
Detection and Classification of Non-self Based
on System Call Related to Security

Jimin Li 1,2 and Zhen Li 2

1 College of Computer Science and Technology,Tianjin University, Tianjin, China
2College of Mathematics and Computer, Hebei University, Baoding, China

ljm@hbu.edu.cn, lizhen_hbu@126.com

Kunlun Li
College of Electronic and Information Engineering, Hebei University, Baoding, China

likunlun@hbu.edu.cn

Abstract—Based on the immune mechanism, we present a
computer system security model used to detect and classify
non-self, which overcomes some drawbacks of traditional
computer immune system based on system call: the large
number of system calls intercepted, the loss of useful
information owing to paying no attention to the arguments
of system calls, distinction between self and non-self just by
rule matching, etc. We introduce the process of non-self
detection and classification based on rule and Sandbox
further distinguishing the process of unknown type, based
on the definition of system call related to security and event
related to security. We resolve the problem of traditional
sandbox system: the unreliability and insecurity of process
and the display of process behavior incompletely caused by
denying the execution of a system call. Experimental results
verify the effectiveness of distinguishing non-self and its
class based on system call related to security, and show that
our model can detect non-self in Sandbox which is unknown
type by rule matching without imposing heavy performance
impact upon operating system.

Index Terms—system call, computer immune, detection of
non-self, classification, sandbox

I. INTRODUCTION

As an important method to insure computer security,
intrusion detection technique has become the current
focus of research in the field of information security. The
theory that the immune system can protect body from
invasion provides a new thinking to the design of
intrusion detection system.

Based on the immune mechanism, there are many
studies about intrusion detection using system call
describing process behavior [1,2,3]. However, traditional
methods have some drawbacks.

 First, because there are a large number of system calls
produced by the running program, intercepting and
storing all system calls must cause low efficiency.
However, not all system calls are related to system
security, so it is unnecessary to record all system calls.

Second, if we just focus on system calls and don’t
record the arguments of them, some useful information
will be lost. This method is not enough to discriminate

self and non-self and classify non-self. However, if the
arguments of system calls are recorded, they will occupy
a huge storage space and the subsequent analysis of
system call sequences will cause low efficiency.

Third, the distinction between self and non-self by rule
matching is inadequate. The process, which is unknown
type by rule matching, needs to be intensively
distinguished.

In order to solve the above problems, we propose a
computer system security model based on system call
related to security, which compensates the above
drawbacks of traditional computer immune system based
on system call. This model is structured by agents
imitating the immune cells. Through cooperation the
agents discriminate self and non-self and classify
non-self.

First, non-self is detected and classified based on
system call related to security in Imitated MC Agent and
Imitated TH Agent, which reduces the number of system
call recorded and improves efficiency.

Second, Sandbox is used to further distinguish process
which is unknown type by rule matching. In Sandbox, we
define different event related to security according to
different arguments of each system call related to security.
Non-self detection is realized by access control based on
event related to security.

Third, we introduce Virtualization Sandbox which
resolves the problem of traditional sandbox system: the
unreliability and insecurity of process and the display of
process behavior incompletely caused by denying the
execution of a system call.

Ⅱ. RELATED WORK

A. Immune Intrusion Detection Based on System Call
The research group of Stephanie Forrest in the

University of New Mexico plays a leading role in the
computer immune model and computer immune system
application. They introduce a method for intrusion
detection by monitoring system calls of privileged
processes and designing intrusion detection system based
on short sequences of system calls. They focus on
sequence of system calls and ignore the arguments of

JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009 1117

© 2009 ACADEMY PUBLISHER

them [1]. The group of Wenke Lee in Columbia
University extends the work pioneered by Forrest and
applies a machine learning approach to learn normal and
abnormal patterns of program behavior from its execution
trace [4]. Some researchers present a novel technique to
build a table of variable-length patterns or a dynamic
window size model which has better detection effect [2].
Some other researchers propose intrusion detection based
on system calls and homogeneous Markov chains [3],
hidden Markov model for system call anomaly detection
[5], motif extraction for system call sequence
classification [6], etc.

