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Abstract—Recruitment prediction is a key element for 
management decisions in many fisheries. A new approach 
using neural network is developed as a tool to produce a 
formula for forecasting fish stock recruitment. In order to 
deal with the local minimum problem in training neural 
network with back-propagation algorithm and to enhance 
forecasting precision, neural network’s weights are adjusted 
by optimization algorithm. It is demonstrated that a well 
trained artificial neural network reveals an extremely fast 
convergence and a high degree of accuracy in the prediction 
of fish stock recruitment. 
 
Index Terms—neural network, prediction of fish stock 
recruitment, optimal harvesting strategy, management 
decision 
 

I.  INTRODUCTION 

Marine ecosystems are notoriously difficult to study. 
Trophic relationships are multidimensional, relevant 
biophysical factors vary widely in their spatial and 
temporal scales of influence, and process linkages are 
complex and highly non-linear showed that the problem 
is further compounded by inaccuracies in measuring 
environmental variability, as well as the biotic response. 
Consequently, applied ecological investigations 
attempting to relate oceanic physics, atmospheric physics, 
and marine biology to variations in fish stock-recruitment 
are difficult to carry out. Nonetheless, the collective 
impacts of regime shifts, large multi-decadalscale 
forcings of marine ecosystems (such as those attributed to 
the NAO), and natural and man-made influences on 
variability in fish populations and future states of 
ecosystems are widely recognized as important areas of 
study [1]. To set accurate preseason fishing quotas, it is 
important to be able to forecast the biomass of young fish 
(recruits) that will join the fishable stock for the first time 
before the fishing season opens. Experience has proven 
that the level of recruitment is difficult to forecast for 

most fish stocks because the survival of juvenile fish is 
affected by a number of variables. For example, the 
biomass of 3-year-old recruits to the west coast of 
Vancouver Island (WCVI), British Columbia, Pacific 
herring (Clupea pallasi) stock over the last 60 years has 
fluctuated over a 350-fold range in response to 
interannual and decadal time scale variations in the 
spawning biomass (of parents) and in the state of the 
environment, which in turn affects the Pacific herring 
food supply and mortality rate [2]. A long-term 
ecosystem research program has identified that the key 
variables determining Pacific herring recruitment are the 
lagged biomass of adult spawners, the summer biomass 
of Pacific hake (Merluccius productus), which is a 
significant predator, and two lagged environmental 
factors (annual sea surface temperature (SST) and 
salinity). The annual SST is believed to be a general 
indicator of mortality and the state of the food supply. In 
many cases, it is difficult to clarify and model the 
mechanism controlling recruitment by using conventional 
mathematical and statistical methods because the survival 
process is nonlinearly related to several factors [3]. 

Understanding and predicting biological productivity is 
considered a key question by lake fisheries scientists. 
Several ecologists and fisheries managers have tried to 
determine the abundance of living stocks or the specific 
biodiversity in aquatic ecosystems using some of their 
characteristics, i.e. surface of the river drainage basin, 
surface area of lakes, flood plain areas, morphoedaphic 
index, depth, coastal lines, primary production, etc [4]. In 
developing countries, the economical importance of fish 
and as a food source makes this topic particularly relevant. 
Diverse multivariate techniques have been used to 
investigate how the various richness of fish is related to 
the environment, including several methods of ordination 
and canonical analysis, and univariate and multivariate 
linear, curvilin-ear, and logistic regressions. However, for 
quantitative analysis and more particularly for the 
development of predictive models of fish abundance, 
multiple linear regression and discriminate analysis have 
remained, the most frequently used techniques. These 
conventional techniques (based notably on multiple 
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regressions) are capable of solving many problems, but 
show sometimes serious shortcomings. This difficulty is 
that relationships between variables in sciences of the 
environment are often non-linear whereas methods are 
based on linear principles. Non-linear transformations of 
variables (logarithmic, power or exponential functions) 
allow to significantly improve results, even if it is still 
insufficient. However, the neural network, with the error 
back-propagation procedure, is at the origin of an 
interesting methodology which could be used in the same 
field as regression analysis particularly with the non-
linear relations [5]. Ecological applications of 
multivariate statistics have expanded tremendously 
during the last two decades. Among these methods, the 
principal component analysis (PCA) is now used 
routinely by ecologists. It is known as able to simplify 
large data sets with reasonable loss of information and to 
assess inter-correlation among variables of interest [6]. 
However, the information given by PCA techniques 
suffers from some drawbacks in that the relationships 
between variables in environmental sciences are often 
non-linear, while the methods used are based on linear 
principles. Transformation of non-linear variables by 
logarithmic, power or exponential functions can 
appreciably improve the results, but have often failed to 
fit the data. In the same way, ecologically relevant, but 
unusual observations, are frequently deleted from the data 
sets to reduce data heterogeneity. Although these 
deletions satisfy statistical assumptions, they are likely to 
bias the ecological interpretation of the results. To 
overcome these difficulties, the artificial neural networks 
which are known to be efficient in dealing with 
heterogeneous data sets should constitute a relevant 
alternative tool to traditional statistical methods [7]. 

