed 
in memory and the tag of the storage cell involved in the 
access is clear, a protection exception is generated and 
execution fails 

Both the capability segment approach and the tagged 
memory approach require the support of specialized pro-
cessors. This is in sharp contrast to the current trend of 

Figure 5.  Sharing objects between threads of different processes. 

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1327

© 2009 ACADEMY PUBLISHER



processor standardization. If capability segments are 
used, significant drawbacks arise from the dualism of 
data segments and capability segments in terms of the 
complexity of object layout in memory. In such situa-
tions, the internal representation of an object is often 
structured as a tree of other objects. The root of this tree 
is a capability segment which we call the object descrip-
tor. The capabilities in the object descriptor reference one 
or more data segments, which are reserved for storing the 
values of the data members. For an object whose internal 
representation includes other member objects, the object 
descriptor also includes the capabilities for the descriptors 
of these member objects. This complex structure compli-
cates programming as well as compiler writing. Of 
course, the problem is mitigated if capability segregation 
is obtained by taking advantage of tagged storage, at the 
expense of using specialized memory devices and in-
creasing hardware complexity. Furthermore, in a tagged 
memory environment, ad-hoc solutions must be devised 
for capability and data storage in the secondary memory, 
because of the need to save cell tags.  

Of course, there is some similarity between the con-
cepts of a capability and a gate. However, gates need to 
be stored in reserved memory areas, i.e. the protection 
tables, which are part of the protection system. On the 
other hand capabilities must be segregated from the data, 
but can be freely stored in the memory regions of general 
processes. For instance, a thread is free to move a capa-
bility from capability segment S’ to capability segment 
S”, provided that this thread holds a capability for S’ 
permitting to read capabilities, and a capability for S” 
permitting to write capabilities.  

On the other hand, handles do not need to be segre-
gated in memory at all. They are ordinary data values that 
can be stored in any storage region, in the primary memo-
ry as well as in the secondary memory. Significant advan-
tages follow in terms of the complexity of object repre-
sentation. The descriptor of a given object can now con-
tain both the data members and the handles for the mem-
ber objects, for instance. 

In fact, handles and gates are two different methods of 
access right representation that are designed to coexist 
within the boundaries of the same protection environ-
ment. Handles are aimed at distribution of access privi-
lege between processes, and gates are aimed at improving 
efficiency in access right verification and object sharing 
between threads of the same process. 

B.  Protected Pointers 
Protected pointers (also called password capabilities) 

have been proposed as a solution to the problems con-
nected with the use of capability segregation techniques 
based on capability segments or tagged memory banks 
[4], [26]. As pointed out in Section I, protected pointers 
do not need to be segregated in memory. They are pro-
tected from alteration and forgery by the practical impos-
sibility of successfully guessing valid passwords.  

Revocation 
Protected pointers are an effective solution to the prob-

lem of access privilege revocation. By eliminating a giv-

en password from the list of valid passwords associated 
with the given object, we exercise a form of partial revo-
cation [12] involving only those access rights that corres-
pond to this password. Revocation is transitive, as its 
effects automatically extend to all threads holding a pro-
tected pointer expressed in terms of this password.  

In our handle-based environment, similar effects can 
be obtained by changing the locks associated with a given 
object. Let Lj be the lock corresponding to access right 
ARj. By modifying Lj we invalidate all handles that speci-
fy ARj in terms of a key matching this lock. We can even 
associate several locks with the same access right. In this 
case, if we modify one of these locks, we produce a selec-
tive revocation of access rights. Let Lj’ and Lj” be two 
locks for access right ARj. By changing one of these 
locks, say Lj’, we invalidate only those handles that speci-
fy ARj in terms of a key matching Lj’, whereas the validi-
ty of all handles whose keys match Lj” is not affected by 
the revocation.  
Memory requirements 

Protected pointers have high costs in terms of memory 
requirements. This is mainly a consequence of the close 
correspondence between passwords and access rights, so 
that a protected pointer grants a single access right and 
several protected pointers are necessary to certify posses-
sion of a complex access privilege expressed in terms of 
several access rights. 