B. Sandbox
Sandboxing is a technique for creating confined

execution environments to protect sensitive resources
from illegal access. A sandbox, as a container, limits or
reduces the level of access its applications have. The
concept of sandboxing is first introduced by Wahbe et al.
in the context of software fault isolation [7]. Janus [8], to
our knowledge, is the first to propose using these
techniques. Systrace [9] expands on Janus by proposing
novel techniques that efficiently confine multiple
applications and support multiple policies.

Sandboxing can be used to improve security of file
access [10], analyze malicious codes [11], make sure the
data written with no sensitive information [12], etc. Many
studies have improved the traditional sandbox toward
dissimilar emphases: sandbox executing speculative
security checks [13], sandbox with a dynamic policy
[14], dynamic sandbox quarantining untrusted entities
[15], etc.

Many sandbox systems are based on system call
interception. System call interception-based sandbox
systems restrict a process behavior by preventing the
execution of any system call that would violate a
predetermined security policy. They usually use binary
permission that may be assigned one of two possible
values: allow or deny. Denying the execution of a system
call can have a detrimental impact on the operation of the
process, potentially undermining its reliability and even
its security [16], and have inconvenient trace record of
intrusion because the process behavior cannot be
displayed completely. Our computer system security
model can resolve these problems.

Ⅲ. THE STRUCTURE OF COMPUTER SYSTEM SECURITY
MODEL

The structure of computer system security model based
on system call related to security is shown in Fig. 1.
Imitate MC Agent discriminates self and non-self and
realizes the function of immune detection. Imitate TH
Agent classifies non-self that has been detected by
imitate MC Agent. The process, which is unknown type,
is migrated to Sandbox by Imitate TC Agent. Sandbox is
used to intensively distinguish the process, which is
unknown type passed by Imitate MC Agent and Imitate
TH Agent, and create and update Self Rule Base and all
kinds of Non-self Rule Bases.

We mainly discuss Imitate MC Agent, Imitate TH
Agent and Sandbox, which are closely related to non-self
detection and classification. The structure of Imitate MC
Agent is shown in Fig. 2. Collector records system calls
related to security produced by process and forms the
queue related to security. Detector detects short
sequences of system calls by Self Rule Base, and sends
non-self short sequences of system calls to Imitate TH
Agent. Self Rule Base is created and updated by
Sandbox.

The structure of Imitate TH Agent is shown in Fig. 3.
Imitate TH Agent receives non-self short sequences of
system calls related to security from Imitate MC Agent,
classifies non-self, and sends non-self which is unknown
type to Imitate TC Agent. All kinds of Non-self Rule
Bases are created and updated by Sandbox.

Ⅳ. RELATED DEFINITIONS

There are a large number of system calls produced by
the running program. Intercepting and storing all system
calls must cause low efficiency. Considering that not all
system calls are related to system security, we just focus
on system calls related to security. This can not only

Figure 1. The structure of computer system security model

Figure 2. The structure of Imitated MC Agent

1118 JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

detect non-self successfully, but also improve efficiency.

A. System Call Related to Security
System call related to security refers to the system call

that is relevant to security in the system. Take open
system call for example, its prototype is as follows:

int open(const char *pathname, int flag, mode_t
mode);

The pathname argument points to the path of the file to
open. The flag argument must have a set bit
corresponding to exactly one of O_RDONLY (open file
read only), O_WRONLY (open file write only) and
O_RDWR (open file for read/write), and zero or more of
O_APPEND (set the file offset to EOF for appending),
O_CREAT (create the file if necessary, use the mode
argument), etc. The mode argument is used to set the
file’s access mode at creation time.

Another example is chmod system call. The prototype
is:

int chmod(const char *pathname, mode_t mode);
It changes the mode of the file specified by pathname

to mode. The arguments are the same meaning as they are
used in the open system call.

