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Abstract— The increasing complexity of embedded software
calls for a new, more efficient design approach. A natural
choice is to use well-established component-based design;
however, its adoption to design of embedded software has
been slow and riddled with difficulties. It can be argued
that these problems are due to the following peculiarities
of embedded systems. Firstly, the tight integration between
hardware and software, typical for embedded systems,
makes it virtually impossible to model and implement
software separately from hardware. Secondly, it is difficult
to express timing requirements, an intrinsic part of function-
ality of many embedded systems, in dataflow abstractions
traditionally used in component-based design.

We propose to overcome these difficulties by introducing a
uniform, consistent modeling of both hardware and software
and by integrating timing requirements into the model.
We present a modeling framework based on the notions
of reactive objects and time-constrained reactions, which
enables component-based design of embedded real-time sys-
tems. Within this framework, functionality of both hardwar e
and software components is defined in terms of reactions
to discrete external events, and timing requirements are
specified for each reaction relative to the event that triggered
it. We also present a detailed software design methodology
for embedded real-time systems based on our modeling
framework.

Index Terms— component-based design, embedded real-
time systems, embedded software, reactive objects, time-
constrained reactions

I. I NTRODUCTION

In recent years, the complexity of embedded systems
has been steadily increasing, and the number and com-
plexity of functions performed by embedded software
has also grown. This calls for introduction of new,
more efficient design methods1. An attractive approach is
component-based design, which facilitates component re-
use, separate development of components, and improves
overall maintainability and robustness of the system.

However, adoption of this approach to embedded soft-
ware development has been significantly slower than to
software development in general. It can be argued that the
problem lies in the fact that embedded systems manifest
a tight integration between functionality implemented in
software and functionality of hardware parts. In many em-
bedded systems, hardware components cannot be viewed

1A good overview of existing design practices and research trends in
embedded system design is given in [1] and [2].

as part of the environment external to the software system
since the software has to be developed “around” the avail-
able hardware resources, relying on their timing and other
properties. This requires a uniform, consistent modeling
of both hardware and software. The situation is further
complicated by the fact that embedded systems, unlike
most general-purpose computing systems, often perform
computations subject to various constraints, such as pro-
cessor speed, amount of memory, power consumption,
and reaction time. The timing requirements are often of
special importance, especially for safety-critical systems.
In fact, the majority of embedded systems can be viewed
as real-time systems, i.e. systems in which correctness of
system behavior (for hard real-time systems) or quality
of service (for soft real-time systems) relies on the time
when results are delivered to the environment as well as
on the computed values as such.

We conclude that it is necessary to modify the tra-
ditional component-based approach to software develop-
ment so that (a) a tight integration between software
and hardware is taken into account, and (b) timing re-
quirements can be clearly defined at both system and
component level and used to guide implementation.

In this article we present a modeling framework that
allows to uniformly model both hardware and software
and to incorporate timing requirements into the model
(Section II). We also present a step-by-step methodology
for embedded software design based on our modeling
framework (Section III) and demonstrate it in the design
of a small embedded system, a personal alarm device
(Section V), implemented in the programming language
Timber (Section IV). A short overview of related work is
given in Section VI.

II. M ODELING FRAMEWORK

Component-based design relies on the existence of
consistent and coherent models of individual components
that can be composed to model the whole system. We
propose a modeling paradigm based on a combination
of event-based, reactive, concurrent, and object-oriented
programming models that provides a natural framework
for specifying the behavior of hardware, software, and
mixed hardware/software components of an embedded
system.
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Figure 1. Permissible execution window for a reaction to an event.

Event-based modelingimplies that interaction between
the system and its environment, as well as between com-
ponents of the system is conducted by means of discrete
events occurring at specific times. Thereactive approach
allows us to specify functionality in terms of reactions to
such events, and since both input and output events are
discrete, it is possible to impose time constraints on these
reactions, effectively integrating timing requirements into
functional specification [3]. The simplest way to specify
such constraints is by defining the earliest and the latest
reaction time (baselineanddeadline) relative to the time
of the input event triggering the reaction. We will call
the time window between the reaction baseline and its
deadline apermissible execution windowfor this reaction
(Fig. 1) and denote it asafter tafter before tbefore

doSmth, wheretafter is the period of time between the
event and the baseline,tbefore is the period of time
between the baseline and the deadline, anddoSmthis the
invoked method.

Concurrencyis inherent in hardware and is unavoidable
in more complex software systems that have to perform
multiple tasks (react to multiple events) at the same time.
It is important to reflect this concurrency in the model
of an embedded system. This gives rise to the problems
of synchronization and state protection. We address these
issues by modeling and implementing components using
reactive objects2 [4]; we define that all mutable state
variables have to be encapsulated within an object and
only accessible via its methods. Reactive objects can be

2We will be using executable models which means that reactive
objects are preserved in the implementation.
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Figure 2. Three abstraction levels of modeling: system level, component
level (including multiple sublevels to accommodate a component hier-
archy), and object level. A system is realized in terms of components,
and each component is realized in terms of objects.
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Figure 3. Data flow model of system interaction with its environment.
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Figure 4. Event-based system-level model.

used as units of concurrency by specifying that no two
methods of the same object can execute concurrently
while any two methods of different objects can.

Modeling complex systems requires using multiple
levels of abstraction. We will distinguish the following ab-
straction levels: system level, component level (which can
include multiple sublevels to accommodate a hierarchy of
components), and object level, as depicted in Fig. 2. In
our model, we will not try to include all information at
each level; instead, the relationship between the layers is
one of a gradual refinement of the model where each next
level contains more details.

