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Abstract―This paper investigates the influence that a non-
uniform gravitational field has on the dynamics of a space 
robot.   This  is  accomplished by  obtaining the  differential 
equations  of  motion  of  the  space  robot  using  three 
gravitational field potential approximations: a uniform field 
approximation,  a  zeroth-order  Taylor series  expansion  of 
the  field  about  the  center  of  mass  of  each  body,  and  a 
second-order binomial series expansion of the gravitational 
field.   The three models are then simulated in a free-fall 
from identical initial conditions.  The results indicate that a 
zeroth-order  series  expansion  of  the  gravitational  field 
about the center of mass of each body provides a sufficiently 
high degree of  accuracy without resulting in a significant 
computational burden.

Index  Terms―space  robotics,  dynamical  modeling, 
simulation,  gravitational  field,  MacCullagh  formula, 
Lagrangian mechanics

I.  INTRODUCTION

Research into the dynamics of space robots has been 
predominately focused on robots that are not under the 
influence  of  a  gravitational  field  [1],  [2],  [3].   Such 
robots,  in  which  only kinetic  forces  are  present  in  the 
dynamics,  are  generally  assumed  to  be  in  an  orbit. 
However,  it  is  a  non-uniform gravitational  field  that  is 
responsible  for  the  ability  to  achieve  most  orbits. 
Separating  the  forces  of  gravity  from  the  dynamics 
removes the ability to study more complex phenomena 
such  as  the  orbit  degradation  caused  by  manipulator 
motion and optimal maneuvering [4].  

Preliminary work in this area investigated two methods 
for incorporating a gravitational field into the model for a 
space  robot  each  of  which  leads  to  motion  trajectories 
that are inconsistent with the trajectory obtained when the 
gravitational field is neglected [5].        

The  space  robot  that  is  considered  in  this  paper 
consists of a rigid satellite, or base, and a rigid two-link 
manipulator as depicted in Fig. 1.  In addition to being 
rigid, each body is assumed to have constant mass.  The 
coordinate frame S is fixed at the center of mass of the 
satellite.  Frame 1 is fixed in link 1 and rotates about an 
axis parallel to the z-axis.  Frame 2 is fixed in link 2 and 
also rotates about an axis parallel to the z-axis.   

Three  dynamical  models  for  this  space  robot  are 
developed.  One model is obtained under the assumption 
that  the  gravitational  field  is  uniform over  the  volume 
spanned by the space robot.  This assumption is typical of 
terrestrial  robotic  manipulator  analysis  in  which  the 
gravitational  force  is  often  the  major  force  in  the 
dynamics.   Another  model  is  obtained  using  a  zeroth-
order  Taylor  series  approximation  of  a  continuous 
gravitational field about the center of mass of each body. 
The  other  model  is  obtained  by  approximating  the 
gravitational  field  with  a  second-order  binomial  series 
expansion.  The differential equations of motion for each 
model are obtained using the Euler-Lagrange formulation 
of mechanics. 

The  resulting  equations  of  motion  are  extremely 
cumbersome and require the aid of symbolic computation 
software.  This is discussed.  Furthermore, simulations of 
the  three  models  are  carried  out  by  integrating  the 
differential  equations  of  motion  with  a  method  that 
circumvents the problem of symbolically inverting a high 
dimensional mass matrix.  

II. DYNAMICAL MODELING

The Euler-Lagrange formulation of mechanics requires 
a scaler quantity known as the Lagrangian (1), which is 
defined as the difference between the kinetic energy, K , 

Figure 1.  Space robot.

7.00 m

2.50

Link 1

S

Link 1

Link 2

Link 2

Spacecraft

Spacecraft

S

1

1

2

2

x

y

x

y

x

y

z

y

z

y

z

y

Top View

Side View

m

JOURNAL OF COMPUTERS, VOL. 4, NO. 12, DECEMBER 2009 1255

© 2009 ACADEMY PUBLISHER
doi:10.4304/jcp.4.12.1255-1262



and the potential energy, U .

L=K−U  (1)

The kinetic energy possessed by a body is a consequence 
of  its  motion.   The  potential  energy  is  typically  a 
consequence of a body's position.