From the arguments and realized functions of open and
chmod system call, we can see that their access modes
and access permissions are closely related to system
security. Therefore, these system calls are defined as
system calls related to security.

B. Event Related to Security
If we just focus on system calls and don’t record the

arguments of them, some useful information will be lost,
which causes inaccurate detection of non-self. In view of
this, we introduce the definition of event related to
security.

We define different events related to security according
to different arguments of each system call related to
security. For example, for open system call related to
security, we define some events related to security:
OPEN_RD, OPEN_WR, OPEN_RW, OPEN_CREATE,
and so on.

In Linux, the introduction of system call related to
security and event related to security not only reduces the
number of system calls recorded, but also takes
arguments of system calls into account. Therefore,

non-self can be detected with high efficiency and
accuracy.

C. Queue Related to Security
Queue related to security is a queue which element is a

system call related to security.
We slide a window of size W across the sequence of

system calls related to security. In the real-time detection,
we use a circle queue with size W to realize the queue
related to security in order to make full use of space.

Queue related to security is an empty queue initially.
In the process of interception, system calls related to
security enter the queue related to security. When the
number of system calls related to security in the queue
reaches the specified window size W, that is, when the
queue is full, a short sequence of system calls related to
security is formed. At this time, the sleeping process is
awakened and detected. Then, the front of queue related
to security is out of the queue and the next system call
related to security enters the queue. Thus, a new short
sequence of system calls related to security is formed,
which awakens the sleeping process again. The cycle
continues until all the system calls related to security
have been intercepted.

D. Correlation Degree and Correlation Coefficient
The correlation degree R（i, Nonselfj）of short sequence

of system calls i and the jth non-self class Nonselfj is
defined as follows:

⎪
⎩

⎪
⎨

⎧
=

 lse 0,
 Base Rule self

-Nonin rule a matches call
 system of sequenceshort he 1,

)Nonself,(
e

j
i

t
iR j （1）

N denotes the number of short sequences of system
calls of non-self program Nonself_test deleting the short
sequences of system calls that Self Sequence Base has.

The correlation coefficient r (Nonself_test, Nonselfj)
of non-self program Nonself_test and the jth non-self
class Nonselfj is defined as follows (0 ≤ r ≤ 1):

N

)Nonself,(
)Nonself,stNonself_te(

N

1
∑
== i

j

j

iR
r （2）

Ⅴ. DETECTION AND CLASSIFICATION OF NON-SELF
BASED ON RULE

In Imitate MC Agent, Detector decides whether the
short sequence of system calls related to security is self
or not by Self Rule Base. If the short sequence of system
calls related to security is non-self, it is sent to Imitate TH
Agent.

The intrusion behavior happens suddenly, so the
non-self short sequence of system calls related to security
shows aggregation. In real-time detection, every N short
sequences of system calls related to security as an area
are a group according to the sequence of interception. If
the proportion of non-self short sequences of system calls
related to security in an area is more than threshold r, the
process is reported as non-self process. If the proportion

Figure 3. The Structure of Imitated TH Agent

JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009 1119

© 2009 ACADEMY PUBLISHER

of non-self short sequences of system calls related to
security in any area isn’t more than threshold r, the
process is reported as self process.

In Imitate TH Agent, for an area of N short
sequences of system calls related to security, if the
correlation coefficient of non-self process and a certain
non-self class is more than the threshold s, the process
is reported as this non-self class. Otherwise, the
process is reported as unknown non-self class and is
sent to Sandbox by Imitate TC Agent.

Ⅵ. SANDBOX

After the process passes by Imitate MC Agent and
Imitate TH Agent, the process reported as unknown
non-self class mainly includes two classes: self process
that is undetected by Imitate MC Agent and non-self
process of unknown class that isn’t distinguished by
Imitate TH Agent. Therefore, it is necessary to
distinguish intensively non-self from self.