II.  A NEURAL NETWORK MODEL FOR FORECASTING FISH 
STOCK RECRUITMENT 

The factors and phenomenon affecting recruitment in 
marine fish are complex and not yet fully explored. Thus, 
mechanistic models or model driven statistical techniques 
poorly result in prediction or utterly fail. Data driven 
paradigm with implicit evolving nature is the best 
alternative. NNs, inspired by the functioning of human 
brain are in a state of maturity with excellent mapping 
and predictive characteristics for both supervised and 
unsupervised two-way data structures. The recruitment of 
Norwegian spring-spawning herring (Clupea harengus) in 
Norway, sand eel Ammodytes personatus in Eastern part 
of seto Island sea, Northern Benguella, Sardine Sardinops, 
sagax in South Atlantic were modelled with NNs. 
Hardman-Mount ford et al. modelled recruitment success 
of Northern Benguela, Sardine sardinops, sagax in South 
Atlantic ocean employing a seven year time series data . 
An adequate model for the recruitment of sand eel A. 
personatus in eastern part of Seto Island Sea in the month 
of February was developed with a three-layer FFNN 
trained with BP algorithm. The influential input variables 
of the model are reflected in the magnitude of the weights. 
Inferences based on the NN indicated that recruitment 
was higher when the water temperature was low in 

preceding September. SOM could identify characteristic 
patterns based on sea level difference, which are related 
to SST. The Pacific halibut stock data were analysed for 
fish recruitment by models with different basis 
assumptions and the results are compared. In the models 
Pacific Decadal Oscillation (PDO) index, environmental 
variable was employed along with autoregressive 
component. Fuzzy-logic model out performed the 
traditional Ricker stock recruitment model. MLP-NNs are 
tested with several performance criteria [8]. Artificial 
neural networks are computer algorithms that simulate 
the activity of neurons and information processing in the 
human brain. In general, a neural network is an 
interconnected network of simple processing layers 
where typically the first layer (input layer) makes 
independent computations and passes the results to a 
hidden layer. This layer may in turn make an independent 
computation and pass the results to another hidden layer. 
This signal process may continue to produce more hidden 
layers depending on the complexities of the problem. 
Finally, the last layer (output layer) determines the output 
from the network. Each processing layer makes the 
computation based on the weighted sum of its inputs. 
This signal processing between layers enables neural 
networks to model complex linear and nonlinear systems. 
Unlike the more commonly used regression models, 
neural networks do not require a particular functional 
relationship or distribution assumptions about the data. 
This makes neural network modeling a powerful tool for 
exploring complex, nonlinear biological problems like 
recruitment forecasting [9]. 

The main factors affecting fish stock recruitment 
consist of spawning biomass (SB in million tones,x1) , 
mean annual sea surface temperature (SST in °C, x2), and 
North Atlantic Oscillation index (NAO, normalized sea 
level pressure anomaly, x3) [1]. An artificial neural 
network model is a system with inputs and outputs based 
on biological nerves. The system can be composed of 
many computational elements that operate in parallel and 
are arranged in patterns similar to biological neural nets. 
A neural network is typically characterized by its 
computational elements, its network topology and the 
learning algorithm used.  

Fig. 1 A schematic of neural network model 
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The architecture of BP networks, depicted in Figure 1, 
includes an input layer, one or more hidden layers, and an 
output layer. The nodes in each layer are connected to 
each node in the adjacent layer. Notably, Hecht-Nielsen 
proved that one hidden layer of neurons suffices to model 
any solution surface of practical interest. Hence, a 
network with only one hidden layer is considered in this 
study. There are three nodes in input layer. The input of 
each node is SB, SST, and NAO, respectively. There is 
only one node in output layer, which denotes forecasting 
fish recruitment. Before an ANN can be used, it must be 
trained from an existing training set of pairs of input-
output elements. The training of a supervised neural 
network using a BP learning algorithm normally involves 
three stages. The first stage is the data feed forward. The 
computed output of the i-th node in output layer is 
defined as follows [10] 

