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Abstract— The increasing complexity of embedded software as part of the environment external to the software system
calls for a new, more efficient design approach. A natural  since the software has to be developed “around” the avail-
choice is to use well-established component-based design; gp|e hardware resources, relying on their timing and other
however, its adoption to design of embedded software has . . ) . . .

been slow and riddled with difficulties. It can be argued properties. This requires a uniform, consst_ent .modellng
that these problems are due to the following peculiarites Of both hardware and software. The situation is further
of embedded systems. Firstly, the tight integration betwee ~ complicated by the fact that embedded systems, unlike
hardware and software, typical for embedded systems, most general-purpose computing systems, often perform
makes it virtually impossible to model and implement  .,m 5 tations subject to various constraints, such as pro-

software separately from hardware. Secondly, it is difficul d t of "
to express timing requirements, an intrinsic part of function- ~ C€SSOr Speed, amount of memory, power consumpton,

ality of many embedded systems, in dataflow abstractions and reaction time. The timing requirements are often of
traditionally used in component-based design. special importance, especially for safety-critical syste

We propose to overcome these difficulties by introducinga |n fact, the majority of embedded systems can be viewed
uniform, consistent modeling of both hardware and software as real-time systems, i.e. systems in which correctness of

and by integrating timing requirements into the model. . . .
We present a modeling framework based on the notions system behavior (for hard real-time systems) or quality

of reactive objects and time-constrained reactions, which Of service (for soft real-time systems) relies on the time
enables component-based design of embedded real-time sys- when results are delivered to the environment as well as
tems. Within this framework, functionality of both hardwar e on the computed values as such.

and software components is defined in terms of reactions We conclude that it is necessary to modify the tra-

to discrete external events, and timing requirements are diti | t-b d ht fit d |
specified for each reaction relative to the event that triggeed iional component-based approach 10 sofiware develop-

it. We also present a detailed software design methodology mMent so that (a) a tight integration between software
for embedded real-time systems based on our modeling and hardware is taken into account, and (b) timing re-

framework. qguirements can be clearly defined at both system and
Index Terms—component-based design, embedded real- component level and used to guide implementation.
time systems, embedded software, reactive objects, time- In this article we present a modeling framework that
constrained reactions allows to uniformly model both hardware and software
and to incorporate timing requirements into the model
|. INTRODUCTION (Section Il). We also present a step-by-step methodology

for embedded software design based on our modeling

In recent years, the complexity of embedded system : . .
has been steadily increasing, and the number and co ramework (Section Ill) and demonstrate it in the design

plexity of functions performed by embedded softwareOf as mall e_mbedded sys.t em, a personallalarm device
has also grown. This calls for introduction of new, (Section V), implemented in the programming language

more efficient design methobisAn attractive approach is T!mbe_r (Secn_on IV). A short overview of related work is
. X . given in Section VI.

component-based design, which facilitates component re*
use, separate development of components, and improves
overall maintainability and robustness of the system. [I. MODELING FRAMEWORK

However, adoption of this approach to embedded soft-
ware development ha; been significantly slower than t%onsistent and coherent models of individual components
software development in general. It can be argued that tht

S . at can be composed to model the whole system. We
problem lies in the fact that embedded systems manifes X . L
. . . ) o .propose a modeling paradigm based on a combination
a tight integration between functionality implemented in

software and functionality of hardware parts. In many em of event-based, reactive, concurrent, and object-orente
y parts. y gramming models that provides a natural framework

) r
bedded systems, hardware components cannot be wew%f specifying the behavior of hardware, software, and

1A good overview of existing design practices and reseamhds in mixed hardware/software components of an embedded
embedded system design is given in [1] and [2]. system.

Component-based design relies on the existence of
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Figure 3. Data flow model of system interaction with its eomiment.
Figure 1. Permissible execution window for a reaction to ane Environment

writeX [system name]| . system

System 1 readX levent name] . input event /
" output "write" event

event

Event-based modelinighplies that interaction between

the system and its environment, as well as between con [event name]

ponents of the system is conducted by means of discre &) output read" event
events occurring at specific times. Tteactive approach

allows us to specify functionality in terms of reactions to Figure 4. Event-based system-level model.

such events, and since both input and output events are
discrete, it is possible to impose time constraints on these . o
reactions, effectively integrating timing requirementtoi used as units of concurrency by specifying that no two
functional specification [3]. The simplest way to specifyme_thOdS of the same Obje.Ct can e>_<ecute concurrently
such constraints is by defining the earliest and the Iate%’yh'le any two methods of different objects can.

reaction time aselineand deadling relative to the time ~Modeling complex systems requires using multiple
of the input event triggering the reaction. We will call levels of abstraction. We will distinguish the following-ab

the time window between the reaction baseline and it§traction Ievgls: system level, component level (which can
deadline aermissible execution windofar this reaction include multiple sublevels to accommodate a hierarchy of
(Fig. 1) and denote it asfter t, ., before ty.s components), and object level, as depicted in Fig. 2. In

doSmth wheret, .., is the period of time between the our model, we will not try to include all information at
event and the baseling;,; is the period of time each level; instead, the relationship between the layers is
ejore

between the baseline and the deadline. do@mthis the ©N€ of a gradual refinement of the model where each next
invoked method. ’ level contains more details.