Sandbox distinguishes process, which is unknown
type after passing by Imitate MC Agent and Imitate TH
Agent, creates and updates Self Rule Base and all
kinds of Non-self Rule Bases in Imitate MC Agent and
Imitate TH Agent. The architecture of Sandbox is
shown in Fig. 4. The procedure of non-self detection is as
follows:

(1) The process is migrated to sandbox by Imitate TC
Agent. The Collector intercepts system calls related to
security.

(2) In System Call Processing Module, System Call
Related to Security Gateway requests a policy decision
from Security Policy Cache in kernel for each system call
related to security.

(3) If there is no permission information of the object
in Security Policy Cache, Security Policy Cache consults
Security Policy Database in userland.

(4) System Call Processing Module receives the result
from Security Policy Cache. If the result is allow, resume
the execution of system call. Otherwise, enter
Virtualization Sandbox to access the copy of object
without sensitive information.

(5) Finally, the system call result returns to Collector
and the process resumes.

A. Security Policy Database
Security Policy Database provides security policy for

Sandbox. Security Policy Database defined by BNF is as
follows:
<request>::=<access_modes><objects><bina_perm>
<access_modes>::= {<access_mode>”,”}<access_mode>
<objects>::=<file_object_list>|<dir_object_list>|

<device_object_list>|<IPC_object_list>|<SCD_
object_list>|<process_object_list>

<bina_perm>::= allow | deny
<access_mode>::= OPEN_RD | OPEN_WR |

CHANGE_OWNER| EXECUTE | …
Among them, access_modes denotes the access request

set, that is, the set of event related to security. object
denotes a system entity on which an operation can be
performed. It includes file, directory, device,

inter-process communication (IPC), system control data
(SCD) and process. bina_perm denotes a binary
permission that may be assigned one of two possible
values: allow or deny.

B. Security Policy Cache
In order to improve the decision efficiency, we put

access permission of objects visited recently into Security
Policy Cache in kernel and make sure that frequently
accessed objects can be accessed quickly and efficiently.
We adopt a technique of splay tree which can achieve our
goal by being self-adjusting. Nodes that are frequently
accessed will frequently be lifted up to become the root,
and they will never drift too far from the top position.
Inactive nodes, on the other hand, will slowly be pushed
farther and farther from the root.

Let’s take file system as an example. The location
information of an object is uniquely determined by <I,
D>. I denotes inode number and D denotes the device
number in the file system the inode belongs to. In order
to distinguish objects in different file system, each file
system has an independent cache which creates when file
system loads and revokes when file system unloads. For
each cache, access permission is queried by splay tree
based on inode number as a key.

C. Interception of System Calls Related to Security
In Collector, we intercept system calls using loadable

kernel module (LKM) in Linux. The implementation of
each system call related to security is modified to make
policy decision. Take open system call for example.

int new_open(char *filename, int flags, int mode)
// the modified open system call
{
get request access permission RequestPerm by

parameter values;

Figure 4. The structure of Sandbox

1120 JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

send decision request（ filename, RequestPerm） to
Security Policy Cache;

receive the processing result bina_perm from Security
Policy Cache;

if the processing result is deny
enter Virtualization Sandbox;

return (*old_open)(filename,flags,mode);
// the original open system call
}

D. Virtualization Sandbox
In the process of system call interception, denying the

execution of system call can have a detrimental impact on
the operation of the application, potentially undermining
its reliability and even its security, and have inconvenient
trace record of intrusion because the behavior of
application cannot be displayed completely.
Virtualization Sandbox is used to resolve the problems
caused by denying system calls.

Virtualization Sandbox protects sensitive resources by
executing system calls no matter whether the decision
result is allow or not. If the decision result is allow,
system call executes normally. If the decision result is
deny, the application enters Virtualization Sandbox after
an intrusion alarm. System call executes in Virtualization
Sandbox and access the copy of sensitive resources
without sensitive information. We take file system as an
example to explain the design ideas of Virtualization
Sandbox.

