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Abstract—A modified particle swarm optimization 
algorithm is proposed in this paper. In the presented 
algorithm, every particle chooses its inertial factor 
according to the approaching degree between the fitness of 
itself and the optimal particle. Simultaneously, a random 
number is introduced into the algorithm in order to jump 
out from local optimum and a minimum factor is used to 
avoid premature convergence. Five well-known functions 
are chosen to test the performance of the suggested 
algorithm and the influence of the parameter on 
performance. Simulation results show that the modified 
algorithm has advantage of global convergence property 
and can effectively alleviate the problem of premature 
convergence. At the same time, the experimental results also 
show that the suggested algorithm is greatly superior to 
PSO and APSO in terms of robustness.  
 
Index Terms—particle swarm optimization, modified 
particle swarm optimization, function optimizing 
 

I.  INTRODUCTION 

Particle swarm optimization (PSO) algorithm [1], 
which is proposed by James Kennedy and Russell 
Eberhart in 1995, comes from the research on the 
predatory behaviour of birds and is a branch of swarm 
intelligence. PSO is a kind of algorithm whose optimal 
solutions are searched by collaborating between every 
individual and has been applied in many fields [2], such 
as function optimizing and ANN training, because of its 
simple concept and high efficiency. 

As the other global algorithms, PSO takes the risk of 
including premature convergence and vibration in the late 
iteration. To promote the performance of the PSO 
algorithm, some improved PSO algorithms are proposed 
[3-6]. Shi Y and Eberhart R C suggested controlling the 
influence of the former velocity on current velocity by 
using inertial factor [3] . First of all, a bigger inertial 
factor is used to confirm the approximate position of the 
optimal solution rapidly. Then, a smaller inertial factor is 
used to perform refined local search. Because of the 
shortcoming of the modified algorithm in the search in 
complicated problems, Shi Y and Eberhart R C suggested 
changing dynamically the inertial factor by Fuzzy 
Controller [4]. But the fuzzy adaptive particle swarm 
optimization is difficult to implement because of some 

requirements of the pre-know about some characteristics 
of the problem. A new adaptive particle swarm 
optimization algorithm is developed in our study [7]. In 
the algorithm, every particle chooses its inertial factor 
according to the fitness of itself and the optimal particle. 

In this paper, along with the idea that a particle chooses 
its inertial factor according to the approaching degree 
between the fitness of itself and the optimal particle, a 
modified particle swarm optimization algorithm is 
suggested. In the proposed algorithm, a random number is 
introduced into the algorithm in order to jump out from 
local optimum and a minimum factor is used to avoid 
premature convergence. Lots of experiments show that 
the proposed algorithm is more effective than PSO and 
APSO. 

The rest of the paper is organized as follows. Section 2 
introduces the general description of PSO algorithm. 
Section 3 presents the modified PSO algorithm. Section 4 
discusses the experimental results. And section 5 
concludes. 

II. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

In the particle swarm optimization (PSO) algorithm, 
every solution of the optimization problem is regarded as 
a bird in the search space, which is called particle. Every 
particle has a velocity by which the direction and distance 
of the flying of the particle are determined, and a fitness 
that is decided by the optimized function. The particles 
search in the solution space by pursuing the optimal 
particle currently. 

In the process of PSO optimization, a group of random 
particles (random solutions) are given by initializing, and 
then the optimal solution is obtained by iterative process. 
In each iteration, a particle updates itself by tracking two 
extreme values, which are personal best solution (p) and 
global best solution (g). The personal best solution (p) is 
the optimal solution that was found by the particle itself, 
and the global best solution (g) is the optimal solution that 
was found by the population. After the two extreme 
values are discovered, every particle updates its velocity 
and position based on 
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where vk and xk are velocity vector and position of the 
particle currently, pk and gk denote the position of the 
optimal solutions that was found by a particle itself and 
the whole particle swarm, w is a nonnegative inertial 
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factor, c1 and c2 are learning parameters, r1 and r2 are 
random number from 0 to 1. The velocity of the particle is 
often limited on each dimension generally. When the 
updated velocity exceeds the max value vmax that is pre-set, 
it should be changed to vmax. 