A.  Kinetic Energy
The  kinetic  energy  of  any  multibody  system  is 

obtained  by  taking  the  superposition  of  the  kinetic 
energies of each of the bodies that comprise the system. 
Consider the ith body of a multibody system as depicted in 
Fig.  2.   The position of the kth mass particle,  mi , k ,  as 
measured in the inertial frame, I ,  is given by:

Ri , k=Rbi
 T bi

I r i , k
bi . (2)

Here,  T bi

I  is  a  orthogonal  transformation  which 
transforms vectors measured with respect to the ith body 
frame,  bi ,  into  vectors  measured  with  respect  to  the 
inertial frame. 

Since the body is assumed to be rigid, r i , k
bi  does not 

change with time.  Thus, the velocity of the kth particle in 
the ith body  is obtained as:

Ṙi , k= Ṙbi
 T bi

I  i
b i × r i , k

bi  , (3)

where i
bi  is the angular velocity vector about which the 

the  body rotates.   The  square  of  the  magnitude  of  the 
velocity is then obtained by computing the inner product 
of the velocity vector:

Ṙi , k
T Ṙi , k= Ṙbi

T Ṙbi
2 Ṙbi

T T bi

I  i
bi × r i , k

bi 

 i
bi × r i , k

bi T   i
bi × r i , k

bi 
. (4)

The  final  term  in  (4)  is  also  expressed  in  a  matrix 

quadratic form as:

 i
bi × rk i

bi T  i
bi × r k i

bi = i
Tbi J i , k i

bi , (5)

where J i , k  is expressed as:

J i , k=[ y i , k
2bi  z i , k

2b i − x i , k
bi yi , k

bi − xi , k
bi z i , k

bi

− x i , k
bi yi , k

bi x i , k
2bi  z i , k

2bi − y i , k
bi z i , k

b i

− xi , k
bi z i , k

bi − y i , k
bi z i , k

bi x i , k
2bi  yi , k

2bi ] . (6)

The kinetic energy of the kth particle in the ith body is then 
obtained from:

K i , k=
1
2

Ṙi , k
T Ṙi , k mi , k . (7)

Substituting  (4)  into  (7),  the  kinetic  energy  of  the  kth 

particle is expressed as:

K i , k=
1
2

Ṙb i

T Ṙb i
mi , k ˙Rbi

T T bi

I   i
bi × r i , k

bi mi , k 

1
2

i
Tbi J i , k mi , k i

bi

 . (8)

By summing together the kinetic energy of every particle 
that comprises the ith body, the kinetic energy of the ith 

body is obtained as:

K i=
1
2

Ṙbi

T Ṙbi
mi Ṙb i

T T bi

I   i
b i × i

1
2

i
Tbi J i i

bi

 . (9)

Here, mi  is defined as the mass of the ith body,  i  is a 
vector of first moments which is calculated by:

 i=∑
k

r i , k
bi mi , k  , (10)

and  J i  is  the  inertia  matrix  of  ith body  which  is 
calculated by:

J i=∑
k

J i , k mi , k  . (11)

If the ith body is continuous, then the summations in (10) 
and (11) simply converge into integrals.

The  kinetic  energy  of  the  entire  system  is  then 
obtained by summing together the kinetic energy of each 
body:

K=∑
i

K i  . (12)

B.  Potential Energy
The derivation of the potential energy of a  multibody 

system follows a similar formulation.  Assuming that the 
Earth is spherical and of uniform density as well as the 
sole source of a gravitational field centered at the origin 
of the inertial frame, then the potential energy of the kth 

particle in the ith body located in the field is obtained as:
Figure 2.  Vector definitions for the ith body.
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U i , k=
mi , k 
∣∣R i , k∣∣

, (13)

where    is  the  geocentric  gravitational  constant  [6]. 
The potential energy of the ith body is then:

U i=∑
k

mi , k 
∣∣R i , k∣∣

. (14)

For a continuous body, (14) converges into an integral:

U i=∫
i

 d v
∣∣R i∣∣

. (15)

This volume integration poses a significant challenge for 
bodies that are anything other than the simplest of shapes. 
It  is  thus  customary  to  utilize  mathematical 
approximations which simplify the integration.