Virtualization Sandbox can be implemented by virtual
machine such as User Mode Linux. However, the
performance cost is considerable. For the above reason,
our design ideas in Linux are as follows: We construct
Virtualization Sandbox using chroot to change the root
file system to a target directory and using NFS to resolve
synchronization problems between directories/files in
Virtualization Sandbox and non-sensitive directories/files
in the original system.

E. Creation and Update of Sequence Base and Rule
Base

Each record of Sequence Base includes the short
sequence of system calls related to security, class and
emergence times. The emergence times represent the
confidence of belonging to this Sequence Base.

If the system call of self process intercepted is system
call related to security, it enters the queue related to
security. When the queue related to security is full, a
short sequence of system calls related to security is
formed. If the Self Sequence Base doesn’t have this short
sequence of system calls related to security, put it in Self
Sequence Base. Its class is “self” and the emergence
times are 1. Otherwise, the emergence times of the record
of this short sequence of system calls related to security
in Self Sequence Base add 1.

The creation of Non-self i Sequence Base is similar to
that of Self Sequence Base. It must be point out that the
short sequence of system calls which is put in Non-self i
Sequence Base should not exist in Self Sequence Base.
For all kinds of Non-self Sequence Base, the repeated
records in different Non-self Sequence Base, that is

records of shared non-self class, are deleted. These
records just show non-self, but they cannot show the
non-self class.

We create Rule Base using C4.5 algorithm for 80%
records that the confidence is relatively high in each
Sequence Base. With the update of Sequence Bases, the
pruning of low confidence records can delete some
records emerged once in a while or out of date, so the
records of Sequence Bases can reflect the latest process
behavior.

Ⅶ. EXPERIMENTS

A. Short Sequence of System Calls Related to Security
Used to Distinguish Different Programs

The following experiments are used to compare the
capacity of distinguishing different programs based on
short sequence of system calls and short sequence of
system calls related to security. If they cannot distinguish
different programs, it is impossible for them to be data
source for non-self classification.

We choose three common commands ls, ps and vi in
Linux for experiments. We train these three commands
with different arguments to create three Sequence Bases
respectively based on short sequence of system calls and
short sequence of system calls related to security, create
corresponding Rule Bases using C4.5 algorithm, and then
test these three commands with other arguments.

The experimental results of Wenke Lee show that the
accuracy of classification model with the size of sliding
window from 6 to 14 doesn’t have obvious differences
[4]. Considering computing cost, we choose 7 as the size
of sliding window. We use C4.5 algorithm to form 251
rules which error rate is 1.8%, and create Rule Base with
rules which confidence is more than 0.85. The results are
shown in TableⅠ.

In the experiments based on system call related to
security, we choose 7 as the size of sliding window, use
C4.5 algorithm to form 218 rules which error rate is 2.2%,
and create rule base with rules which confidence is more
than 0.85. The results are shown in TableⅡ.

From the above experimental results, we can learn that
both short sequence of system calls and short sequence of
system calls related to security are able to distinguish
different programs. However, the number of programs in
training set is less, so there are relatively more short
sequences of unknown class detected. Compared with
recording all system calls of process, recording system
calls related to security loses some details about program
running to some extent and makes error rate increase
lightly, but the detection based on short sequence of
system calls related to security still can distinguish
different programs. Meanwhile, because the number of
system calls related to security intercepted is less than
that of system calls, so the number of rules is less, then
the space used to store rules and the matching time are
less. Thus there is higher running efficiency in the
real-time detection.

JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009 1121

© 2009 ACADEMY PUBLISHER

B. Distribution of Non-self
We perform experiments over the synthethic sendmail

data set collected by the University of New Mexico [17].
In experiments, we realize non-self detection and
classification based on system call related to security.
Synthethic sendmail data set has 48 system calls related
to security. We extract system calls related to security
from the sequence of system calls of each program in the
data set and slide a window of size 7 across the sequence
of system calls related to security. We train self programs
and sscp, decode, following loops three non-self
programs, create Sequence Bases, and then create Rule
Bases using C4.5 algorithm. The total situation of
non-self short sequences of system calls related to
security in test programs is shown in Table Ⅲ. r denotes
the correlation coefficient of non-self program and the
non-self class it belongs to.