III. A MODIFIED PARTICLE SWARM OPTIMIZATION 
ALGORITHM 

A. The adjustment of the inertial factor 
In this paper, a modified approach to adjusting the 

inertial factor adaptively is proposed based on lots of 
experiments. 

First, every particle chooses its inertial factor 
according to the approaching degree between the fitness 
of itself and the optimal particle. A particle with better 
fitness chooses a smaller inertial factor and a particle 
with worse fitness chooses a bigger inertial factor. Taking 
the strategy, the proposed algorithm will search in large 
range in the early iterations so that the approximate 
location of the optimal solution is confirmed rapidly and 
search in small range in the late iterations in order that 
the exact solution is found. 

Secondly, a random number is introduced into the 
algorithm in order to jump out from local optimum. 

Finally, a minimum factor is used to avoid premature 
convergence. 

Facing on a minimization problem, the inertial factors 
of the particles are updated according to Eq.(3) and 
Eq.(4). 
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where f is the fitness of the current particle, fmin is the 
fitness of the optimal particle currently; k is a parameter 
by which the average inertial factor of all particles is 
controlled. ε is a random number from 0 to 1. wp is the 
minimum of the factors that is pre-set so that the risk of 
the premature convergence is reduced. 

 

B. The procedures of the modified algorithm 
The optimization procedures of the modified PSO 

(MPSO) are given as follows. 
(1) Generate randomly the initial position and velocity 

of the particles.  
(2)  Calculate the fitness of each particle. 
(3) Calculate personal best solution (p) and global best 

solution (g), then search a better position by iteration 
based on formulas Eq.(1) and Eq. (2), where the  w will 
be gained based on Eq. (3) and Eq.(4). 

(4) Repeat from (2) to (3) until the halt criteria are met. 
The pseudocode for  MPSO algorithm is as follows. 
begin 
    initialize the population 
   while (termination condition = false) 
       do 
          for ( i = 1 to number of particles) 

             evaluate the fitness : = f(x) 
             update p and g 
          increase i 
          for ( i = 1 to number of particles) 
             calculate the new inertial factor : = wp 
             if wp>w0 
                 w = wp 
             else 
                 w = w0 
             end if 
             calculate vk+1 and xk+1 
           increase i 
        end do 
  end 

IV. SIMULATION STUDY 

A. Benchmarks 
Five well-known benchmarks were used to evaluate 

the performance, which were commonly used in 
evolutionary optimization methods and widely used in 
evaluating performance of PSO methods. All benchmarks 
used are listed as follows.  
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f4: Griewank function 
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f5: Schaffer's f6 function 

[ ]22
2

2
1

2
2

2
1

2

5
1)(*001.0

5.0sin
5.0)(

++

++
−=

xx

xx
xf                     (9) 

Simulations were carried out to find the global 
minimum of the every function. The performance of the 
MPSO method is compared with the standard PSO 
method and adaptive particle swarm optimization (APSO). 

B. Performance criteria 
The optimization performance is evaluated using 

following statistics, namely, Average best fitness (ABF), 
Standard deviation (SD), Mean Iteration (MI), Min 
Iteration (MINI), Fail Number (FN). All statistics are 
calculated according to Eq.(10) ~ Eq.(14). 
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Where n is the number of the trials, fi is the best fitness of 
the ith trial, Ii is the iteration that the algorithm meets the 
convergence criteria that are pre-set. Fi = 0 or 1. If an 
algorithm cannot meet the pre-set convergence criteria 
after the maximum iteration, we think that the algorithm 
is fail and Fi is set to 1 and Ii is set to 1.2 times of the 
max iteration, else Fi is set to 0. 
    ABF and MI are the measure of the mean performance, 
and SD and FN are the indexes that measure the 
robustness. The smaller ABF and MI mean an algorithm 
is more effective. The smaller SD and FN denote that an 
algorithm is more robust. MINI is a reference value who 
expresses the minimal iteration when a trial converges 
more rapidly than all other trials. 