1 1

( ( ( ) )).
h iN N

i ij jk k j i
j k

y f f xµ ν θ λ
= =

= + +∑ ∑         (1) 

Where µij is the connective weight between nodes in 
the hidden layer and those in the output layer; vjk is the 
connective weight between nodes in the input layer and 
those in the hidden layer; θj or λi is bias term that 
represents the threshold of the transfer function f, and xk 
is the input of the kth node in the input layer. Term Ni, Nh, 
and No are the number of nodes in input, hidden and 
output layers, respectively. The transfer function f is 
selected as Sigmoid function [11] 

)].exp(1/[1)( −⋅+=⋅f                          (2) 

The second stage is error back-propagation through the 
network. During training, a system error function is used 
to monitor the performance of the network. This function 
is often defined as follows 
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Where p
iy  and p

io  denote the practical and desired 
value of output node i for training pattern p, P is the 
number of sample. Training methods based on back-
propagation offer a means of solving this nonlinear 
optimization problem based on adjusting the network 
parameters by a constant amount in the direction of 
steepest descent, with some variations depending on the 
flavor of BP being used. The optimization algorithm used 
to train network makes use of the Levenberg-Marquardt 
approximation. This algorithm is more powerful than the 
common used gradient descent methods, because the 
Levenberg-Marquardt approximation makes training 
more accurate and faster near minima on the error surface 
[12]. 

1( 1) ( ) ( ) ( ).w k w k H k g k−+ = −              (4) 

Where w(k) is the vector of network parameters(net 
weights and element biases) for iteration k, matrix H-1(k) 

represents the inverse of the Hessian matrix. The vector 
g(k) represents the gradient of objective function. The 
Hessian matrix can be closely approximated by  

.TH J J≈                                   (5) 

Where J is the Jacobian matrix, and the gradient of the 
objective function can be computed as 

.TEg J e
w
∂

= =
∂

                              (6) 

Where e is an error vector, and it can be calculated as 
follows 

.e y o= −                                     (7) 

The iterative formulas of adjusting weights can be 
rewritten as follows  

1( 1) ( ) [ ( ) ( )] ( ) ( ).T Tw k w k J k J k J k e k−+ = −    (8) 

One problem with the iterative update of weights is 
that it requires the inversion of Hessian matrix H which 
may be ill conditioned or even singular. This problem can 
be resolved by the regularization procedure as follows 

.TH J J Iµ≈ +                                 (9) 

Where µ is a constant, I is a unity matrix. The weight 
adjustment using Levenberg-Marquardt algorithm is 
expressed as follows 

1

( 1) ( )
[ ( ) ( ) ] ( ) ( ).T T

w k w k
J k J k I J k e kµ −

+ = −

+
            (10) 

The Levenberg-Marquardt algorithm approximates the 
normal gradient descent method, while if it is small, the 
expression transforms into the Gauss-Newton method. 
After each successful step the constant µ is decreased, 
forcing the adjusted weight matrix to transform as 
quickly as possible to the Gauss-Newton solution. When 
after a step the errors increase the constant µ is increased 
subsequently. The number of neurons in the hidden layer 
is determined by the following equation  

2 1.h iN N= × +                            (11) 

Where Ni and Nh are the amount of input, hidden 
neurons, respectively.  

III.  CASE STUDY  

Data for Norwegian spring-spawning herring, 
potentially the largest of the herring stocks in the 
northeast Atlantic, were taken from information presented 
in Toreson [13]. Time series for fish recruitment and 
affecting factors were plotted in Fig.2, 3, 4 and 5. Some 
of data series were used as training neural network; and 
others were taken to validate the effectiveness of 
proposed forecasting procedure based on neural network. 
Fig. 6 depicts the comparison of forecasting and practical 
fish recruitment.    
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Fig. 2 Time series plot for spawning biomass (SB in million tones) 
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Fig. 3 Time series plot for mean annual sea surface temperature 
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Fig. 4 Time series plot for North Atlantic Oscillation index (NAO) 
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Fig. 5 Time series plot for age-3 recruitment (R in billions ) 
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Fig. 6 Comparison of forecasting and practical fish recruitment (R 

in billions )  

IV.  OPTIMAL HARVESTING STRATEGIES FOR FISHERIES 
MANAGEMENTS 

Bio-economic fisheries models, depicting the economic 
and biological conditions of the fishery, are widely used 
for the identification of Pareto improvement fisheries 
policies. The models that have been constructed for this 
purpose differ in size, detail and technical sophistication. 
Virtually all, however, model the fishery as a technical 
relationship between the use of fishery inputs and the 
resulting biological and economic outcomes. In order to 
model growth of biological systems numerous models 
have been introduced. These variously address population 
dynamics, either modelled discretely or, for large 
populations, mostly continuously. Others model actual 
physical growth of some property of interest for an 
organism or organisms. The rate of change of fish stock 
dx/dt is determined by natural reproductive dynamics and 
harvesting [14] 