The intrusion behavior happens suddenly, so the
non-self short sequences of system calls related to
security show aggregation. It isn’t enough to distinguish
non-self from self or different classes of non-self by the
proportion of non-self short sequences of system calls
related to security in the total number of short sequences
or the proportion of a certain non-self short sequences of

system calls related to security in the total number of
non-self short sequences. We use local statistical method
to detect and classify non-self.

We test all kinds of non-training programs and the
results of test programs are similar. Let’s take the test
program of sscp non-self class for example.

There are 350 short sequences of system calls related
to security made by test program. Compared with 428
short sequences of system calls made by test program, the
number of short sequences of system calls related to
security decreases significantly, which improves time and
space efficiency. Every 35 short sequences of system
calls related to security as an area are a group and the
program is divided into ten areas to analyze. In the first
few areas, some unknown non-self class short sequences
of system calls related to security are intercepted and
most of them are shared non-self class. When the
program runs more than half, there are lots of short
sequences of system calls related to security of sscp
non-self class emerged. In the experiment, the threshold
r=70%, s=80%. When the program runs to the 7th area,
the proportion of non-self short sequences of system calls
related to security in the total number of short sequences
is 77.1%, and the proportion of sscp non-self class short
sequences of system calls related to security in the total

TABLE Ⅱ.
 THE DETECTION RESULTS BASED ON SYSTEM CALL RELATED TO SECURITY

Test program The number of short sequences belonging to the class(%) Total number The class belonged to
ls class ps class vi class unknown class

ls -n 59(57.8%) 5(4.9%) 0 38(37.3%) 102 ls class

ls -color 74(60.2%) 7(5.7%) 0 42(34.1%) 123 ls class

ps -x 7(0.7%) 807(75.2%) 0 259(24.1%) 1073 ps class

ps -l 31(3.0%) 736(72.2%) 0 253(24.8%) 1020 ps class
vi /pattern
filename 4(1.2%) 5 (1.5%) 232(72.4%) 80(24.9%) 321 vi class

TABLE Ⅲ.
 THE EXPERIMENTAL RESULTS OF TEST PROGRAM

Test program
Different classes of non-self

Total number
of non-self r

sscp class decode class following
loops class unknown class

nonself_sscp 61 1 2 34 98 0.62

nonself_decode 0 8 1 2 11 0.73
nonself_following

loops 2 0 52 24 78 0.67

TABLE Ⅰ.
 THE DETECTION RESULTS BASED ON SYSTEM CALL

Test program The number of short sequences belonging to the class(%) Total number The class belonged to ls class ps class vi class unknown class
ls -n 106(60.9%) 0 0 68(39.1%) 174 ls class

ls -color 133(64.3%) 0 0 74(35.7%) 207 ls class

ps -x 19(1.5%) 1010 (81.0%) 0 218 (17.5%) 1247 ps class

ps -l 37(3.1%) 869 (73.2%) 0 281 (23.7%) 1187 ps class
vi /pattern
filename 29(6.4%) 1(0.2%) 337(74.1%) 88(19.3%) 455 vi class

1122 JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

number of non-self short sequences is 96.3%. Therefore,
when the program runs to the 245th short sequence of
system calls related to security, sscp non-self class can be
detected accurately.

The distribution of non-self in the experiment is shown
in Fig. 5. When the abscissa is n, the ordinate denotes the
number of a certain non-self class short sequences of
system calls related to security in the area of (n-35, n]
(35≤n≤350).