A. System-Level Model

At system level, the system is viewed as a black box,
and the focus is on defining the boundary between the
system and its environment. Since embedded systems
typically manifest a tight integration between software
and hardware, the system model should include both
software and hardware, even if the hardware is given
and is not developed as part of the design process. From
the modeling perspective, existing hardware parts can be
considered either as a part of the system or as a part of its
environment. In this case, the system boundary should be
defined so that it is easy to specify system functionality
in terms of reactions to input events as described below.

In component-based design, the system’s interaction
with the environment is typically described in dataflow
terms as input from the environment and output from
the system (Fig. 3). However, to be able to define tim-
ing properties of the system, input and output should
be expressed as discrete events occurring at specific
times, resulting in a reactive event-based model. Then
system functionality can be defined as reactions to input
events and timing requirements can easily be described
as constraints on these reactions. Output events constitute
part of a system reaction to an input event and can
be divided into asynchronous (“write”) and synchronous
(“read”) events (Fig. 4). Note that if some parameter in
the environment is sampled by the system, this can be
reflected as an input in the dataflow model but as a “read”
output event in the event-based model.
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Figure 5. Event-based component-level model.

B. Component-Level Model

At component level, we use components to model the
system. A component is defined as an encapsulation of
a part of system state and/or hardware resources, with
a clearly defined interface and functionality. Importantly,
state variables and hardware resources must belong to
only one component and cannot be shared by two or more
components (the question of allocating CPU resources,
i.e. processing time, to components will be addressed
later). This definition allows for hardware, software, and
mixed hardware/software components.

Each component can be specified independently of the
rest of the system in terms of time-constrained reactions
to input events. Input events can either be external events
originating outside the system, or internal events originat-
ing in another component. Both input and output events
can be asynchronous (“write” events, one-way interaction)
or synchronous (“read” events, synchronization events,
etc.). Note, however, that external input events are always
asynchronous (Fig. 5). Unlike reactions to asynchronous
events, reactions to synchronous events cannot have a
permissible execution window of their own, as they have
to complete before the deadline for the component that
posted the synchronous event and awaits a response.

Components can be organized hierarchically, when a
component is partitioned into subcomponents. Partitioning
is governed by considerations such as composability, re-
usability, ease of understanding, etc. as will be described
later in this article.
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Figure 6. Partitioning of a system into a resource platform and a
software application.

C. Resource Platform

A useful abstraction that can be built upon system
partitioning into components is the notion of aresource
platform. The intuition behind it is that a number of com-
ponents taken together can present a certain basic func-
tionality with a clearly defined interface that can be uti-
lized by a whole range of applications (Fig. 6). A resource
platform typically includes all hardware components of
the system, since they are the most difficult to change
and may often have somewhat limited composability,
but it can equally well include mixed hardware/software
components or software-only components that are used
as resources by the applications. This gives us a clear
separation of the system into a resource platform and
an application (embedded systems typically have only
one application, but it is possible to consider several
applications sharing the same platform at runtime).

Note that since the separation into a platform and
an application is performed at a relatively high level
of abstraction, a platform may have multiple instances,
differing in the choice of specific hardware and/or specific
implementation of software. This approach allows for a
fast and efficient development of a number of applications
for a certain platform while leaving enough flexibility
in platform implementation to perform optimizations in
device size, cost, power consumption, and performance.

D. Object-Level Model

At the lowest level, each component is modeled using
reactive objects. A reactive object is a model that can
have one or several hardware and/or software instances;
however, it cannot be instantiated as a mixed hard-
ware/software entity. The choice of implementation is
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Figure 7. Event-based object-level model. For each reaction, a per-
missible execution window can be specified using theafter ta before
tb notation; absence of such notation indicates inheritance of timing
constraints. Input events to software objects originatingin other software
objects are marked as messages; input events to software objects
originating outside the system or in hardware objects are translated into
messages.
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made at this level, so an object-level model clearly spec-
ifies which objects should be implemented in hardware
and which in software (Fig. 7).

Both software and hardware objects react to external
and internal input events and for each reaction a permis-
sible execution window can be specified relative to the
time of the event (Fig. 1). External input events originate
in the environment, and each type of event triggers a
method of a specific object. Internal input events originate
within the system; in the case when such events are both
produced and consumed by software objects, they can
be viewed and implemented as messages. Even events
originating outside the system or in hardware objects can
be translated into messages if they are consumed by a
software object.

As any events, messages can be either synchronous or
asynchronous. In the latter case, a software object can
also post a message to itself. Asynchronous messages can
be delayed by a certain amount of time defined relative
to the baseline of the object sending the message. This
also allows to encode a periodic behavior by letting an
object post a delayed asynchronous message to itself.
Synchronous messages return a value, and the execution
of the sender object is blocked until then; that is why
reactions to synchronous messages cannot be delayed and
always inherit the permissible execution window of the
sender.

A software object encapsulates its state and provides
methods to operate on it; areactivesoftware object cannot
block during method execution waiting for input. In our
model, state protection is absolute – all mutable variables
have to be state variables in some object, and no access to
state variables is allowed except via methods of the object.
Besides, no two methods of the same object are allowed to
execute concurrently but methods of two different objects
can, resulting in an object-level concurrency model.

III. SOFTWARE DESIGN METHODOLOGY

Here we present a methodology for embedded software
design based on the modeling framework described in the
previous section. This framework allows us to model both
software and hardware parts of an embedded system, and
a complete model of the system is essential for designing
embedded software and verification of the system as a
whole.

The different stages of the design process are presented
in Fig. 8. The input to the design process is the product
specification which originates from the client commis-
sioning the system and which we assume to be static
during the development of the system. This specification
is usually written in a natural language, is often incom-
plete and imprecise. Hence the first step is drawing up
a complete specification with a clear division into func-
tional and non-functional parts. In our case, functional
specification is integrated with timing requirements and
is used throughout system modeling and implementation.
Non-functional specification lists the remaining system
properties and constraints, such as system size and power
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Modeling
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Implementation
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Figure 8. Stages in the design process: from a specification to a ready
product.

consumption, and is primarily used during verification.
It can also be used to guide selection of ready-made
components, especially those including hardware.