In a uniform gravitational field, it is well known that 
the center  of  mass  of  a  body is  also the center  of  the 
gravitational force.  So, most terrestrial robotic systems 
are modeled by considering the gravitational force acting 
on a single particle whose mass is that of the total body 
[7].   If  the variation of  the gravitational  field  over  the 
body is small enough, the gravitational potential of the ith 

body may then be approximated by a zeroth-order Taylor 
series expansion of (15), about the ith center of mass:

U i≈
mi

∣∣Rcm i∣∣
. (16)

Before obtaining a higher order series approximation 
for the potential energy of the ith body, it is convenient to 
express the denominator of (13) in terms of the center of 
mass.  If a translated version of frame bi  is placed at the 
center  of  mass,  then  from  Fig.  2,  the  following 
relationship is noticed:

Ri , k=Rcm i
 T bi

I − r cmi

bi  r i , k
bi  . (17)

Letting

r i , k
c = T b i

I − rcm i

bi  r i , k
bi  , (18)

(17) may be expressed using the law of cosines as:

∣∣R i , k∣∣=∣∣Rcmi∣∣
2∣∣ r i , k

c ∣∣2−2∣∣Rcmi∣∣∣∣ r i , k
c ∣∣cos i , k , (19)

where  i , k  is the angle that is made between  Rcm i  and 
r i , k

c .  The denominator of (13) may then be expressed 
as:

∣∣R i , k∣∣
−1=∣∣Rcm i∣∣

−11∣∣ r i , k
c ∣∣2

∣∣Rcmi∣∣
2−2

∣∣ r i , k
c ∣∣
∣∣Rcm i∣∣

cosi , k−
1
2

. (20)

By expanding the bracketed term in (20) with a binomial 
series, (21) is obtained. 

∣∣R i , k∣∣
−1=∣∣Rcm i∣∣

−11−1
2 ∣∣ r i , k

c ∣∣2

∣∣Rcmi∣∣
2−2

∣∣ r i , k
c ∣∣
∣∣Rcmi∣∣

cos i , k
3

8 ∣∣ r i , k
c ∣∣2

∣∣Rcmi∣∣
2−2

∣∣ r i , k
c ∣∣
∣∣Rcmi∣∣

cos i , k
2

⋯
 (21)

If it is assumed that the size of the body is much smaller 
than  the  distance  from  the  center  of  gravitational 
attraction to the body, 

∣∣ r i , k
c ∣∣
∣∣Rcmi∣∣

≪1  , (22)

then (13) is suitably approximated as:

U i , k≈
mi , k

∣∣Rcm i∣∣ 1∣∣ r i , k
c ∣∣2

∣∣Rcmi∣∣
2

∣∣ r i , k
c ∣∣
∣∣Rcm i∣∣

cosi , k

−3
2
∣∣ r i , k

c ∣∣2

∣∣Rcmi∣∣
2 sin2i , k

. (23)

The potential energy of the ith body is then approximated 
by  summing  together  the  potential  energy  of  the  k 
particles that comprise the body.

U i≈


∣∣Rcm i∣∣
∑

k mi , k
1

∣∣Rcm i∣∣
2∣∣ r i , k

c ∣∣cos i , k mi , k

 1
∣∣Rcmi∣∣

2∣∣ r i , k
c ∣∣2mi , k −

3
2∣∣Rcm i∣∣

2∣∣ r i , k
c ∣∣2sin 2i , k mi , k

 (24)

After distributing the summation in (25) and simplifying, 
the second term vanishes and the gravitational potential 
of the ith body is conveniently expressed as:

U i≈


∣∣Rcmi∣∣mi
trace  J i

c 

2∣∣Rcm i∣∣
2

− 3
2∣∣Rcmi∣∣

4 Rcmi

T T bi

I J i
c T b i

TI Rcmi
. (25)

This expression is referred to as the MacCullagh formula 
[8], [9].  It should be noticed that the first term in (25) is 
the same as (16).  The two additional terms may then be 
thought  of  as  correctional  terms.   Also,  it  should  be 
noticed that the inertia matrices in (25) are measured with 
respect  to  the translated version of frame  bi  which is 
located at the center of mass of the ith body.  In general, 
these inertia  matrices  will  be different  from the inertia 
matrices  used  in  the  calculation  of  the  kinetic  energy 
unless the body frames are initially located at the center 
of mass such that the magnitude of the translation is zero. 