C. Test of Sandbox
Here we just use a simple test case to explain the

process of intrusion detection when the process is
migrated to Sandbox. The test case is that a normal user
tries to open /etc/shadow file. The system gives an alarm
when the program runs to the operation of opening
/etc/shadow file. The program doesn’t terminate but
continues executing. The actual file opened is
/etc/shadow file in Virtualization Sandbox without
sensitive information. Sandbox detects intrusion
successfully and records the relevant system calls traces
for the creation and update of Sequence Bases.

In order to test the performance of sandbox impacting
upon the original operating system, we make following
experiments.

We have implemented the sandbox and experimented
on a PC with AMD Phenom(tm) 8400 Triple-Core
Processor 2.10GHz and 2GB of main memory running
Linux kernel 2.4.20. We test the execution time of file
operation open() and close() respectively in three modes:
the original system, sandbox making a policy decision
based on Security Policy Cache and sandbox making a
policy decision based on Security Policy Database. In the
third mode, Security Policy Cache isn’t involved
temporarily. We take the depth of file into account
because the execution time of file operation depends on
the depth of file in the directory tree. The same operation
is repeated 10,000 times and we calculate the time for
executing the operation once by obtaining the average
value after many tests. The operation consists of opening
a file and immediately closing it. The experimental

results are shown in Fig. 6.
For the original system, the execution time of open()

and close() increases with the increase of the depth of
file.

For sandbox making a policy decision based on
Security Policy Cache, the file node opened is surely
located in the root through the reconstruction of splay
tree because the operation is repeated 10,000 times.
Therefore, it is the best case to searching this file node
that can be searched successfully with only once. The
depth of file basically has no effect on the time of policy
decision.

For sandbox making a policy decision based on
Security Policy Database, as the third mode we test,
policy decision is based on Security Policy Database
every time because Security Policy Cache is not involved
temporarily. The execution time of open() and close() is
longer than the first two modes. Moreover, the execution
time increases faster with the increase of the depth of file.
When the depth of file is 1, the execution time is 10.4
times that of the original system. Despite this, the
performance is substantially better than that of Systrace
[9] testing on open(). When Systrace makes policy
decision in userland and the depth of file is 1, the
execution time is 25 times that of the original system.

Furthermore, it can be shown that the performance loss
after sandbox being incorporated to the original system
can be obviously reduced through improving the hit ratio
in Security Policy Cache.

Ⅷ. CONCLUSION

We present a computer system security model based
on system call related to security, which overcomes some
drawbacks of traditional computer immune system. This
model is structured by agents imitating the immune cells.
Through cooperation the agents discriminate self and
non-self and classify non-self. Firstly, we give relative
definitions and introduce the process of non-self
detection and classification based on rule and Sandbox
distinguishing intensively the process of unknown type.

Figure 5. The distribution of non-self of sscp non-self class test program

JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009 1123

© 2009 ACADEMY PUBLISHER

Secondly, we describe Virtualization Sandbox which
ensures the reliability and security of process and makes
process behavior display completely. Finally,
experimental results show that the model based on
system call related to security can distinguish non-self
class accurately, and can detect non-self which is
unknown type by rule matching without imposing heavy
performance impact upon operating system.

REFERENCES

[1] S. Forrest, S.A. Hofemeyr, A. Somayaji, and T.A.
Longstaff, “A sense of self for UNIX processes,” in
Proceedings of the 1996 IEEE Symposium on Computer
Security and Privacy, IEEE Computer Society Press, Los
Alamitos, CA, pp. 120-128, 1996.

[2] E. Eskin, W. Lee, and S. J. Stolfo, “Modeling system calls
for intrusion detection with dynamic window sizes,” in
Proceedings of DISCEX II, Anaheim, CA, IEEE Computer
Society Press, pp. 165-175, 2001.

[3] X. G. Tian, M. Duan, C. L. Sun, and W.F. Li, “Intrusion
detection based on system calls and homogeneous Markov
chains,” Journal of Systems Engineering and Electronics,
vol. 19, pp. 598-605, 2008.