The second step is formulating a system-level model
where system interface to its environment is defined in
terms of external input events triggering time-constrained
system reactions and system output events which are
part of such reactions. In the third step, this model is
elaborated by identifying system components and in-
terfaces between them. Such components are key to
facilitating software re-use and maintenance, as well as
system verification. In the fourth step, the components
are realized using reactive objects, and a decision is
made on which reactive objects should be implemented in
software and which represent models of (existing) hard-
ware parts. At every step, the model of each component
is matched against a repository of previously developed
components (either software or hardware), which should
contain reactive models of components alongside their
implementation.

The fifth step is implementation of software objects
in some programming language. The sixth and final step
is system verification, which can be done by simula-
tion of the model, by testing of the implementation, or
by formal methods. Both functional and non-functional
requirements can be verified, and a failed verification
forces a return to an earlier development step, making
the development process iterative. Verification of new
components should also be performed at earlier stages
of development to verify certain properties at object
and component levels. At the final step, verification of
component integration and of the system as a whole is
conducted. Note that verification of system schedulability
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on a particular hardware platform is separate from verifi-
cation of the model itself.

(1) Defining Extended System Specification

The extended specification has to be complete, verifi-
able, and contain a clear separation into functional and
non-functional specification; it is obtained by refining the
original product specification. Our approach requires that
the functional specification should be expressed in terms
of time-constrained reactions to external events represent-
ing input to the system or changes in the environment.
Thus timing requirements are integrated into functional
specification. It has to be noted that not all systems let
their functionality to be naturally defined in terms of time-
constrained reactions, which should be seen as a limitation
of applicability of our approach. However, it is our belief
that the majority of embedded systems can be specified
in such a way.

A prominent example is a system with a time-
continuous input; a system which as such does not con-
form to the notions of events and reactions. However,
on closer inspection, any discrete realization of such a
system would indeed require a sampling strategy with its
corresponding timing requirements.

In other cases timing requirements can be implicit,
defined by the rate of incoming events and the necessity
to keep up with them. A typical example is routing of
packets in a network; while the maximum forwarding
delay may be omitted from the specification, it can be
derived from a packet buffer length together with the
allowed drop rate for a given traffic profile.

(2) Formulation of System-Level Model

In this step a system-level model should be formulated
from the functional and timing specification by determin-
ing the system’s boundary with its environment and its
interface. To achieve a clear-cut separation between the
system and its environment, the system should be defined
to encompass all the functionality that we have to develop,
and it should be taken to include the hardware that the
developed software will execute on. Such hardware should
be notionally included in the system even if it is given and
cannot be changed during the development process. Note
that the environment includes both natural phenomena the
system will interact with and the infrastructure that is be-
ing developed or has been developed separately. Thus all
“external” services used by the system, especially those
shared between the system under development and other
systems, are considered to be part of the environment
rather than the system proper.

(3a) Partitioning into Components

Although component-based design has been studied for
several decades, partitioning of a system into components
(as well as partitioning of a component into subcompo-
nents), remains more of an art than an exact science.

However, it is possible to identify the main guiding
principles.

Each component should have a clearly defined role
in the system, and a one-to-one mapping between com-
ponents and system functions is always preferable. This
means that any two independent tasks, triggered by in-
dependent external events and resulting in independent
outputs, should be realized by two separate components.
The same is true for the case when a system should
perform two activities in parallel, with little or no state
sharing and/or interaction between them.

A special type of components (often associated with
hardware or mixed hardware/software components) are
resources which can be used by one or several activi-
ties and which usually enforce some kind of exclusion
or sharing protocol to guarantee consistency of system
output and/or its internal state. Several resources are often
bundled together in one component when they are used
jointly to perform one task or cannot operate in parallel.

Apart from these main principles, a number of other
considerations can affect the design of a particular system,
such as:

• composability – to facilitate system composition
from newly-designed or ready-made components, it
is important for each component to have a clear
purpose (role in the system) and a clearly defined
interface. It is also advantageous to have as few
interdependencies between components as possible.

• reusability – functionality common to a class of
(possible) applications can be effectively assigned to
a separate component, facilitating component re-use.

• robustness– to make better use of ready-made com-
ponents, and to enhance system verification while
shortening the development time, it is important
that each component is designed with regard to
future verification (testing, simulation, and possibly
formal verification) at component level as well as
at system level. Robustness can also be improved if
components are used as fault-containment regions,
which requires detectability of errors at component
boundaries.

• ease of understanding– an extremely important
consideration that is often overlooked is that parti-
tioning into components should enhance the ability
of the original developer(s) of the system as well as
those who may work with it in the future to clearly
understand the functions and structure of the system.
This calls for the components to be small enough
to be easily comprehendable, but at the same time
large enough to keep the structure of the higher-level
component simple. Experience shows that following
this principle leads to fewer mistakes (and hence
shorter development times and increased robustness)
and facilitates re-use and maintenance.

An important issue of component-based design is what
kind of interactions are allowed between components.
It is advantageous to make components as independent
of each other as possible since it simplifies component
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specification, enhances composability, and facilitates ver-
ification of individual components. We therefore strongly
discourage synchronous communication across compo-
nent boundaries. Synchronous communication between
components should normally be used for predictably
quick interaction, such as reading a value (as opposed
to waiting for a value to be computed), or performing a
hardware operation that takes a known time to complete
under certain operational conditions.

Once defined and implemented, components can be
stored in some repository for future use. It is important
to preserve not only the actual implementation, but also
a model of the component (see section3b) alongside its
testing and verification results. It may also be useful to
preserve a testing suit for a component so that the tests
can be re-run in a new setting. If the implementation
of a component is protected as intellectual property and
will not be accessible for system verification, the timing
properties of the component also have to be stored in the
repository. These would have to include execution time
and maximum blocking time (per hardware resource) for
each reaction defined in the interface of the component.