Concurrencyss inherent in hardware and is unavoidable
in more complex software systems that have to perform S Level Model
multiple tasks (react to multiple events) at the same time’.o“ ystem-Level Mode

It is important to reflect this concurrency in the model At system level, the system is viewed as a black box,
of an embedded system. This gives rise to the problemgnd the focus is on defining the boundary between the
of synchronization and state protection. We address '[he%g/stem and its environment. Since embedded systems
issues by modeling and implementing components usingpically manifest a tight integration between software
reactive objects [4]; we define that all mutable state and hardware, the system model should include both
variables have to be encapsulated within an object angoftware and hardware, even if the hardware is given
only accessible via its methods. Reactive objects can bgnd is not developed as part of the design process. From
the modeling perspective, existing hardware parts can be
“considered either as a part of the system or as a part of its
environment. In this case, the system boundary should be
defined so that it is easy to specify system functionality
environment in terms of reactions to input events as described below.
In component-based design, the system’s interaction
with the environment is typically described in dataflow
terms as input from the environment and output from
the system (Fig. 3). However, to be able to define tim-
ing properties of the system, input and output should
be expressed as discrete events occurring at specific
times, resulting in a reactive event-based model. Then
system functionality can be defined as reactions to input
events and timing requirements can easily be described
as constraints on these reactions. Output events comstitut
part of a system reaction to an input event and can
be divided into asynchronous (“write”) and synchronous
(“read”) events (Fig. 4). Note that if some parameter in
Figure 2. Three abstraction levels of modeling: systemJemnponent  the environment is sampled by the system, this can be
level (including multiple sublevels to accommodate a congmb hier-  raflected as an input in the dataflow model but as a “read”

archy), and object level. A system is realized in terms of ponents, .
and each component is realized in terms of objects. output event in the event-based model.

2We will be using executable models which means that reactiv
objects are preserved in the implementation.

System
level

Component
level

Object
level
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Environment : component C. Resource Platform

[event name]  Inputoutput A useful abstraction that can be built upon system
2! Comp. 1 |—>—» Comp. 2 —» e oy Partitioning into components is the notion ofresource
[event name] output platform The intuition behind it is that a number of com-
dd 15;;3;3;;52; ponents taken together can present a certain basic func-
Comp. 3 tionality with a clearly defined interface that can be uti-
. t i . . . .
System foventnamel, . memavertlized by a whole range of applications (Fig. 6). A resource

, platform typically includes all hardware components of
. internal event . .
“(synchronous)  the system, since they are the most difficult to change
and may often have somewhat limited composability,
Figure 5. Event-based component-level model. but it can equally well include mixed hardware/software
components or software-only components that are used
as resources by the applications. This gives us a clear
separation of the system into a resource platform and
At component level, we use components to model th@n application (embedded systems typically have only
system. A component is defined as an encapsulation ¢fe application, but it is possible to consider several
a part of system state and/or hardware resources, witdpplications sharing the same platform at runtime).
a clearly defined interface and functionality. Importantly ~Note that since the separation into a platform and
state variables and hardware resources must belong @n application is performed at a relatively high level
only one component and cannot be shared by two or moref abstraction, a platform may have multiple instances,
components (the question of allocating CPU resourcegliffering in the choice of specific hardware and/or specific
i.e. processing time, to components will be addressetimplementation of software. This approach allows for a
later). This definition allows for hardware, software, andfast and efficient development of a number of applications
mixed hardware/software components. for a certain platform while leaving enough flexibility
Each component can be specified independently of th# platform implementation to perform optimizations in
rest of the system in terms of time-constrained reactiongevice size, cost, power consumption, and performance.
to input events. Input events can either be external events
originating outside the system, or internal events origina p_ Object-Level Model
ing in another component. Both input and output events

can be asynchronous (“write” events, one-way interaction? At the lowest level, each component is modeled using

“ ” o eactive objectsA reactive object is a model that can
or synchronous (“read” events, synchronization eventsh .
; ave one or several hardware and/or software instances;
etc.). Note, however, that external input events are alway . : . .
owever, it cannot be instantiated as a mixed hard-

asynchronous (Fig. 5). Unlike reactions to asyncmonou&vare/software entity. The choice of implementation is
events, reactions to synchronous events cannot have 'a Y. P

permissible execution window of their own, as they have

[event name]

B. Component-Level Model

to complete before the deadline for the component the Environment
. : : t
posted the synchronous event and awaits a response.  [s,sem componen
Components can be organized hierarchically, when Comp. 1 ;. hardwaro
component s partitioned into subcomponents. Partitignin al m1>| o1 "2 opp 2 | oniee
is governed by considerations such as composability, re A | ;. Software
- . . . objec
usability, ease of understanding, etc. as will be describe afer t, Um
; ; ; m3 Obi. 3 levent namel external event
later in this article. ——> L ynchronous)
event name] . external event
Environment Comp. 2 bmerore ta ot befonh * (synchronous)
comp. name]| . component arter efore 1, .
SRR wopieaton | i [ - lovertnamel e e
1 PP 1| | [event name] input/output e m5 by e
i a b ! Z(externra]il event) v [ (event name]
! | Comp. 1 » Comp.2[_ " |Comp.3|1 asynchronous, 4 . internal event
E c E [event name] output | Obj. 5 Ob"ZI D) * (synchronous)
! L 4 ! : external event _ A after t, before f,,
[E [N RSP EPN PR P P _t . . asynchronous
RO KPR N [ o oo - —— =4 (SynChrOnOUS) WL . meSSage
1 dl e f g hooo " .
Y v ! levent namel :(;r:;r:gz:g:gﬂ;) & ¢ d [method name] . synchronous
i Comp. 4 Comp. 5 Comp. 6 i message
1 P . P | leventname]l  iniemal event
! H * (synchronous) . . .
. Resource platform ! Figure 7. Event-based object-level model. For each reactoper-
— e missible execution window can be specified using dfter ¢, before
& i \ A t; notation; absence of such notation indicates inheritarfcénong

constraints. Input events to software objects originaitmgther software

objects are marked as messages; input events to softwaeetbj
Figure 6. Partitioning of a system into a resource platfomad @ originating outside the system or in hardware objects amstated into
software application. messages.
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made at this level, so an object-level model clearly spec-

ifies which objects should be implemented in hardware __________|_ _______________________
Design Process

and which in software (Fig. 7).