Let g be the size (in bytes) of an object name, w be the 
size of a password, and p = g + w denote the size of a 
protected pointer. The possession of a complex access 
privilege defined in terms of several access rights, say n 
access rights, implies possession of as many protected 
pointers, with a total memory requirement of n ⋅ p bytes. 
In the presence of a 64-bit processor, g is 8 bytes. For 64-
bit passwords and two access rights, the memory re-
quirement of the protection information is 32 bytes. For 
three access rights, the memory requirement is 48 bytes. 

In our key-lock environment, there are significant re-
ductions in memory costs since a single handle can con-
tain several distinct keys. An access privilege defined in 
terms of n access rights can be specified using a handle 
featuring n keys. The total memory requirement of this 
handle is g + n ⋅ k bytes, where g denotes the size of an 
object name and k denotes the key size. In the presence of 
a 64-bit processor and 64-bit locks, the memory require-
ment for two access rights is 24 bytes, with a memory 
space saving of 25 per cent compared to a solution using 
protected pointers. For three access rights, the memory 
requirement is 32 bytes, and the memory space saving 
increases to 33 per cent. 

Space costs can be further reduced since the compo-
nents of a given handle can be placed in arbitrary posi-
tions in the memory space. A thread holding several han-
dles for the same object does not need to replicate the 
identifier of this object for each of these handles. The 
thread will rebuild the association between the identifier 
and the lock before calling the Convert() primitive. In 
such situations, the thread gathers these quantities into a 
suitable memory area and transmits the address of this 
area to Convert() using the addrH argument. 
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C.  Active Protection Domains 
Mungi [10], [19] is a single-address-space operating 

system relying on password capabilities for object protec-
tion. In Mungi, an object is a collection of memory pages, 
and the access rights defined for each object include read, 
write, execute and destroy. The object address and length 
are stored together with the owner password in a system 
table, called the object table. An owner password grants 
full access rights. A password derivation scheme applied 
to the owner password makes it possible to obtain weaker 
passwords. 

Each user process is asked to organize its own pass-
word capabilities into capability lists conforming to a 
standard format. The resulting data structure is called the 
active protection domain of that user process. This data 
structure is traversed by the kernel to validate each object 
access. When a process attempts to execute an operation 
on a given object, the kernel reads the passwords asso-
ciated with this object from the object table and then 
searches the active protection domain of this process for a 
capability whose password matches one of the object 
passwords. If this search is successful and the password 
has sufficient strength, the access is validated; otherwise 
a protection fault is raised. The rationale behind active 
protection domains is that a thread should not have to 
deal with protection explicitly as long as it is accessing its 
own private objects. 

The designers of the Mungi system argue that the costs 
of active protection domains in terms of execution times 
and complication of the overall system architecture are 
justified by the need to relieve the programmer from the 
burden of explicitly managing access privileges for pri-
vate objects. In fact, the Mungi protection model forces 
user programs to adhere to fixed pervasive forms of 
access privilege organization. The need to arrange pass-
word capabilities into capability lists of a standard format 
within the boundaries of an active protection domain 
places undue restrictions on the programmer. These re-
strictions tend to hamper the principal advantage of 
password capabilities, i.e. the absence of any need to se-
gregate password capabilities in memory. 

In contrast, in our system if a thread wishes to execute 
an operation on a given object it must convert a handle 
for this object into a gate form. Then, the thread invokes 
the operation by specifying the index of the protection 
table entry that stores the gate resulting from the conver-
sion. This explicit action of access privilege presentation 
is needed for private objects as well as for shared objects. 
Our protection paradigm does not distinguish private ob-
ject accesses from shared object accesses. 

In our opinion, the advantages in terms of overall sys-
tem performance and system simplicity that ensue from 
our form of explicit access privilege management largely 
exceed the disadvantages, especially with the appropriate 
help from the compiler. Handle management and handle-
to-gate conversions are easy compiler tasks. Few modifi-
cations are necessary to add access privilege management 
to a program written in the absence of protection, to make 
this program suitable to operate in an environment featur-
ing handles and gates. Essentially, these modifications 

take place in the definition of the operations of the pro-
tected types. From the point of view of a process using a 
given object, handle usage can be assimilated to pointer 
usage. The compiler will be able to make the actions con-
nected to access privilege presentation largely transparent 
to the programmer. Placing new burdens on the compiler 
is a current trend, which is exploited in many different 
aspects of computer design, including translation looka-
side buffer management, cache control and data prefetch-
ing [16], [34], [38].  