(3b) Search for Ready-Made Components

In this step, models of defined components are matched
against models of earlier developed components from
the repository. Comparison between the models requires
that they are of the same kind. In our case, it means
that a component model should have its functionality
expressed in terms of time-constrained reactions to events
external to the component. Identity of modeling principles
should lead to a straightforward integration of a matched
component into the system model.

There might be components in the repository that do
not match the specification, but can be either adapted by
introducing an intermediate layer, or can be modified to
fit the specification. The downside of component mod-
ification is that it may require substantial work on re-
implementing the component as well as invalidate the
testing and verification results.

(3c) Hierarchical Refinement of Component Structure

One of the strengths of component-based design is the
possibility of hierarchical refinement of component struc-
ture. Partitioning of a component into subcomponents
closely mirrors partitioning of a system into components
as described above; the same principles and guidelines
apply. Since one and the same component can (at least
theoretically) be used in different systems, partitioning
into subcomponents should be performed independently
for each component and should not be influenced by a
wider context in which the component is used. However,
it is possible that identical subcomponents are identified
as parts of different components, and those can be viewed
as separate instances of the same component class.

If any new subcomponents have been identified in this
step, a return to search for matching components in a

repository is warranted. The process is repeated until no
further refinement of component structure can be justified.

(4) Realization Using Reactive Objects

The last step in the modeling process is component
realization using concurrent reactive objects. This step in-
volves partitioning of the component into reactive objects
and identifying hardware and software parts. Similarly
to partitioning into subcomponents, it is performed on
each component independently of its context. Note that
at this level hardware parts are modeled as reactive
objects, which allows for a certain flexibility when several
hardware parts are modeled using the same object model
if they only differ in, for example, power consumption.

For each component, it is necessary to identify: hard-
ware resources; object state in terms of state variables; and
object functionality in terms of methods. Partitioning of a
component into objects is governed by slightly different
principles than partitioning of a system into components.
These principles can be obtained by adaptation of well-
known object-orientation strategies to the concept of
concurrent reactive objects. The following has to be taken
into consideration:

Each object encapsulates its state that can only be
accessed by methods of the same object. At the same
time, the objects are units of concurrency, meaning that
any two methods of the same object cannot be executed
concurrently but any two methods of two different objects
can. A notable exception is the case when an object posts
a synchronous message to another object; then the caller
remains blocked until the invoked method returns.

The guiding principles of partitioning into objects aim
to maximize schedulability of the system while main-
taining state consistency. Component state, seen as a
collection of state variables, should be partitioned and
assigned to objects in such a way that

• state duplication (when the same state is duplicated
as state variables in two or more objects, leading to
synchronization problems) is avoided;

• state variables routinely modified together are encap-
sulated in one object;

• otherwise, state is maximally distributed between
different objects to allow for a better schedulability
of the system.

Functionality should be assigned to methods, and meth-
ods to objects in such a way that

• methods using the same state variables are assigned
to the same object;

• methods using different parts of component state
are assigned to different objects together with cor-
responding state variables, in order to maximize
schedulability of the system; an exception to this rule
is the case when consistency between several state
variables has to be guaranteed;

• a special attention is paid to the consequences of mu-
tual exclusion between methods of the same object,
when an object remains blocked and cannot execute
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any other method while an earlier invoked method
is executing. For example, in some cases a single
reaction should be split into two methods, one calling
the other asynchronously, thus creating a window of
opportunity for a reaction with a shorter deadline
to execute on the same object in between the two
methods.

The issue of software interaction with hardware parts
is of utmost importance and has to be considered sepa-
rately. This interaction is often governed by complicated
protocols that are not relevant to the application at large.
Hence it is a good idea to have a single software ob-
ject controlling access to specific hardware. Apart from
providing a useful abstraction of the software-hardware
interface, such objects can be used to explicitly control
sharing of the hardware resource by enforcing arbitration
or queuing if so required.

(5) Implementation

The next step is the implementation process in which
the system model is instantiated. The hardware platform
is built using identified hardware parts (COTS compo-
nents, SoC blocks, etc.), and software reactive objects
are implemented in some programming language. In the
case when some of the software components are re-used
from the repository, the issue of code integration has to be
addressed. The complexity of code integration will depend
on the language used in the implementation of the re-used
components.

An example of a programming language, Timber, fully
supporting the described modeling framework and thus
suitable for use together with the present software design
methodology, will be described in section IV.

(6) Verification

The final step in embedded system design is verification
(see Fig. 8). We will distinguish between verification of
the model and verification of the implementation; both
should be conducted at component as well as system level.

Verification of the model is done against system speci-
fication and specification of individual components. This
includes verification of component composition at system
level and verification of functional specification (including
timing requirements), which can be performed using
simulation or with formal methods (see, for example, the
work on UPPAAL [5]–[8]). Importantly, verification of
the model is independent of its feasibility, i.e. whether
or not it can be implemented in a specific programming
language and on a specific hardware platform in such a
way that the functional and timing requirements are met.

Verification of the implementation should also be con-
ducted at both component and system level and, un-
like verification of the model, it involves verification
of both functional and extra-functional requirements. At
component level, it is only necessary to verify that the
implementation corresponds to the model. At system
level, both component integration and system feasibility

have to be verified. System feasibility refers to the ability
of a specific implementation (software and hardware)
to meet the functional and timing specifications of the
model under extra-functional constraints such as energy
consumption; an important part of feasibility verification
is schedulability analysis (see [9]). Note that schedula-
bility analysis requires a full knowledge of the system
implementation. In the case when the implementation of
a particular component is not available for analysis, at
least the list of resources used by each reaction of the
component should be known together with the execution
time and maximum blocking time for each resource.
Schedulability analysis should be the preferred way of
system verification since it allows to prove system correct-
ness for all inputs and in all situations, as do other formal
methods. However, verification of system implementation
can also be conducted using simulation and testing.