Product
specification
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| |
| |
Both software and hardware objects react to external | Formulating i
and internal input events and for each reaction a permis- | Extended - |
sible execution window can be specified relative to the | Specification [ :
time of the event (Fig. 1). External input events originate | s;:gﬁitgfgn :
in the environment, and each type of event triggers a ; & timing regs. |
method of a specific object. Internal input events originate | s ster‘n'-LeveI |
within the system; in the case when such events are both| yModeIing :
produced and consumed by software objects, they can| l |
be viewed and implemented as messages. Even events Component-Level o |
originating outside the system or in hardware objects can | Modeling |+ periioation |
be translated into messages if they are consumed by a| I and non- |
software object. : O:Iilect-t_eve' - > ,emfggﬁts |
As any events, messages can be either synchronous ol odeling [+ !
asynchronous. In the latter case, a software object can! l |
also post a message to itself. Asynchronous messages call Implementation | > |
be delayed by a certain amount of time defined relative ! |
to the baseline of the object sending the message. Thist - ———————— i ------------------------ '
also allows to encode a periodic behavior by letting an

object post a delayed asynchronous message to itself. Product

SynChronous mes_saggs return a VaI.LJe’ and the ?XeCUt'ﬁﬁure 8. Stages in the design process: from a specificati@ready
of the sender object is blocked until then; that is whyproduct.
reactions to synchronous messages cannot be delayed and

always inherit the permissible execution window of the . : L . I
consumption, and is primarily used during verification.

sender. It can also be used to guide selection of ready-made
A software object encapsulates its state and provides 9 y

. . . components, especially those including hardware.
methods to operate on it;raactivesoftware object cannot : .
. ; s . The second step is formulating a system-level model
block during method execution waiting for input. In our ; . . . ) .
. . where system interface to its environment is defined in
model, state protection is absolute — all mutable variable . . A .
. : . rms of external input events triggering time-constrdine
have to be state variables in some object, and no access 10 . .
. . . .~ system reactions and system output events which are
state variables is allowed except via methods of the object: . : . :
) . art of such reactions. In the third step, this model is
Besides, no two methods of the same object are allowed

execute concurrently but methods of two differentobject%elabor&lted by identifying system components and in-
L . erfaces between them. Such components are key to
can, resulting in an object-level concurrency model.

facilitating software re-use and maintenance, as well as
system verification. In the fourth step, the components
are realized using reactive objects, and a decision is

Here we present a methodology for embedded softwarmade on which reactive objects should be implemented in
design based on the modeling framework described in theoftware and which represent models of (existing) hard-
previous section. This framework allows us to model bothware parts. At every step, the model of each component
software and hardware parts of an embedded system, amgl matched against a repository of previously developed
a complete model of the system is essential for designingomponents (either software or hardware), which should
embedded software and verification of the system as eontain reactive models of components alongside their
whole. implementation.

The different stages of the design process are presentedThe fifth step is implementation of software objects
in Fig. 8. The input to the design process is the producin some programming language. The sixth and final step
specification which originates from the client commis-is system verification, which can be done by simula-
sioning the system and which we assume to be statitton of the model, by testing of the implementation, or
during the development of the system. This specificatioby formal methods. Both functional and non-functional
is usually written in a natural language, is often incom-requirements can be verified, and a failed verification
plete and imprecise. Hence the first step is drawing uforces a return to an earlier development step, making
a complete specification with a clear division into func-the development process iterative. Verification of new
tional and non-functional parts. In our case, functionalcomponents should also be performed at earlier stages
specification is integrated with timing requirements andof development to verify certain properties at object
is used throughout system modeling and implementatiorand component levels. At the final step, verification of
Non-functional specification lists the remaining systemcomponent integration and of the system as a whole is
properties and constraints, such as system size and powssnducted. Note that verification of system schedulability

IIl. SOFTWARE DESIGN METHODOLOGY
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on a particular hardware platform is separate from verifiHowever, it is possible to identify the main guiding
cation of the model itself. principles.

Each component should have a clearly defined role
in the system, and a one-to-one mapping between com-
ponents and system functions is always preferable. This

The extended SpeCiﬁcation has to be Complete, Verifimeans that any two independent taskS, triggered by in-
able, and contain a clear separation into functional andependent external events and resulting in independent
non-functional specification; it is obtained by refining the gutputs, should be realized by two separate components.
original product specification. Our approach requires thatthe same is true for the case when a system should
the functional specification should be expressed in termgerform two activities in parallel, with little or no state
of time-constrained reactions to external events reptesensharing and/or interaction between them.
ing input to the system or changes in the environment. A special type of components (often associated with
Thus timing requirements are integrated into functionahardware or mixed hardware/software components) are
specification. It has to be noted that not all systems lefesources which can be used by one or several activi-
their functionality to be naturally defined in terms of time- ties and which usually enforce some kind of exclusion
constrained reactions, which should be seen as a limitatiogy sharing protocol to guarantee consistency of system
of applicability of our approach. However, it is our belief oytput and/or its internal state. Several resources age@ oft
that the majority of embedded systems can be specifiegndled together in one component when they are used
in such a way. _ _ _ jointly to perform one task or cannot operate in parallel.

A prominent example is a system with a time-  Apart from these main principles, a number of other

continuous input; a system which as such does not congonsiderations can affect the design of a particular system
form to the notions of events and reactions. Howeverg,ch as:

on closer inspection, any discrete realization of such a
system would indeed require a sampling strategy with its
corresponding timing requirements.