The potential energy of the entire space robot is then 
obtained from the superposition of the potential energy of 
each  body: 
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U=∑
i

U i . (26)

Equations  (16)  and  (25)  provide  different  potential 
energy   approximations  for  bodies  in  a  non-uniform 
gravitational field.  If a field is uniform over the volume 
of the robot, then an additional  step must be taken.  A 
point  must  be  selected  from which  the  strength  of  the 
field over the volume can be determined.  If that point is 
chosen  to  be  the  position  of  the  satellite,  then  the 
potential energy of the space robot is obtained as:

U≈∑
i

mi∣∣Rcmi∣∣
∣∣Rcm1∣∣

2 . (27)

C.  System Parameters
The location of the satellite body frame for the space 

robot depicted in Fig. 1 is given as:

Rbi
=[ x y z ]T . (28)

The transformation that  transforms vectors  measured 
with  respect  to  the  satellite's  body  frame  into  vectors 
measured with respect to the inertial frame is given by the 
Euler-angle rotation sequence parameterized in (29).

T b1

I =[ cc −c s s
sscc s −s s scc −s c

−c scs s c s ssc cc
]  (29)

Here,   denotes the angle of vector rotation about the x-
axis,    denotes the angle of vector rotation about the 
new  y-axis,  and    denotes  the  the  angle  of  vector 
rotation about the new z-axis.    

The transformation that  transforms vectors  measured 
with respect  to  the  first  link's  body frame into vectors 
measured with respect to the inertial frame is given as:

T b2

I = T b1

I [c1
−s1

0
s1

c1
0

0 0 1] , (30)

where  1  is  the  angular  position  of  the  first  link  as 
measured with respect to b1 .

The transformation that  transforms vectors  measured 
with respect to the second link's body frame into vectors 
measured with respect to the inertial frame is given by:

T b3

I = T b2

I [c2
−s2

0
s2

c2
0

0 0 1] , (31)

where  2  is the angular position of the second link as 
measured with respect to b2 .

The angular velocity of the satellite, as measured with 
respect to frame b1 , is given as:

1
b1 =[ s̇c c ̇

c ̇−s c ̇
s ̇̇ ] . (32)

The angular velocity of the first link, as measured with 
respect to frame b2 , is given by:

2
b2 =[̇ s 1

1
2
̇c1

1
2
̇c 1−

̇ c1−
1
2
̇ s1−

1
2
̇ s1−

̇ s̇1̇
] , (33)

and the angular velocity of the second link, as measured 
with respect to frame b3 , is given by:

3
b3 =[ 

1
2
̇c21−

1
2
̇ c21

̇ s 21 

−1
2
̇s 21−

1
2
̇ s21−

̇ c21
̇1̇s ̇̇2

] . (34)

The inertia matrix of the satellite is:

J 1= J 1
c =16 /3 I 3×3 . (35)

The inertia matrix of the first link and the second link, as 
measured in frames b1  and b2 , is: 

J 2=J 3=[7 /16 0 0
0 5/1024 −15/512
0 −15/512 445/1024] . (36)

The inertia matrix of the first link and the second link, as 
measured with respect to the center of mass of the first 
link and second link, is given by:

J 2
c = J 3

c =[145/1024 0 0
0 1 /512 0
0 0 145/1024]  (37)

The first mass moments are given by:

1=[0 0 0 ]T

2=3=[0 15/64 3 /128]T
, (38)

and the mass of each body is given as:

m1=8
m2=m3=3 /16 . (39)

Furthermore, the following vectors are also required:
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rb 2

b1 =[−.75 .75 1]T

r b3

b 2 =[0 2.5 0.25]T

rcm2

b2 =[0 1.25 0.125]T

rcm3

b3 =[0 1.25 0.125]T

. (40)

III. DIFFERENTIAL EQUATIONS OF MOTION 

The  differential  equations  of  motion  are  obtained 
through  the  use  of  the  Euler-Lagrange  formulation  of 
mechanics.   After  forming  the  Lagrangian  (1),  the 
equations  of  motion  are  obtained  by  applying  Euler's 
equation:

F= d
dt ∂ L

∂ q̇ −∂ L
∂ q . (41)

In  (41),  q  is  a  vector  of  the  system's  generalized 
coordinates and  F  is a vector of the input forces and 
torques in the direction of the generalized coordinates.  It 
is  guaranteed  that  the  system's  coordinates  will  be 
generalized if the number of coordinates specifying the 
position of the system is equal to the number of degrees 
of freedom of the system.  This is easily accomplished 
when  Rb1  is specified in Cartesian coordinates and the 
transformations, T i−1

i , are specified in Euler-angles.
The challenge in obtaining the differential equations of 

motion from (41) stems from the extremely large size of 
the resulting equations.  While the differentiations in (41) 
may be performed manually for simple systems, it is not 
practical  for  multibody  systems  in  three  dimensions. 
Symbolic manipulation programs, on the other hand, are 
well adapted to such as task.