Let us separately consider verification of a resource
platform. A clear division into a platform and an ap-
plication allows to verify them separately, so that an
already verified platform with known properties can be
used for development of other applications. It should
be noted, however, that system-level verification such
as schedulability analysis has to be performed on the
system as a whole, including both the application and
the resource platform, even if the platform has previously
been verified.

IV. A N IMPLEMENTATION APPROACH:
THE TIMBER LANGUAGE

The presented model is sufficiently general to allow a
variety of possible implementations. For example, since
we can model a complete system including both hardware
and software parts, the border between hardware and
software can be adjusted even after the model has been
completed. Hardware components together with hardware
parts of mixed (hardware/software) components can be
realized by e.g. selecting existing COTS hardware parts
and integrating them into a single hardware platform,
whereas software components together with software
parts of mixed components have to be implemented in
some programming language, typically combined with a
minimal operating system or a kernel that will provide
scheduling, I/O, etc.

While it is fully possible to implement the model
described above in, for example, C/C++ or Esterel, the
translation itself would be far from trivial. The problem
is to preserve the properties of individual components
and of the system as a whole, to maintain composability
of defined components, and to be able to verify that
functionality and timing of the resulting code reflect those
of the model. Using mainstream programming languages
often results in a gap opening up between the model and
its implementation. For example, reaction deadlines may
have to be translated into thread priorities and as a result,
the system’s behavior would depend on other tasks and
the scheduling policy; hence the correspondence between
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the model and its implementation becomes very difficult
to verify.

Another possible implementation approach is to use the
recently developed modeling and programming language
Timber, which targets real-time systems ([10]–[12]). Tim-
ber is a high-level programming language that uses the
same primitives as the proposed model, including reactive
objects and time-contrained reactions. Hence translation
of a model into Timber code is straightforward and
preserves system structure and timing specification, clos-
ing the gap between the model and its implementation.
Timber code can be compiled into a subset of C and
executed on any target platform in combination with a
Timber kernel3, which uses permissible execution win-
dows preserved in the code for deadline-based scheduling.

Timber is both a high-level programming language for
real-time systems and a formalism that can be used to
verify a system’s functional behavior, timing properties
(complying with deadlines), liveness (absence of dead-
locks), and termination of computations. Let us briefly
describe the relevant properties of the language:

• inherent support for reactivity: the system function-
ality is expressed in terms of reactions to external
events, with reaction defined as a combination of
internal state updates and/or system outputs. Each
reaction can be comprised by a chain of reactions
executed by different objects, some of them executed
concurrently. Execution of a system reaction must
be non-blocking, i.e. it cannot block waiting for an
external input.

• time-constrained reactions: each reaction has a base-
line (the earliest time when execution can start) and
a deadline (the latest time by which execution must
have finished); it is possible to schedule a reaction to
start at some point of time in the future by setting its
baseline relative to the baseline of the reaction being
executed. The timing requirements are preserved in
the application code at run-time and can be used to
guide scheduling.

• object-orientation: while constants (including global
functions) can be defined at the top level, mutable
variables are only allowed within objects as state
variables. State encapsulation and protection are
achieved by limiting access to these variables to the
methods of the object, and state consistency is easily
guaranteed by always enforcing mutual exclusion
between the methods of the same object.

• object-level concurrency: Timber is a highly concur-
rent language with concurrency achieved by allowing
methods of any two different objects to be executed
in parallel.

• message passing between objects: Timber objects
communicate by passing messages, synchronous
(when the sender remains locked and waits for the

3A prototype version of a Timber kernel has so far been implemented
for a generic POSIX environment and for an ARM platform, but thanks
to its minimalistic nature it can be ported to other platforms relatively
easily.

message to return), and asynchronous (when the
sender posts a message to another object or to itself,
possibly with a postponed baseline, and continues
execution). Asynchronous messages lead to concur-
rent execution of reactions.

V. A N EXAMPLE SYSTEM:
A PERSONAL ALARM DEVICE

The software design methodology described above has
been tested in the development of a personal alarm device,
used here to demonstrate different stages in the design
process. Some details have been omitted for presentation
purposes. The following functional specification of the
device was given in the beginning of the design process:

The personal alarm device is a battery-driven system
worn by a person on his or her body, for example, by an
elderly person at a care facility. The device is capable of
detecting the person’s fall by analyzing acceleration. Once
a fall has been detected, a fall alarm is sent wirelessly to
an external receiver. The analysis requires that acceler-
ation is sampled periodically everytperiod milliseconds.
The device also includes an assistance call button that can
trigger a separate kind of alarm sent in the same manner.
An alarm must be sent withintalarm milliseconds after a
fall has been detected or after the button has been pressed.

(1) Defining Extended System Specification

An extended system specification should include both
functional and non-functional requirements. The func-
tional requirements have to be expressed in terms of
time-constrained reactions. Two such reactions can be
identified by analyzing the original specification.

The first reaction is sending an assistance alarm when
the push button has been pressed. There is a timing
requirement that the alarm is to be sent withintalarm

milliseconds. The second reaction is sending a fall alarm,
which is triggered by fall detection. This is realized using
a fall detection algorithm that requires sampling acceler-
ation at regular intervals equal totperiod milliseconds.
The algorithm distinguishes two stages in fall detection:
impact detection, with impact detected by acceleration
exceeding a threshold value; and posture evaluation (see
[13], [14] for a detailed description of the algorithm).
Posture evaluation is performedtlag milliseconds after
an impact has been detected, and is used to establish if
the person is lying down, in which case a fall has been
detected. The acceleration is sampled with the same peri-
odicity both for impact detection and posture evaluation.
Hence the following timing requirements can be given
for the second reaction: the acceleration sampling period
tperiod; the lag between impact detection and posture
evaluationtlag; and the maximum period of time between
fall detection and sending an alarmtalarm.