In other cases timing requirements can be implicit,
defined by the rate of incoming events and the necessity
to keep up with them. A typical example is routing of
packets in a network; while the maximum forwarding
delay may be omitted from the specification, it can be
derived from a packet buffer length together with the
allowed drop rate for a given traffic profile.

(1) Defining Extended System Specification

« composability— to facilitate system composition
from newly-designed or ready-made components, it
is important for each component to have a clear
purpose (role in the system) and a clearly defined
interface. It is also advantageous to have as few
interdependencies between components as possible.

« reusability — functionality common to a class of
(possible) applications can be effectively assigned to
a separate component, facilitating component re-use.

« robustness- to make better use of ready-made com-
ponents, and to enhance system verification while

(2) Formulation of System-Level Model shortening the development time, it is important

that each component is designed with regard to

future verification (testing, simulation, and possibly
formal verification) at component level as well as
at system level. Robustness can also be improved if
components are used as fault-containment regions,
which requires detectability of errors at component
boundaries.

ease of understanding an extremely important

consideration that is often overlooked is that parti-

tioning into components should enhance the ability
of the original developer(s) of the system as well as
those who may work with it in the future to clearly

understand the functions and structure of the system.

This calls for the components to be small enough

to be easily comprehendable, but at the same time

large enough to keep the structure of the higher-level
component simple. Experience shows that following
this principle leads to fewer mistakes (and hence
shorter development times and increased robustness)
(3a) Partitioning into Components and facilitates re-use and maintenance.

Although component-based design has been studied for An important issue of component-based design is what
several decades, partitioning of a system into componentsnd of interactions are allowed between components.
(as well as partitioning of a component into subcompodt is advantageous to make components as independent
nents), remains more of an art than an exact sciencef each other as possible since it simplifies component

In this step a system-level model should be formulated
from the functional and timing specification by determin-
ing the system’s boundary with its environment and its
interface. To achieve a clear-cut separation between the
system and its environment, the system should be defined
to encompass all the functionality that we have to develop,
and it should be taken to include the hardware that the
developed software will execute on. Such hardware should *
be notionally included in the system even if it is given and
cannot be changed during the development process. Note
that the environment includes both natural phenomena the
system will interact with and the infrastructure that is be-
ing developed or has been developed separately. Thus all
“external” services used by the system, especially those
shared between the system under development and other
systems, are considered to be part of the environment
rather than the system proper.
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specification, enhances composability, and facilitates ve repository is warranted. The process is repeated until no
ification of individual components. We therefore stronglyfurther refinement of component structure can be justified.
discourage synchronous communication across compo-
nent boundaries. Synchronous communication betwee
components should normally be used for predictabl
quick interaction, such as reading a value (as opposed The last step in the modeling process is component
to waiting for a value to be computed), or performing arealization using concurrent reactive objects. This step i
hardware operation that takes a known time to complet®¥olves partitioning of the component into reactive objects
under certain operational conditions. and identifying hardware and software parts. Similarly
Once defined and implemented, components can b@ partitioning into subcomponents, it is performed on
stored in some repository for future use. It is importanttach component independently of its context. Note that
to preserve not only the actual implementation, but als@t this level hardware parts are modeled as reactive
a model of the component (see sectRin) alongside its objects, which allows for a certain flexibility when several
testing and verification results. It may also be useful thardware parts are modeled using the same object model
preserve a testing suit for a component so that the teststhey only differ in, for example, power consumption.
can be re-run in a new setting. If the implementation For each component, it is necessary to identify: hard-
of a component is protected as intellectual property antvare resources; object state in terms of state variablés; an
will not be accessible for system verification, the timingobject functionality in terms of methods. Partitioning of a
properties of the component also have to be stored in thedmponent into objects is governed by slightly different
repository. These would have to include execution timePrinciples than partitioning of a system into components.
and maximum blocking time (per hardware resource) forrhese principles can be obtained by adaptation of well-
each reaction defined in the interface of the componentknown object-orientation strategies to the concept of
concurrent reactive objects. The following has to be taken
into consideration:
Each object encapsulates its state that can only be
In this step, models of defined components are matchegccessed by methods of the same object. At the same
against models of earlier developed components fromime, the objects are units of concurrency, meaning that
the repository. Comparison between the models requiresny two methods of the same object cannot be executed
that they are of the same kind. In our case, it meangoncurrently but any two methods of two different objects
that a component model should have its functionalitycan. A notable exception is the case when an object posts
expressed in terms of time-constrained reactions to evengssynchronous message to another object; then the caller
external to the component. Identity of modeling principlesremains blocked until the invoked method returns.
should lead to a straightforward integration of a matched The guiding principles of partitioning into objects aim
component into the system model. to maximize schedulability of the system while main-
There might be components in the repository that daaining state consistency. Component state, seen as a
not match the specification, but can be either adapted byollection of state variables, should be partitioned and
introducing an intermediate layer, or can be modified toassigned to objects in such a way that
fit the specification. The downside of component mod-
ification is that it may require substantial work on re-
implementing the component as well as invalidate the
testing and verification results.