For  nearly  all  systems,  the  differential  equations  of 
motion  that  are  obtained  from  (41)  will  take  on  the 
following form:

F=H q q̈D q , q̇ G q  . (42)

Here,  H q  is the system's mass matrix,  D q , q̇   is a 
vector  that  contains  the  Coriolis  and  centrifugal  forces 
and  torques,  and  G q   is  a  vector  that  contains  the 
gravitational  forces  and  torques.   The  symbolic 
expressions  for  these  terms  are  obtained  after 
reexamining the right hand side of (41).  Expanding the 
Lagrangian, (41) becomes:

F= d
dt ∂ K

∂ q̇ − d
dt  ∂U

∂ q̇ −∂K
∂ q

∂U
∂q . (43)

Since the potential energy is a function of position only, 
the second term vanishes.  Immediately, it is recognized 
that:

G q = ∂U
∂q . (44)

Thus,  the  matrix  containing  the  gravitational  forces  is 
obtained through a simple symbolic partial differentiation 
of the potential energy.  

It  is  known that  the time-derivative of a function of 
time-varying variables may be obtained through the use 
of  the  Jacobian  matrix  of  the  function.   Since  the 
Jacobian  operator  is  common  to  many symbolic  math 
programs,  the  major  hurdle  in  symbolically  computing 
(41) is rather easily overcome.  The first term on the right 
hand side of (43) is expressed, in terms of the Jacobian as 
as:

d
dt ∂K

∂ q̇ =Jacobian ∂ K
∂ q̇

,[qT q̇T ][q̇q̈] . (45)

The first term in this Jacobian operator notation indicates 
the  particular  function  that  is  to  be  operated  on.   The 
second  term  indicates  the  variables  through  which  the 
Jacobian is formed .  By partitioning the Jacobian matrix 
into the portion that is multiplied by q̈ , the mass matrix 
is symbolically obtained as:

H q=Jacobian ∂K
∂ q̇

, [ q̇T ] . (46)

The vector of Coriolis and centrifugal forces must then 
be comprised of the remaining terms in (43):

D q , q̇ =Jacobian ∂K
∂ q̇

,[qT ] q̇−∂ K
∂ q . (47)

By solving (42) for the accelerations, one obtains:

q̈=H q −1F−D q , q̇ −G q . (48)

The  symbolic  expression  for  the  accelerations  of  the 
generalized coordinates is possible with the substitution 
of (44), (46), and (47) into equation (48).  Unfortunately, 
this leads to an expression that is unmanageable due to its 
extreme size.  Eventually, (48) must be converted into a 
system of first-order differential equations if it  is to be 
integrated using a iterative scheme such as Runge-Kutta. 
The  conversion  is  accomplished  by  assigning  state 
variables.  By letting the new states be denoted by  i , 
the differential  equations  of  motion are  expressed  as  a 
first order system of equations through the following state 
variable assignments:  

̇1=2

̇2= q̈1

̇3=4

̇4= q̈2

⋮

. (49)

The  equations  of  motion  may then  be  solved  by  first 
expressing  (44),  (46),  and  (47)  in  terms  of  the  state 
variables.  Then, for each iteration of the integration, the 
numerical values of (44), (46), and (47) are obtained by 
substitution of the numerical states into the expressions. 
This may be accomplished by creating three functions or 
subroutines  that  are  separate  from  the  integration  but 
called  upon  during  each  iteration.   The  numerical 
solutions of (44), (46), and (47) are then substituted into 
(48) along with F .  The accelerations in terms of state 
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variables for that single iteration are then obtained.  By 
repeating this process for all iterations of the integration, 
the position and velocity evolutions are obtained.  

This approach is particularly attractive when the mass 
matrix  has  a  very  high  dimensionality,  making  the 
symbolic  computation  of  its  inverse  impractical.   In 
general,  the  mass  matrix  is  invertible  except  when the 
system is located near a singularity.  Care should always 
be  taken   in  this  portion of  the computation to  ensure 
sufficient accuracy.

IV.  SIMULATIONS AND ANALYSIS

      A forth-order fixed step size Runge-Kutta scheme is 
used to integrate the differential equations of motion of 
the three models.  By using a step size of 0.0001 s , the 
truncation error is proportional to  1×10−20  [10].  This 
has  been  indicated  by practice to  be  sufficient  for  this 
problem.  