Both an assistance alarm and a fall alarm are sent
using a radio transceiver and are received by external
infrastructure which is outside the scope of the system.
Therefore, the communication protocol (with its timing
requirements) has to be part of the extended specification.
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�AD [system name] system:
Environment

input event /
output "write" event
:

[event name]

transmit

buttonPressed

[event name]

: output "read" event

readAcc

reset

Figure 9. System-level model for personal alarm device. Input events:
resetand buttonPressed. Output “read” event:readAcc(reading accel-
eration). Output “write” event:transmit (sending a fall alarm or an
assistance alarm).

Non-functional requirements for the system include a
relatively small size (since the system has to be worn
on the body, for example, at the hip), and a low power
consumption (as the device is to be powered by a battery).

(2) Formulation of System-Level Model

Analyzing system specification, we can distinguish two
events that the system should react to: an assistance call
realized as an interrupt from a button; and the person’s
fall. The interrupt from a button can be modeled as
an external input event. The person’s fall, however, is
something that is detected by the fall detection algorithm
which is internal to the system and hence it is not
an external event. However, we can encode a periodic
sampling of acceleration by the system as a reaction to a
reset (an external input event) that starts up the system and
triggers a reaction that includes sampling the acceleration
(an external output “read” event) and posting a message
with a delayed baseline that invokes another sampling
after tperiod milliseconds, and so forth.

The timing requirements on the first reaction consist
of a relative deadlinetalarm milliseconds; the timing
requirements on the second reaction are defined for each
sampling that has a baseline equal to the baseline of the
previous sampling plustperiod milliseconds.

Note that while the hardware for the button, the ac-
celerometer, and the radio transceiver are clearly a part
of the system, the receiver of the alarm transmission
is outside the developer’s remit and should be viewed
as an external service, not a system component. Thus
the interface between the system and its environment is
comprised on one hand, by reset interrupts and call button
interrupts, and on the other hand, by the radio protocol
used for communicating the alarms alongside the codes
used to distinguish an assistance alarm from a fall alarm
(see Fig. 9).

(3a) Partitioning into Components

Let us now consider partitioning into components of
our device. Analyzing the specification and the system-
level model (Fig. 9) we can see that the application will
need the following independent resources: anacceleration
sensor, amessage sender(containing a radio transceiver),
and apush button. Their independence warrants creating
three separate components, each of them including both
hardware and software parts (Fig. 10).

Resource
platform

Application

Environment

Fall
detector

Fall alarm
sender

Assistance
alarm sender

Acceleration
sensor

Message
sender

Push
button

sampleAcc

consumeAcc

sendMsg

fallAlarm

assistAlarm

transmit buttonPressed

reset

readAcc

[comp. name] component:

internal event
(asynchronous):

[event name]

[event name]

: internal event(synchronous)

input/output
external event
(asynchronous)
:

[event name]

[event name]

:
output

external event
(synchronous)

Figure 10. Component-level model for personal alarm device, with
separation into a resource platform and a software application.

The next step is to define the interface of these com-
ponents, bearing in mind that it should be complete but
at the same time sufficiently abstract to accommodate
various component implementations, which may possibly
use different hardware to support the same functionality.
The interface to the acceleration sensor should contain
an input that can trigger sampling (sampleAcc), and an
output that delivers the acceleration value once it has been
acquired (consumeAcc). Note that to preserve reactivity
and component independence, we cannot allow the caller
to block waiting for the sampling to complete. It is
therefore necessary to implement callback functionality
in the acceleration sensor to specify to which component
the measured acceleration should be delivered. This can
be done either when the acceleration sensor is instantiated
(a static callback), or by passing a pointer to a function
each time sampling is triggered (a dynamic callback).
Similarly, to achieve the desired level of generality, the
interface of the message sender should only contain
one input – sending a message (sendMsg), and one
output – delivery of a received message, but the latter
is superfluous for our application. Note that the message
sender represents a clear example of a shared resource
– it can be used by any of the independent tasks of
(a) fall detection, and (b) handling an assistance call.
As such, it will have to include either message queuing
or some kind of arbitration to synchronize access to
the resource transparently to the components that may
want to use it simultaneously. The interface of the last
resource component – the button – is very simple, as it
only needs one output to deliver the button event and the
target component can easily be set statically. These three
components naturally form a platform with clearly defined
functionality and interface between it and any possible
application.

It now remains to partition the rest of the system –
the application – into components. Here two independent
activities can be identified:fall detectionand assistance
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call handling, resulting in two separate components. At
the same time, it is appropriate to de-couple the fall
detection algorithm from how the system should react to
a detected fall. For our application, this involves creating
a message and forwarding it to the message sender, which
can be done by a separate component – a fall alarm
sender. If assistance call detection in the application is
similarly de-coupled from the reaction to it, we will have
two very similar components – afall alarm senderand
an assistance call sender. A possible implementation is
to create them as two instances of the same component, a
generalalarm sender, with some parameter set to different
values at initialization. Alternatively, they can be viewed
as two different components.

Timing requirements can be part of component spec-
ification as time constraints on the reactions. In this
case, however, we skip this step and define the timing
requirements directly at the object level.

(3b) Search for Ready-Made Components

In our example, the personal alarm device is developed
from scratch and there are no components that can be re-
used in the design. However, let us consider what compo-
nents could be used in the future in similar applications.