[4] W. Lee, S. J. Stolfo, and P. K. Chan, “Learning patterns
from unix process execution traces for intrusion detection,”
in Proceedings of AAAI Workshop: AI Approaches to
Fraud Detection and Risk Management, pp. 191-197,1997.

[5] Q. Qian and M. J. Xin, “Research on hidden Markov
model for system call anomaly detection,” PAISI 2007,
LNCS, pp. 153-159, 2007.

[6] J. W. Li, X. H. Zhang, C. Yuan, Z. H. Jiang, and H. Q.
Feng, “Motif extraction with indicative events for system
call sequence classification[,” Fuzzy Systems and
Knowledge Discovery, pp. 611-616, August 2007.

[7] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation”, in Proceedings
of the Symposium on Operating System Principles, 1993.

[8] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “ A
secure environment for untrusted helper applications:
confining the wily hacker,” in Proceedings of the 1996
USENIX Security Symposium, 1996.

[9] N. Provos, “Improving host security with system call
policies,” in Proceedings of the 12th USENIX Security
Symposium, pp. 257-273, August 2003.

[10] L. Peng, “The Sandbox: Improving File Access Security in
the Internet Age,” May 2006.

[11] S. Miwa, T. Miyachi, and M. Eto, “Design and
implementation of an isolated sandbox with mimetic
internet used to analyze malwares,” in Proceedings of the
DETER Community Workshop on Cyber-Security and
Test, 2007.

[12] T. Khatiwala, R. Swaminathan, and V.N.
Venkatakrishnan, “Data sandboxing: a technique for
enforcing confidentiality policies,” in Proceedings of the
22nd Annual Computer Security Applications Conference,
pp. 223-234, 2006.

[13] Y. Oyama, K. Onoue, and A. Yonezawa, “Speculative
security checks in sandboxing systems,” in Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium, April 2005.

[14] T. Shioya, Y. Oyama, and H. Iwasaki, “A sandbox with a
dynamic policy based on execution contexts of
applications,” ASIAN’ 2007, pp. 297-311, 2007.

[15] M. Radhakrishnan and J. A. Solworth, “Quarantining
untrusted entities: dynamic sandboxing using LEAP,” in
Proceedings of 23rd Annual Computer Security
Applications Conference, December 2007.

[16] T. Garfinkel, “Traps and pitfalls: practical problems in
system call interposition based security tools,” in
Proceedings of the ISOC Symposium on Network and
Distributed System Security, 2003.

[17] http://www.cs.unm.edu/~immsec/data-sets.htm.

Jimin Li, born in 1969, received M.S. degree
in Computer Application from Hebei
University of China in 2001. He is studying
for PhD degree in College of Computer
Science and Technology of Tianjin University,

China. He is an Associate Professor at College of Mathematics
and Computer of Hebei University. His main research interests
include network security, machine learning and data mining. In
these areas, he has published over 10 technical papers in
refereed international journals or conference proceedings.

Zhen Li, born in 1981, received B.S. degree in
Computer Science and Technology and M.S.
degree in Computer Application from Hebei
University, Baoding, China, in 2003 and 2006.
She joins the College of Mathematics and
Computer of Hebei University at present. Her
current research interests include computer

security, distributed computing and machine learning. She has
published over 5 technical papers in refereed journals and
conference proceedings.

Kunlun Li, born in 1962, received the PhD
degrees in Signal & Information Processing from
Beijing Jiaotong University, China, in 2004 and
join College of Electronic and Information
Engineering of Hebei University as the associate
professor at present. His main research interests
include machine learning, data mining, intelligent

network security and biology information technology. In these
areas, he has published over 20 technical papers in refereed
international journals or conference proceedings.

Figure 6. Comparison of the execution time in three modes

1124 JOURNAL OF COMPUTERS, VOL. 4, NO. 11, NOVEMBER 2009

© 2009 ACADEMY PUBLISHER