) Realization Using Reactive Objects

(3b) Search for Ready-Made Components

« state duplication (when the same state is duplicated
as state variables in two or more objects, leading to
synchronization problems) is avoided;

« state variables routinely modified together are encap-
sulated in one object;

(3c) Hierarchical Refinement of Component Structure « otherwise, state is maximally distributed between

One of the strengths of component-based design is the different objects to allow for a better schedulability
possibility of hierarchical refinement of component struc- of the system.
ture. Partitioning of a component into subcomponents Functionality should be assigned to methods, and meth-
closely mirrors partitioning of a system into componentsods to objects in such a way that
as described above; the same principles and guidelines. methods using the same state variables are assigned
apply. Since one and the same component can (at least to the same object;
theoretically) be used in different systems, partitioning « methods using different parts of component state
into subcomponents should be performed independently are assigned to different objects together with cor-
for each component and should not be influenced by a responding state variables, in order to maximize
wider context in which the component is used. However,  schedulability of the system; an exception to this rule
it is possible that identical subcomponents are identified is the case when consistency between several state
as parts of different components, and those can be viewed variables has to be guaranteed,;
as separate instances of the same component class. « aspecial attention is paid to the consequences of mu-
If any new subcomponents have been identified in this  tual exclusion between methods of the same object,
step, a return to search for matching components in a  when an object remains blocked and cannot execute
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any other method while an earlier invoked methodhave to be verified. System feasibility refers to the ability
is executing. For example, in some cases a singlef a specific implementation (software and hardware)
reaction should be split into two methods, one callingto meet the functional and timing specifications of the
the other asynchronously, thus creating a window ofmodel under extra-functional constraints such as energy
opportunity for a reaction with a shorter deadline consumption; an important part of feasibility verification
to execute on the same object in between the twds schedulability analysis (see [9]). Note that schedula-
methods. bility analysis requires a full knowledge of the system

The issue of software interaction with hardware partdmplementation. In the case when the implementation of
is of utmost importance and has to be considered sep& particular component is not available for analysis, at
rately. This interaction is often governed by complicatedeast the list of resources used by each reaction of the
protocols that are not relevant to the application at largecomponent should be known together with the execution
Hence it is a good idea to have a Sing|e software Obtime and maximum blOCking time for each resource.
ject controlling access to specific hardware. Apart fromSchedulability analysis should be the preferred way of
providing a useful abstraction of the software-hardwareéystem verification since it allows to prove system correct-
interface, such objects can be used to exp"ciﬂy controN€ss for all inputs and in all situations, as do other formal

sharing of the hardware resource by enforcing arbitratiofnethods. However, verification of system implementation
or queuing if so required. can also be conducted using simulation and testing.

Let us separately consider verification of a resource
: platform. A clear division into a platform and an ap-
(5) Implementation C .
plication allows to verify them separately, so that an
The next step is the implementation process in whichyready verified platform with known properties can be
the system model is instantiated. The hardware platformysed for development of other applications. It should
is built using identified hardware parts (COTS compo-he noted, however, that system-level verification such
nents, SoC blocks, etc.), and software reactive objectgs schedulability analysis has to be performed on the
are implemented in some programming language. In thgystem as a whole, including both the application and

case when some of the software components are re-usg@k resource platform, even if the platform has previously
from the repository, the issue of code integration has to bgeen verified.

addressed. The complexity of code integration will depend
on the language used in the implementation of the re-used
components. IV. AN IMPLEMENTATION APPROACH
An example of a programming language, Timber, fully THE TIMBER LANGUAGE
supporting the described modeling framework and thus

suitable for use together with the present software design The presente_d mpdel IS sufflc_:lently general to alloyv a
methodology, will be described in section IV. variety of possible implementations. For example, since
’ we can model a complete system including both hardware

and software parts, the border between hardware and

(6) Verification software can be adjusted even after the model has been

The final step in embedded system design is verificatio@ompleted. Hardware components together with hardware
(see Fig. 8). We will distinguish between verification of parts of mixed (hardware/software) components can be
the model and verification of the implementation; bothrealized by e.g. selecting existing COTS hardware parts
should be conducted at component as well as system levelnd integrating them into a single hardware platform,

Verification of the model is done against system speciwhereas software components together with software
fication and specification of individual components. Thisparts of mixed components have to be implemented in
includes verification of component composition at systenmsome programming language, typically combined with a
level and verification of functional specification (incladi  minimal operating system or a kernel that will provide
timing requirements), which can be performed usingscheduling, I/O, etc.
simulation or with formal methods (see, for example, the While it is fully possible to implement the model
work on UPPAAL [5]-[8]). Importantly, verification of described above in, for example, C/C++ or Esterel, the
the model is independent of its feasibility, i.e. whethertranslation itself would be far from trivial. The problem
or not it can be implemented in a specific programmings to preserve the properties of individual components
language and on a specific hardware platform in such and of the system as a whole, to maintain composability
way that the functional and timing requirements are metof defined components, and to be able to verify that

Verification of the implementation should also be con-functionality and timing of the resulting code reflect those
ducted at both component and system level and, umf the model. Using mainstream programming languages
like verification of the model, it involves verification often results in a gap opening up between the model and
of both functional and extra-functional requirements. Atits implementation. For example, reaction deadlines may
component level, it is only necessary to verify that thehave to be translated into thread priorities and as a result,
implementation corresponds to the model. At systenthe system’s behavior would depend on other tasks and
level, both component integration and system feasibilitthe scheduling policy; hence the correspondence between
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the model and its implementation becomes very difficult message to return), and asynchronous (when the
to verify. sender posts a message to another object or to itself,

Another possible implementation approach is to use the  possibly with a postponed baseline, and continues
recently developed modeling and programming language  execution). Asynchronous messages lead to concur-

Timber, which targets real-time systems ([10]-[12]). Tim- rent execution of reactions.

ber is a high-level programming language that uses the

same primitives as the proposed model, including reactive V. AN EXAMPLE SYSTEM:
objects and time-contrained reactions. Hence translation A PERSONALALARM DEVICE

of a model into Timber code is straightforward and The software design methodology described above has
preserves system structure and timing specification, clogeen tested in the development of a personal alarm device,
ing the gap between the model and its implementationysed here to demonstrate different stages in the design
Timber code can be compiled into a subset of C angrocess. Some details have been omitted for presentation
executed on any target platform in combination with apurposes. The following functional specification of the

Timber kernel, which uses permissible execution win- device was given in the beginning of the design process:
dows preserved in the code for deadline-based scheduling. The personal alarm device is a battery-driven system

Timber is both a high-level programming language forworn by a person on his or her body, for example, by an

real-time systems and a formalism that can be used telderly person at a care facility. The device is capable of
verify a system’s functional behavior, timing propertiesdetecting the person’s fall by analyzing acceleration.€nc
(complying with deadlines), liveness (absence of deada fall has been detected, a fall alarm is sent wirelessly to
locks), and termination of computations. Let us brieflyan external receiver. The analysis requires that acceler-
describe the relevant properties of the language: ation is sampled periodically evety.,;,s milliseconds.