The first candidate for future use is, of course, the
platform, consisting of an acceleration sensor, a message
sender, and a push button (all components combining
hardware and software). This is most natural because a
platform is always defined as a collection of hardware and
software resources that can be used by a range of possible
applications. At the same time, it is not inconceivable that
such components as an acceleration sensor, a message
sender, or an alarm sender can be used separately in other
designs.

(3c) Hierarchical refinement of Component Structure

In the case of the example system, there is no room for
hierarchical refinement of component structure due to the
system’s simplicity.

(4) Realization Using Reactive Objects

The object-level model of the example system is pre-
sented in Fig. 11. The hardware parts have been identified
and are shaded in the figure (their interfaces have been
significantly simplified for presentation purposes).

It is clear that all resource components in our example
require a mixed hardware/software implementation. In the
acceleration sensor, the A/D controller object is used to
abstract from the specific hardware interface of the A/D
converter and to perform deserialization4. In the message
sender, several objects are used to implement the network
protocol, and a transparent sharing of the message sender
between multiple components is provided by queuing

4Deserialization is required since A/D conversion can only be per-
formed on one channel at a time, but values from all three channels are
sent to the application for analysis.
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Figure 11. Object-level model for personal alarm device. Note the
absence of the output “read” eventreadAcc, which has been redefined
as three internal eventsx, y, z reading different channels of an analog
accelerometer.

incoming messages before sending. In the push button, a
button controller functions as a simple interrupt handler.

The only purely software component that consists of
more than one reactive object is the fall detector. The
acceleration sampler object triggers sampling by posting
an asynchronous message to thesampleAccmethod of
the acceleration sensor component. Sampling at pre-
determined intervals is achieved by the acceleration sam-
ple posting an asynchronous message to its own method
samplewith baseline delayed bytperiod: newBaseline =
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currentBaseline + tperiod.
The acceleration analyzer and fall detector objects

cooperate to detect a fall. The acceleration analyzer
posts an asynchronous message to the fall detector on
detection of impact upon which the fall detector updates
its internal state and posts an asynchronous message to
its own methodevaluatePosturedelayed bytlag. Once the
evaluatePosturemethod is invoked, the person’s posture
is requested from the acceleration analyzer and if he or
she is lying down, the fall detector posts an asynchronous
message to the fall alarm sender specifyingtalarm as
deadline.

Assistance alarms are handled in a similar way. The
application’s handleEventmethod is directly linked to
the sendAlarmmethod in the assistance alarm sender.
This method inherits the permissible execution window
defined for thehandleButtonIRQmethod in the push
button component.

(5) Implementation in Timber

The software part of the system was implemented in
the programming language Timber (see section IV). As
expected, the system structure presented in the model
was complete and did not require any modifications; each
reactive object in the model was implemented as such in
Timber. Thus parallelism between system reactions was
expressed at the object level in the model and preserved
in the implementation. The implementation stage also
involved writing Timber code for each method. All al-
gorithms and functions were implemented; for example,
a buffer holding sampled acceleration values was defined
as a state variable in one of the objects, and a function was
defined for filtering accelerometer data to remove noise
in the signal.

The hardware platform defined in the model has not
been implemented as yet. However, the software can
be executed on any hardware platform that matches the
presented model of the system, and we have verified that
there exist COTS hardware parts that correspond to each
reactive object in the model that should be implemented
in hardware (acceleration sensor, radio transceiver, etc.).

(6) Verification

The Timber implementation of the system software
was verified, partly by typechecking performed by the
Timber compiler, and partly by simulation of the software
in a Simulink-based Timber simulator. In the simulated
environment, the functionality and the timing specification
(preserved in the Timber code of the implementation)
were tested by feeding the software simulation with real
sensor data of recorded falls of several human subjects as
well as their normal daily activity [14].

When software is executed in a simulated environment
and not on a real hardware platform, no meaningful
execution times are available. However, since the timing
specification is preserved in the implementation in form
of permissible execution windows for each reaction, it is

possible in the simulation to choose any point within this
window, which is correct in the sense that it corresponds
to the timing behavior as expressed in the model. A
natural choice is to let each reaction to execute (with
zero execution time) at its baseline; this approach was
used in our simulations. Note that verification of whether
the worst-case execution times on a particular hardware
platform allow the system to always meet the required
deadlines is a separate issue and has not been part of the
verification performed so far.

The verification of the software implementation demon-
strated the validity of both the algorithm and its imple-
mentation, as the falls of the subjects were accurately
detected in the simulation.

A detailed account of implementation and verification
of the system will be published elsewhere.

VI. RELATED WORK

The modeling and implementation approach realized
in the Timber language can be compared to other solu-
tions such as real-time synchronous languages (Esterel,
SCADE, Lustre, etc. [15]) and time-triggered languages
such as Giotto [16]. However, they are substantially
different even if they can be seen as addressing the same
design problems. For example, in synchronous languages,
concurrency in system behavior is eliminated in the course
of implementation, leading to a further separation between
specification and model on one hand and implementation
on the other hand. In Giotto, software is defined in
terms of periodically executed tasks, reading inputs and
writing outputs at pre-determined times, which is not
particularly suitable for many embedded systems that
exhibit a clearly reactive behavior and is not applicable
to modeling hardware.

Our design approach is also different from that devel-
oped in the Ptolemy project [17]. The Ptolemy approach
is a framework for assembly of concurrent components
particularly suitable for modeling distributed systems.
Essential to it is the notion of anactor, embodying the
concept of active objects (as opposed to reactive objects).
It can also be argued that the Ptolemy approach does little
to bridge the gap between models and implementation,
which is achieved in Timber by using executable models.

Component-based approach to design of (not neces-
sarily embedded) real-time systems has been promoted
by various extensions of real-time UML profile [18],
with a number of tools already on the market (the
most well-known probably are Rhapsody [19], ARTISAN
Studio [20], and Rose-RT [21]). However, these solutions
do not feature a true integration of timing requirements
into functional specification, and do not completely solve
the problem of modeling of mixed hardware/software
systems.