V. CONCLUDING REMARKS 

Focusing on a memory addressing environment sup-
porting the notion of a single address space, we have con-
sidered the problem of hampering access attempts to the 
private objects of a given thread, when these attempts are 
generated by unauthorized threads of different processes. 
A classical solution uses protected pointers to certify pos-
session of access privileges. A protected pointer consists 
of an object name and a password. If the password is va-
lid, the protected pointer grants the corresponding access 
right to the named object. This solution is prone to heavy 
performance drawbacks, in terms of both memory re-
quirements and execution times. This is a consequence of 
the large password size that is necessary to prevent for-
gery and the repeated actions of password validation. Our 
main design goal was to reduce the impact of these draw-
backs.  

We have presented two different methods for access 
right representation, handles and gates, which were de-
signed to coexist within the boundaries of the same pro-
tection environment. Handles are mainly aimed at access 
privilege distribution between threads of different 
processes; gates are aimed at improving efficiency in 
access right verification and object sharing between 
threads of the same process. 
• Handles are a generalization of the protected pointer 

concept, obtained by associating the name of an ob-
ject with several keys. Handles are protected from 
forgery by key sparseness.  

• Gates are an alternative, compact representation of 
access privileges reserving a single bit for each 
access right. Gates are sensitive data that must be 
protected from alteration and forgery. This is done 
by segregating them into private memory regions of 
the protection system and restricting their manipula-
tion to the execution of the primitives of the protec-
tion system. The Convert() primitive makes it possi-
ble to transform a handle into an equivalent gate. 
Equivalency between gates and handles is defined in 
terms of inclusion of access rights. The Verify() pri-
mitive makes it possible to check a gate for the pres-
ence of a given set of access rights. 

We have obtained the following results: 
• Handles can be freely mixed in memory with ordi-

nary data. Significant advantages arise in terms of the 
ease of programming and simplification of the mem-
ory layout of protected objects. Distribution of access 
privileges between threads of different processes is 
obtained by means of simple handle copy actions . 
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These actions require no intervention by the protec-
tion system. The components of a given handle do 
not need to be stored in contiguous memory cells. 
The key granting a given access right on a given ob-
ject can be stored separately from the object name, 
for example in the data area reserved for the execu-
tion of an operation permitted by this access right.  

• With respect to solutions using protected pointers, 
handles reduce the space requirements of the infor-
mation for memory management. By associating an 
object name with several keys, a single handle is ne-
cessary to certify possession of a complex access 
privilege expressed in terms of several access rights. 
The resulting improvements in memory costs are es-
pecially significant in a single-address-space envi-
ronment, owing to the large size of object names that 
arise from the large size of memory addresses. 

• Gates are an effective solution to the time perfor-
mance problems that ensue in the execution of an op-
eration on a given object, if a handle is used to certi-
fy possession of the access privilege necessary to ac-
complish this operation. High costs in terms of ex-
ecution times are connected with the iterated actions 
of key-lock comparison that are necessary to validate 
the handle. In contrast, if a gate is used, the compact 
representation of the access right field permits a fast 
verification of access privilege possession.  

• The additive behaviour of the Convert() primitive 
makes it possible to convert several handles into a 
single gate, if all these handles reference the same 
object. The resulting gate can be effectively used for 
object access by all the threads of the same process. 
In this way, gates effectively support object sharing 
within process boundaries.  

The results presented in this paper have been evaluated 
from a number of points of view, including memory costs 
and the execution time overheads connected with protec-
tion. Owing to a lack of experimental results, the discus-
sion has been largely based on a comparison with pre-
vious work. 

Significant advantages are associated with the use of 
keys and locks to represent a protection system. These 
advantages are especially valuable as far as ease of access 
right management and object sharing between threads are 
concerned. Protected pointers have a negative impact on 
overall system performance. An effective implementation 
of a dualism of handles and gates could be an effective 
solution. In our opinion, access right representation tech-
niques relying on forms of key-lock protection deserve 
fresh consideration. This especially applies to single-
address-space environments, where the introduction of 
mechanisms for private object protection is mandatory. 
We hope that our work will have a significant impact in 
this direction.  
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