In each simulation, the robot is allowed to drop from 
an altitude of 39810×103 m  for 20 s .  Other than the 
initial  z-coordinate  of  the  satellite  which  serves  as  the 
initial altitude, all other initial conditions are zeroed.

The  time  evolution  of  the  space  robot's  generalized 
coordinates,  when  modeled  in  a  uniform  gravitational 
field, is presented in Fig. 3.  It  is seen that fairly large 
motion is induced by the gravitational field.  Particularly 

interesting  is  the  hint  of  chaotic  motion  of  the 
manipulator  which  should  be  expected  from  a  multi-
pendulum type system in a uniform gravitational field. 

The  time  evolution  of  the  space  robot's  generalized 
coordinates  when  modeled  with  the  two  non-uniform 
gravitational field approximations is presented in Fig. 4. 
Interestingly, there appears to be no-significant difference 
between  the  trajectories  predicted  by the  two different 
models.   Additionally,  both  trajectories  are  extremely 
different  from the trajectories  obtained from the model 
that  assumes  a  uniform  gravitational  field.   The  large 
angle  rotations  and  significant  translations  that  are 
depicted in Fig.  3 are not  present  in the trajectories  of 
Fig. 4.   

The  MacCullagh  formula,  (25),  adds  two  additional 
higher  order  terms  to  the  zeroth-order  Taylor  series 
approximation  of  (16)  for  each  body.   As  mentioned, 
these  may  be  viewed  as  correctional  terms.   Any 
discrepancies between the time evolutions of the system 
coordinates of the two models must be attributed to those 
terms.  Naturally, the quantitative effects of the terms are 
of interest.  The forces and torques due to the potential 
energy are  found  by evaluating the  equations  obtained 
from (44) with the data obtained from the simulations. 
The forces and torques that result from the correctional 
terms are  obtained  by subtracting away the  forces  and 

Figure 3.  Time evolution of system coordinates when using a uniform gravitational field approximation.
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torques that result from the zeroth-order term.  The solid 
lines  in  Fig.  5  display the  evolution of  the  forces  and 
torques that are due to the zeroth-order term.  They are 
measured on the left hand axes.  The dashed lines in Fig. 
5  display  the  evolution  of  the  forces  and  torques  that 
result  from  the  correctional  terms  of  the  MacCullagh 
formula.  These are measured on the right hand axes.  The 
correctional  forces  and  torques  are  denoted  with  the 
subscript, c .

Despite  the  poor  resolution,  one  important  piece  of 
information is gained from Fig. 5.  The forces and torques 
caused  by  the  correctional  terms  in  the  MacCullagh 
formula  contribute  very  little  to  the  dynamics.   The 
zeroth-order  term,  in  contrast,  influences  the  dynamics 
significantly.   Nearly  a  dozen  orders  of  magnitude 
constitute the difference.   

V.  CONCLUSION

This  paper  explores  the  effects  of  a  non-uniform 
gravitational  field  on  the  dynamics  of  a  space  robot. 
First,  the  kinetic  energy  of  a  two  link  space  robot  is 
developed.  Three gravitational potential approximations 
are then made.  Methods for symbolically obtaining and 
numerically  integrating  the  differential  equations  of 
motion is discussed.  Then the differential equations of 
motion are simulated.  It  is shown that a uniform field 

approximation  predicts  a  different  trajectory  than  the 
more mathematically accurate zeroth-order Taylor series 
and  MacCullagh  formula  approximations  of  the 
continuous gravitational potential.  

The  correctional  terms  of  the  MacCullagh  formula 
contribute  very  little  to  the  dynamics  at  the  simulated 
altitude.   They do,  however,  contribute  significantly to 
the  complexity  of  the  differential  equations  of  motion. 
This complexity increases the time required to perform 
simulations and hinders the usefulness of the model for 
analytical analysis and control system design.  

At  sufficiently  high  altitudes,  or  consequently  for  a 
sufficiently  small  body,  the  zeroth-order  Taylor  series 
expansion of a non-uniform gravitational potential about 
the center of  mass of each body provides  a simple yet 
very accurate method for including the effects of gravity 
into the dynamical equations of motion for a space robot. 
At  lower  altitudes,  or  for  larger  bodies,  the  additional 
accuracy of the MacCullagh formula should prove more 
useful.    
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Figure 5.  Forces and torques caused by zeroth-order term (left) and correction terms (right).
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