« inherent support for reactivitythe system function- The device also includes an assistance call button that can
ality is expressed in terms of reactions to externafrigger a separate kind of alarm sent in the same manner.
events, with reaction defined as a combination ofAn alarm must be sent withify,,,, milliseconds after a
internal state updates and/or system outputs. Eacl@ll has been detected or after the button has been pressed.
reaction can be comprised by a chain of reactions
executed by different objects, some of them execute€l) Defining Extended System Specification

concurrently. Execution of a system reaction must an extended system specification should include both
be non-blocking, i.e. it cannot block waiting for an functional and non-functional requirements. The func-
external input. tional requirements have to be expressed in terms of

» time-constrained reactiongach reaction has a base- time-constrained reactions. Two such reactions can be
line (the earliest time when execution can start) anddentified by analyzing the original specification.

a deadline (the latest time by which execution must The first reaction is sending an assistance alarm when
have finished); it is possible to schedule a reaction tghe push button has been pressed. There is a timing
start at some point of time in the future by setting itSrequirement that the alarm is to be sent withify,.,
baseline relative to the baseline of the reaction beingnilliseconds. The second reaction is sending a fall alarm,
executed. The timing requirements are preserved ivhich is triggered by fall detection. This is realized using
the application code at run-time and can be used t@ fall detection algorithm that requires sampling acceler-
guide scheduling. ation at regular intervals equal Q.. milliseconds.

« object-orientationwhile constants (including global The algorithm distinguishes two stages in fall detection:
functions) can be defined at the top level, mutablgmpact detection, with impact detected by acceleration
variables are only allowed within objects as stateexceeding a threshold value; and posture evaluation (see
variables. State encapsulation and protection arg13], [14] for a detailed description of the algorithm).
achieved by limiting access to these variables to thgosture evaluation is performeg,, milliseconds after
methods of the object, and state consistency is easilyn impact has been detected, and is used to establish if
guaranteed by always enforcing mutual exclusionhe person is lying down, in which case a fall has been
between the methods of the same object. detected. The acceleration is sampled with the same peri-

« object-level concurrencyfimber is a highly concur-  odicity both for impact detection and posture evaluation.
rent language with concurrency achieved by allowingHence the following timing requirements can be given
methods of any two different objects to be executedor the second reaction: the acceleration sampling period
in parallel. tperiod; the lag between impact detection and posture

 message passing between objedimber objects evaluationt;,,; and the maximum period of time between

communicate by passing messages, synchronoyg|| detection and sending an alamy q.,.
(when the sender remains locked and waits for the Both an assistance alarm and a fall alarm are sent

using a radio transceiver and are received by external
A prototype version of a Timber kernel has so far been impls®  jnfrastructure which is outside the scope of the system.

for a generic POSIX environment and for an ARM platform, thartks Th i h .. | ith i o

to its minimalistic nature it can be ported to other platfernelatively erefore, the communication protoco (W't Its iming

easily. requirements) has to be part of the extended specification.
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Environment reset Environment
reset ———— transmit [system name]| . system [comp. name]| . component
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Figure 9. System-level model for personal alarm deviceutrgvents:
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1
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. I Hesource |
on the body, for example, at the hip), and a low powel| |pattorm | |
consumption (as the device is to be powered by a battery
\ 4
readAcc transmit buttonPressed

(2) Formulation of SyStem-Level Model Figure 10. Component-level model for personal alarm deweith

Analyzing system specification, we can distinguish twoseparation into a resource platform and a software apialicat
events that the system should react to: an assistance call
realized as an interrupt from a button; and the person’s
fall. The interrupt from a button can be modeled as The next step is to define the interface of these com-
an external input event. The person’s fall, however, igoonents, bearing in mind that it should be complete but
something that is detected by the fall detection algorithnt the same time sufficiently abstract to accommodate
which is internal to the system and hence it is notvarious componentimplementations, which may possibly
an external event. However, we can encode a periodigse different hardware to support the same functionality.
sampling of acceleration by the system as a reaction to &he interface to the acceleration sensor should contain
reset (an external input event) that starts up the system af@ input that can trigger samplingampleAc); and an
triggers a reaction that includes sampling the acceleratiooutput that delivers the acceleration value once it has been
(an external output “read” event) and posting a messag@cduired ¢onsumeAgc Note that to preserve reactivity
with a delayed baseline that invokes another samplingnd component independence, we cannot allow the caller
after t.,i,q milliseconds, and so forth. to block waiting for the sampling to complete. It is

The timing requirements on the first reaction consistherefore necessary to implement callback functionality
of a relative deadline,.,, milliseconds; the timing In the acceleration sensor to specify to which component
requirements on the second reaction are defined for eadh® measured acceleration should be delivered. This can
sampling that has a baseline equal to the baseline of tHee done either when the acceleration sensor is instantiated
previous sampling plus,.,i. Milliseconds. (a stati_c caIIback)_, or_by passing a pointer to a function