C. Parameters selection 
Table I shows the parameters of the test functions 

including the range of the search and the maximum 
velocity. 

TABLE I.  PARAMETERS FOR TEST FUNCTIONS 

Function Search Range Vmax 

Sphere function (f1) (-100,100)n 20 

Rosenbrock function (f2) (-100,100)n 20 

Rastrigin function (f3) (-10,10)n 2 

Griewank function (f4) (-600,600)n 120 

Schaffer's f6 function (f5) (-100,100)n 20 

The five benchmarks were tested with the dimensions 
2, 4 and 6 (only 2-dimension is tested for f5). In this paper, 
the population size is set to 30, and the parameters c1, c2 
are set to c1=c2=1.  

In the standard PSO, the inertia weight is set to 0.9. In 
the APSO, the inertia weight is scaled linearly from 0.9 
to 0.4. 

D. Performance analysis 
In the study, the optimum solutions after a predefined 

number of iterations are investigated. For each function, 
20 trials were carried out and the average best fitness and 
the standard deviation are calculated. 

In the MPSO, the parameter k is set to 1. 
Given dimension (D.) and maximum generation (Gen.), 

the average best fitness and standard deviations are 
summarized in Table II. 

In the Table II, we can find that  
1) In all 13 cases, there are 10 times that MPSO has 

gained smaller ABF than APSO and 8 times that MPSO 
has smaller ABF than PSO. A smaller ABF indicates that 
the algorithm is more effective, so we can conclude that 
the MPSO is superior to APSO and PSO. 

2) For all cases, there are 6 times that MPSO has got 
smaller SD than APSO and 7 times that MPSO has 
obtained smaller SD than PSO. At the same time, MPSO 
performs as well as APSO and PSO for function f5  if the 
SD is considered as measurement. A smaller SD means 
an algorithm is more robust. So we can conclude that 
MPSO is slightly robust than PSO and as robust as APSO. 

Fig.1~Fig.5 show the average fitness value (AFV) 
through 20 times experiments for all functions with 2 
dimensions. 

In the Fig.1, Fig.2, Fig.4 and Fig.5, the MPSO 
converges more rapidly than the standard PSO and APSO. 
Only in the Fig.3, MPSO converges slower than PSO and 
more rapid than APSO. They denote that MPSO can 
converge faster than PSO and APSO in summary. 

TABLE II.  COMPARISONS OF THE PERFORMANCES 

Fun. D. Gen. 
Average best fitness Standard deviation 

MPSO APSO PSO MPSO APSO PSO 

f1 

2 100 0 1.5494e-17 0.0001 0 4.0153e-17 0.0001 

4 100 3.6351e-28 3.5668e-14 0.0029 4.1231e-28 5.7899e-14 0.0049 

6 100 0.066 0 0.0642 0.2372 0.0001 0.0937 

f2 

2 300 0.0023 0.0586 1.6215 0.0033 0.2622 7.19 

4 500 0.8076 83.3847 2.692 1.0346 165.4622 7.8158 

6 700 3.2141 67.0027 13.0588 2.1679 115.4572 51.9703 

f3 

2 100 0.0995 0.199 0.0531 0.445 0.4083 0.2221 

4 100 3.7413 4.1076 3.3414 4.074 3.1906 2.2722 

6 300 8.7747 11.0541 10.2571 5.0983 8.6217 5.4694 

f4 

2 100 0.0015 0.0045 0.0098 0.0066 0.004 0.007 

4 200 0.0775 0.1191 0.0926 0.1257 0.0606 0.0654 

6 300 0.437 0.2277 0.202 0.3332 0.1235 0.1357 

f5 2 100 0.0025 0.0025 0.0025 0 0 0 
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Figure 1.  Average fitness values for f1 (n=2). 