                        ( , ) ( , , ).x f x t h e x t= −&                     (12) 

Where f(x,t) is the natural growth rate of fish stock 
which is dependent on the current size of the population 
x. The quantity harvested per unit of time is represented 
by h(e,x,t). The net growth rate dx/dt is obtained by 
subtracting the rate of harvest h(e,x,t) from the rate of 
natural growth f(x,t). Functional relationships commonly 
used to represent the natural growth rate of fish stock is 
the logistic model [15].  

                          ( ) (1 ).xf x rx
K

= −                            (13) 

Where r is the intrinsic growth rate, K is the 
environmental carrying capacity, and x is the constant 
associated with the intrinsic growth rate. The rate of 
harvest h(e,x,t) is assumed proportional to aggregate 
standardized fishing effort (e) and the biomass of the 
stock x; that is [16] 

          ( , , ) ( ) ( ).h e x t e t x tβ= ×                    (14) 
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Where β is the catchability coefficient. Once average 
fishing power has been calculated, the standardized 
fishing effort is computed as [8] 

                        ( ) .e t P nτ=                                  (15) 

Where e is the standardized fishing effort ; P represents 
average relative fishing power ; τ is the average fishing 
days at time t; and n denotes the number of vessels at 
time t. Fishing cost is evaluated by [17]  

                            ( , , ) ( ).C e x t ce t=                         (16) 

Where C(e,x,t) is the total cost function. (13) has 
solution 

       0

0 0

( ) .
( ) exp( )

Kxx t
K x rt x

=
− − +

            (17)  

Let us start by briefly reviewing the essential structure 
of conventional bio-economic fisheries models. As 
discussed above, these models consist of two 
fundamental components: (i) a biomass growth function 
and (ii) an economic performance function. Their two 
basic components may be represented by the following 
four sets of equations: 

  0

0

max [ C]exp( )

[ ( ) ( ) ( )]exp( ) .

p h t dt

p e t x t ce t t dt
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β α

∞
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Fig. 7 Natural growth rate of fish stock versus the size of fish 
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Fig. 8 Size of fish population versus time without catching 

                        ( ) .optx t T x> =                              (19) 

                    ( , , ) .opth e x t T h> =                        (20) 

                    ( , ) ( , , ).x f x t h e x t= −&                      (21) 

In this formulation, Π is the ultimate performance 
measure of the fishery. P is output price of fisheries. T is 
starting catching time. xopt is optimal size of fish 
population. hopt is optimal rate of harvest. From (17), we 
can deduce the starting catching time 

            

0
0 0ln[( ) / ( )]

.opt

Kx x K x
x

T
r

− −
= −        (22) 

The optimal rate of harvest is expressed as follows:  

          (1 ).opt
opt opt opt opt

x
h e x x r

K
β= × × = −        (23) 

Let 0opt

opt

dh
x

= , the optimal size of fish population and 

the optimal rate of harvest are solved  

                               .
2opt
Kx =                               (24) 

                              .
4opt

rKh =                               (25) 

The optimal fishing effort is deduced as follows  

                  (1 ) / .
2

opt
opt

x re r
K

β
β

= − =                 (26)  

V.  SUSTAINABLE DEVELOPMENT POLICIES FOR 
FISHERIES MANAGEMENT 

There has been much comment in recent years on the 
nature of sustainable development and, in particular, on 
the internal contradictions implicit in this term.  
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Fig. 9 Optimal rate of harvest versus the size of fish population   
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While it is generally accepted that sustainable use of 
natural resources means that their exploitation by one 
generation should not diminish their value for succeeding 
generations, application of this concept remains elusive 
and is the subject of much debate [9]. While we assume 
that sustainability is accepted as a desirable outcome of 
management of any renewable natural resource, there are 
cases where sustainability is not the expected outcome. 
When stocks have a low rate of natural increase, and so 
provide a low contribution to present value, but the 
owners have a high discount rate for their capital, the 
stock is likely to be exploited to extinction. In other 
words, if the rate of return on capital is greater than the 
value of the rate of natural production, for economically 
valuable stocks, extinction is a likely outcome. 