Note that while the hardware for the button, the ac-€ach time sampling is triggered (a dynamic callback).
celerometer, and the radio transceiver are clearly a pagimilarly, to achieve the desired level of generality, the
of the system, the receiver of the alarm transmissiodnterface of the message sender should only contain
is outside the developers remit and should be viewe®n€ input — sending a messaggerfdMsy and one
as an external service, not a system component. Thi/tput — delivery of a received message, but the latter
the interface between the system and its environment i§ Superfluous for our application. Note that the message
comprised on one hand, by reset interrupts and call buttoR€nder represents a clear example of a shared resource
interrupts, and on the other hand, by the radio protocor it can be used by any of the independent tasks of
used for communicating the alarms alongside the code@) fall detection, and (b) handling an assistance call.

used to distinguish an assistance alarm from a fall alarnS such, it will have to include either message queuing
(see Fig. 9). or some kind of arbitration to synchronize access to

the resource transparently to the components that may
S want to use it simultaneously. The interface of the last
(3a) Partitioning into Components resource component — the button — is very simple, as it

Let us now consider partitioning into Components ofonly needs one Output to deliver the button event and the
our device. Analyzing the specification and the systemtarget component can easily be set statically. These three
level model (Fig. 9) we can see that the application willcOmponents naturally form a platform with clearly defined
need the following independent resourcesaaceleration ~ functionality and interface between it and any possible
sensor amessage sendécontaining a radio transceiver), application.
and apush buttonTheir independence warrants creating It now remains to partition the rest of the system —
three separate components, each of them including bothe application — into components. Here two independent
hardware and software parts (Fig. 10). activities can be identifiedfall detectionand assistance
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call handling resulting in two separate components. At ot Fnvironment
the same time, it is appropriate to de-couple the fal| ;------ VT Applicaiiont
detection algorithm from how the system should react t| S — | |
a detected fall. For our application, this involves cregtin | | after E
a message and forwarding it to the message sender, whif | evaluatePosture !
can be done by a separate component — a fall alar E
sender. If assistance call detection in the application i{} | inpact |
similarly de-coupled from the reaction to it, we will have | ! |
two very similar components — fall alarm senderand | pelor® talarm 5
an assistance call sendeA possible implementation is | ! |
to create them as two instances of the same component| : Fal aarm e |
generablarm senderwith some parameter set to different | | Acceleration v :
values at initialization. Alternatively, they can be viaive | el Aam Aarm !
as two different components. z::i'p’lgerfod |
Timing requirements can be part of component spec| | T !
ification as time constraints on the reactions. In this| “~~~""1""" PSSy Vv S —— ﬁ;nldIe'E},'e;t"'

case, however, we skip this step and define the timin sampleAcc sendMsg
requirements directly at the object level. Ty A A !
! Acceleration Message Push !
: sensor sender button :
(3b) Search for Ready-Made Components | | [ ADconwoler ||| | sender conrater | |1
In our exampl ice i i ? y enqueue !
ple, the personal alarm device is develope : handleAdIR Q‘ ossage | !
from scratch and there are no components that can be r| : L M| oeiore et | |
used in the design. However, let us consider what compc| | |*7"" el E
nents could be used in the future in similar applications| ! convert maybeBeduee ;
The first candidate for future use is, of course, the| ! L p— Transceve i
platform, consisting of an acceleration sensor, a messay| | setTxBit |
sender, and a push button (all components combinin| | I_‘;M‘QE F?W Push button] |
hardware and software). This is most natural because | | jicolorometey jianccolvey A E
platform is always defined as a collection of hardware an(| | Resource E
software resources that can be used by a range of possik| W28 j

applications. At the same time, it is not inconceivable tha Y
such components as an acceleration sensor, a mess:
sender, or an alarm sender can be used separately in ott

f transmit buttonPressed

i . after t_ before t,
deSIQnS- - component [eventaname] b_ internal event
> *(asynchronous)
’ hardware
) . . [obj. name] | . . [event name] .
(3c) Hierarchical refinement of Component Structure object ety
In the case of the example system, there is no room fc : Sgg};ze [ame; 1 ;efore]tb asynohronous
. . . method name| -
hierarchical refinement of component structure due to th &+ message
, . .. levent name] | external event
system’s simplicity. > (asynchronous) [method name] . synchronous
*  message

levent name] . external event

* (synchronous)

(4) Realization Using Reactive Objects

The object-level model of the example system is prefigure 11. Object-level model for personal alarm deviceteNthe

sented in Fig. 11. The hardware parts have been identifietpsence of the output *read” evertadAcc which has been redefined
. . . as three internal events y, zreading different channels of an analog

and are shaded in the figure (their interfaces have be€ll .cierometer.
significantly simplified for presentation purposes).

It is clear that all resource components in our example
require a mixed hardware/software implementation. In théncoming messages before sending. In the push button, a
acceleration sensor, the A/D controller object is used tdutton controller functions as a simple interrupt handler.
abstract from the specific hardware interface of the A/'D Tne only purely software component that consists of
converter and to perform deserializatioin the message more than one reactive object is the fall detector. The
sender, several objects are used to implement the netwogtceleration sampler object triggers sampling by posting
protocol, and a transparent sharing of the message sendg{ asynchronous message to s@mpleAccmethod of
between multiple components is provided by queuinghe acceleration sensor component. Sampling at pre-