 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 2.  Average fitness values for f2 (n=2)   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Average fitness values for f3 (n=2) 

 

 

 

 

 

 

Figure 4.  Average fitness values for f4 (n=2) 

 
 

 
 
 
 
 
 
 
 
 

 

Figure 5.  Average fitness values for f5 (n=2) 

Given dimension (D.), maximum generation (Gen.) 
and error criteria (Err.), The MI, MINI and FN of 20 
trials are calculated out. When setting error criteria, a 
more complex function will have bigger error value.  

The MI, MINI and FN are listed in Table III. In the 
Table III, we can find that 

1) In all 13 cases, there are 12 times that MPSO has 
gained smaller MI than APSO and 13 times that MPSO 
has smaller MI than PSO. A smaller MI indicates that the 
algorithm can converge more rapidly, so we can conclude 
that the MPSO is superior to APSO and PSO. 

2) For all cases, there are 11 times that MPSO has not 
got bigger FN than APSO and 12 times that MPSO has  
not expressed worse than PSO when the FN is considered 
as measurement. A smaller FN means an algorithm is 
more robust. So we can conclude that MPSO is more 
robust than PSO and APSO. 

E. The influence of the parameter k on performance 
In the proposed algorithm, parameter k could have 

some influence on performance. In this paper, the 
performance of the suggested method is checked with 
different k. For all test functions, the changes of the 
average best fitness are illustrated in Fig.6~Fig.10 (only 
2-dimension functions are illustrated). 

As shown in the Fig.6~Fig.10, the algorithm 
performance is rather stable when the parameter k is not 
bigger than 1 (i.e. e0). We can also find that the 
performance is often different when the k is bigger than 
e2. It means that the proposed algorithm is rather robust 
when the parameter k is controlled to not bigger than 1. 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 6.  The influence of the parameter k on performance for f1 (n=2) 
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TABLE III.  COMPARISONS OF THE PERFORMANCES 

Fun. D. Gen. Err. 
Mean Iteration Min Iteration Fail Number 

MPSO APSO PSO MPSO APSO PSO MPSO APSO PSO 

f1 

2 100 0.0001 19.1 40.05 74.1 8 7 7 0 0 4 

4 100 0.0001 29.95 55.05 108.95 16 49 89 0 0 19 

6 100 0.0001 41.8 70.65 110 18 59 110 2 1 20 

f2 

2 300 0.01 116.8 99.05 163.35 32 42 40 0 1 4 

4 500 5 34.5 283.9 187.6 12 23 32 0 8 3 

6 700 10 33.45 357.95 256.85 18 41 65 0 8 1 

f3 

2 100 0.01 31.35 49.4 52.7 9 19 8 1 4 2 

4 100 10 17.25 18.95 22.35 5 8 7 1 1 0 

6 100 20 11.2 29.25 34.2 8 11 7 0 2 2 

f4 

2 100 0.01 38.6 55.6 84.45 9 8 25 1 0 10 

4 200 0.5 14.75 24 28.4 9 10 6 0 0 0 

6 300 2 9.25 10.3 10 5 8 7 0 0 0 

f5 2 100 0.005 13.85 17.1 17.95 5 5 5 0 0 0 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  The influence of the parameter k on performance for f2 (n=2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  The influence of the parameter k on performance for f4 (n=2) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  The influence of the parameter k on performance for f3 (n=2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.  The influence of the parameter k on performance for f5 (n=2) 
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V. CONCLUSION 
In this paper, a modified particle swarm optimization 

algorithm is proposed. In the presented algorithm, every 
particle chooses its inertial factor according to the 
approaching degree between the fitness of itself and the 
optimal particle. Simultaneously, a random number is 
introduced into the algorithm in order to jump out from 
local optimum and a minimum factor is used to avoid 
premature convergence. Five well-known functions are 
chosen to test the performance of the suggested algorithm 
and the influence of the parameter on performance. The 
simulation results show that the MPSO algorithm is 
superior to the standard PSO and APSO. 
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