Another design approach specifically targeting embed-
ded systems is platform-based design [22]. This approach
cannot really be considered component-based, as it con-
centrates on the methodology for separate development of
a hardware platform, a system platform comprised by a
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hardware platform and hardware-software middleware (an
API platform), and a software application that is devel-
oped for a given system platform. This can be contrasted
with our approach where both a resource platform and a
software application can be composed of multiple com-
ponents, and where a resource platform can be designed
together with an application; even if a platform is given, a
model of the whole system is used to develop the software
application. Our definition of a resource platform includes
not only hardware components, but also software and
mixed hardware/software components that can be utilized
as resources by a range of applications.

VII. C ONCLUSION

The presented modeling framework allows for a uni-
fied, consistent modeling of both hardware and software.
Integration of these models is beneficial for development
of embedded systems as they often exhibit a great de-
gree of interdependency between hardware and software,
and the specification often describes the system as a
whole rather than only its software part. At the same
time, inclusion of timing requirements in a functional
specification in the form of time-constrained reactions
allows us to specify, reason about, and verify real-time
properties of embedded systems. Moreover, our model-
ing framework enables the developer to offer platform-
independent correctness/quality of service guarantees for
hard/soft real-time systems, provided that the software can
be scheduled on a given hardware platform so that all
reaction deadlines are met.

By combining this modeling framework with
component-based design techniques and by expressing
system functionality using reactive objects, our approach
draws from the strengths of component-based design as
well as from event-based, reactive, concurrent, object-
oriented programming models. It facilitates software
re-use and maintenance as well as separate development
of parts of the system. This approach is realized in the
concrete software design methodology presented above.

Apart from addressing the issues of software complex-
ity, interdependency between software and hardware, and
complying with the timing requirements, our approach
also allows to clearly define the notion of aresource
platform as a combination of hardware and software
resources. A resource platform can be designed to serve
as a base for a whole range of related applications,
decreasing the overall development costs and time to
market.

The presented software design methodology can be
used both in the case when software is developed along-
side a hardware platform (the latter being assembled from
existing hardware parts) and in the case when such a
platform is given from the start. In both cases, a platform
is instantiated using some implementations of hardware
and/or software components depending on performance,
power consumption, and other non-functional require-
ments.

The design approach presented in this article requires
further development in the following directions: formal-
ization of component structure; creating design tools
supporting the methodology; and investigating the role
of other requirements, such as power consumption, in the
design process. The power consumption issue is espe-
cially challenging since it introduces new constraints and
modeling parameters to deal with. However, with today’s
rapid increase of battery-powered embedded systems, this
is a very important issue to address. A holistic view
of both timing and and power consumption will offer
new and interesting possibilities in the area of embedded
system design.

ACKNOWLEDGMENT

This work was supported in part by the Knowledge
Foundation in Sweden under a research grant for the
project SAVE-IT, the EU SOCRADES project, and the
EU Interreg III A North Programme grant 304-13723-
2005.

REFERENCES

[1] B. Bouyssounouse and J. Sifakis,Embedded Systems De-
sign: The ARTIST Roadmap for Research and Develop-
ment, ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer-Verlag, 2005.

[2] C. Atkinson, C. Bunse, H.-G. Gross, and C. Peper,
Component-Based Software Development for Embedded
Systems: An Overview of Current Research Trends, ser.
Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2005.

[3] J. Nordlander, M. P. Jones, M. Carlsson, and J. Jonsson.
(2005) Programming with time-constrained reactions. [On-
line]. Available: http://pure.ltu.se/ws/fbspretrieve/441200

[4] J. Nordlander, M. P. Jones, M. Carlsson, R. B. Kieburtz,
and A. Black, “Reactive objects,” inFifth IEEE Inter-
national Symp. on Object-Oriented Real-Time Distributed
Computing, 2002, pp. 155–158.

[5] W. Yi, P. Pettersson, and M. Daniels, “Automatic verifi-
cation of real-time communicating systems by constraint-
solving,” in Proc. of the 7th International Conference on
Formal Description Techniques, 1994, pp. 223–238.

[6] K. G. Larsen, P. Pettersson, and W. Yi, “Model-Checking
for Real-Time Systems,” inProc. of Fundamentals of Com-
putation Theory, ser. Lecture Notes in Computer Science,
no. 965, 1995, pp. 62–88.

[7] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and
W. Yi, “Uppaal—a tool suite for automatic verification
of real-time systems,” inProc. of the DIMACS/SYCON
workshop on Hybrid systems III : verification and control.
New York, USA: Springer-Verlag, 1996, pp. 232–243.

[8] T. Amnell, et al., “Uppaal - now, next, and future,” inProc.
of the 4th Summer School on Modeling and Verification of
Parallel Processes. London, UK: Springer-Verlag, 2001,
pp. 99–124.

[9] L. Sha, et al., “Real-time scheduling theory: A historical
perspective,”Real-Time Systems, 2004.

[10] P. Lindgren, J. Nordlander, L. Svensson, and J. Eriksson.
(2005) Time for timber. [Online]. Available: http:
//pure.ltu.se/ws/fbspretrieve/299960

[11] M. Carlsson, J. Nordlander, and D. Kieburtz, “The seman-
tic layers of timber,” inFirst Asian Symp. on Programming
Languages and Systems: APLAS, ser. Lecture Notes in
Computer Science, 2003, pp. 339–356.

1320 JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009

© 2009 ACADEMY PUBLISHER



[12] The Timber language homepage. [Online]. Available:
http://www.timber-lang.org

[13] M. Kangas, J. Wiklander, I. Vikman, L. Nyberg, P. Lind-
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