2 —— ; ; : determined intervals is achieved by the acceleration sam-
Deserialization is required since A/D conversion can orgyper-

formed on one channel at a time, but values from all three mtlarare ple postl_ng an as_ynchronous message to its own method
sent to the application for analysis. samplewith baseline delayed by,c,ioq: newBaseline =
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current Baseline + tperiod- possible in the simulation to choose any point within this
The acceleration analyzer and fall detector objectsvindow, which is correct in the sense that it corresponds
cooperate to detect a fall. The acceleration analyzeto the timing behavior as expressed in the model. A
posts an asynchronous message to the fall detector arvatural choice is to let each reaction to execute (with
detection of impact upon which the fall detector updatezero execution time) at its baseline; this approach was
its internal state and posts an asynchronous message ueed in our simulations. Note that verification of whether
its own methocevaluatePostureelayed byt;,,. Once the the worst-case execution times on a particular hardware
evaluatePosturenethod is invoked, the person’s postureplatform allow the system to always meet the required
is requested from the acceleration analyzer and if he cdeadlines is a separate issue and has not been part of the
she is lying down, the fall detector posts an asynchronouserification performed so far.
message to the fall alarm sender specifying,,.. as The verification of the software implementation demon-
deadline. strated the validity of both the algorithm and its imple-
Assistance alarms are handled in a similar way. Thenentation, as the falls of the subjects were accurately
application’s handleEventmethod is directly linked to detected in the simulation.
the sendAlarmmethod in the assistance alarm sender. A detailed account of implementation and verification
This method inherits the permissible execution windowof the system will be published elsewhere.
defined for thehandleButtonlRQmethod in the push

button component. VI. RELATED WORK
The modeling and implementation approach realized
(5) Implementation in Timber in the Timber language can be compared to other solu-

The software part of the system was implemented irfions such as real-time synchronous languages (Esterel,
the programming language Timber (see section V). ASCADE, Lustre, etc. [15]) and time-triggered languages
expected, the system structure presented in the modéfich as Giotto [16]. However, they are substantially
was complete and did not require any modifications; eacHifferent even if they can be seen as addressing the same
reactive object in the model was implemented as such if€sign problems. For example, in synchronous languages,
Timber. Thus parallelism between system reactions waSoncurrency in system behavior is eliminated in the course
expressed at the object level in the model and preser\,éaﬂmplementauon, leading to a further separation between
in the implementation. The implementation stage alsgpecification and model on one hand and implementation
involved writing Timber code for each method. All al- o the other hand. In Giotto, software is defined in
gorithms and functions were implemented; for exampleterms of periodically executed tasks, reading inputs and
a buffer holding sampled acceleration values was define$iting outputs at pre-determined times, which is not
as a state variable in one of the objects, and a function wad@rticularly suitable for many embedded systems that
defined for filtering accelerometer data to remove nois€Xhibit a clearly reactive behavior and is not applicable
in the SignaL to mOdeling hardware.

The hardware platform defined in the model has not Our design approach is also different from that devel-
been implemented as yet. However, the software cafP€d in the Ptolemy project [17]. The Ptolemy approach
be executed on any hardware platform that matches ti€ @ framework for assembly of concurrent components
presented model of the system, and we have verified thaarticularly suitable for modeling distributed systems.
there exist COTS hardware parts that correspond to eadrSSential to it is the notion of aactor, embodying the
reactive object in the model that should be implemente§Oncept of active objects (as opposed to reactive objects).

in hardware (acceleration sensor, radio transceivei, etc. |t ¢an also be argued that the Ptolemy approach does little
to bridge the gap between models and implementation,

o which is achieved in Timber by using executable models.
(6) Verification Component-based approach to design of (not neces-

The Timber implementation of the system softwaresarily embedded) real-time systems has been promoted
was verified, partly by typechecking performed by theby various extensions of real-time UML profile [18],
Timber compiler, and partly by simulation of the softwarewith a number of tools already on the market (the
in a Simulink-based Timber simulator. In the simulatedmost well-known probably are Rhapsody [19], ARTISAN
environment, the functionality and the timing specificatio Studio [20], and Rose-RT [21]). However, these solutions
(preserved in the Timber code of the implementation)do not feature a true integration of timing requirements
were tested by feeding the software simulation with realnto functional specification, and do not completely solve
sensor data of recorded falls of several human subjects #ise problem of modeling of mixed hardware/software
well as their normal daily activity [14]. systems.

When software is executed in a simulated environment Another design approach specifically targeting embed-
and not on a real hardware platform, no meaningfulded systems is platform-based design [22]. This approach
execution times are available. However, since the timingannot really be considered component-based, as it con-
specification is preserved in the implementation in formcentrates on the methodology for separate development of
of permissible execution windows for each reaction, it isa hardware platform, a system platform comprised by a
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hardware platform and hardware-software middleware (an The design approach presented in this article requires
API platform), and a software application that is devel-further development in the following directions: formal-
oped for a given system platform. This can be contraste@zation of component structure; creating design tools
with our approach where both a resource platform and aupporting the methodology; and investigating the role
software application can be composed of multiple com-of other requirements, such as power consumption, in the
ponents, and where a resource platform can be designelésign process. The power consumption issue is espe-
together with an application; even if a platform is given, acially challenging since it introduces new constraints and
model of the whole system is used to develop the softwareodeling parameters to deal with. However, with today’s
application. Our definition of a resource platform includesrapid increase of battery-powered embedded systems, this
not only hardware components, but also software ants a very important issue to address. A holistic view
mixed hardware/software components that can be utilizedf both timing and and power consumption will offer
as resources by a range of applications. new and interesting possibilities in the area of embedded
system design.
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allows us to specify, reason about, and verify real-time ~ Sign: The ARTIST Roadmap for Research and Develop-
properties of embedded systems. Moreover, our model- €Nt ser. Lecture Notes in Computer Science. — Berlin,

. Germany: Springer-Verlag, 2005.
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side a hardware platform (the latter being assembled from' * perspective,Real-Time System&004.
existing hardware parts) and in the case when such @0] P. Lindgren, J. Nordlander, L. Svensson, and J. Eriksso
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