Ocean fish stocks have traditionally been arranged as 
common property resources. This means that anyone, at 
least anyone belonging to a certain group (often a 
complete nation), is entitled to harvest from these 
resources. Thirty years ago, the common property 
arrangement was virtually universal. Today, at the 
beginning of the twenty-first century, it is still the most 
common arrangement of ocean fisheries. It has been 
known that common property resources are subject to 
fundamental economic problems of overexploitation and 
economic waste. The essence of the fundamental problem 
is captured by the diagram in Fig. 10. In fisheries, the 
common property problem manifests itself in: 1). 
Excessive fishing fleets and effort. 2). Too small fish 
stocks. 3). Little or no profitability and unnecessarily low 
personal incomes. 4). Unnecessarily low contribution of 
the fishing industry to the GDP. 5). A threat to the 
sustainability of the fishery. 6). A threat to the 
sustainability of human habitation. 

Fig. 10 illustrates the revenue, biomass and cost curves 
of a typical fishery as a function of fishing effort. Fishing 
effort here may be regarded as the application of the 
fishing fleet to fishing. The revenue and biomass curves 
are sustainable in the sense that these are the revenues 
and biomass that would apply on average in the long run, 
if fishing effort was kept constant at the corresponding 
level. 

 
Fig. 10 Sustainable development model for fisheries management 

Fig. 10 reveals that the profit maximizing level of the 
fishery occurs at fishing effort level eopt. At this level of 
fishing effort, profits and consequently the contribution 
of the fisheries to GDP is maximized. Note that the profit 
maximizing fishing effort eopt is less than the one 
corresponding to the maximum sustainable yield (MSY), 
eMSY. Consequently, the profit maximizing sustainable 
stock level, xopt, is comparatively high as can be read 
from the lower part of Fig. 10. The profit maximizing 
fisheries policy, consequently, is biologically 
conservative. Indeed the risk of a serious stock decline is 
generally very low under the profit maximizing 
sustainable fisheries policy. The rate of change of fish 
stock dx/dt is determined by natural reproductive 
dynamics and harvesting when fishing effort is not equal 
to optimal value 

                     (1 ) ( ) ( ).xx xr e t x t
K

β= − − ×&           (27) 

The solution of Eq. (16) is deduced as follows 

                     0
( )

0 0

( ) .
( )e r t

Pxx t
x e P xβ −=
+ −

              (28) 

                        (1 ) .eP K
r
β

= −                       (29) 

What we are suggesting in terms of sustainability then, 
is that if we are talking about the recreational fishing 
experience rather than just catching fish, we do not need 
to assume that the same fish will be available in the same 
proportions/numbers in future, just that the same total 
experience will be available. This implies that you can 
substitute species, as they become less fashionable, or 
less available in response to human or natural pressures; 
but there is an obvious biological limit to the extent to 
which species can be substituted. In any case, if a 
fashionable species is dropping in numbers, it probably 
will be worth taking steps to arrest the decline. The 
shareholders in a company would expect the manager to 
take the most cost-efficient steps and provide the shortest 
interruption to their dividends. At present, marine 
fisheries rely almost wholly on wild stocks.  

Fig. 11 Size of fish population versus time while excessive 
fishing(x0=50,K=100,r=1.0,β=0.1, eopt =5.0) 
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Unlike freshwater fisheries, there is little capacity at 
present for augmenting stocks from hatcheries. A 
properly priced stock would provide an impetus for 
developing more direct methods such as use of hatcheries 
to accelerate stock recovery, rather than removing fishing 
pressure and simply waiting for natural recovery of 
stocks. Prudent fisheries managers might make 
development of direct methods of restocking a priority 
[20].  

A practical time-scale for sustainability for natural 
resource management broadly equates to 80–100 years. 
After that time, it would be difficult for people to imagine 
what society might be like. Even making predictions of 
what constitutes sustainability within that time period 
will be difficult because of natural changes beyond 
human control and changes to the way humans use 
natural resources. These issues become more focused 
when considering different forms of property rights, 
including those involving exploitation for commercial 
gain, as in fisheries. In this case, a minimum expectation 
is that those exploiting the resources would seek 
commercial returns on capital invested in acquiring 
access, and in harvesting and developing the resources. 
Open access and some forms of common property 
ownership result in overexploitation and collapse of 
resources, rather than in sustainable biological and social 
outcomes. This is not sufficient reason to argue that 
renewable natural resources should be maintained in 
government ownership and commercial exploitation 
prohibited. In reality, natural resources treated in this 
manner assume no value to the community, other than 
their intrinsic ecological and existence values. These 
resources are even more likely to be degraded or lost.  

VI.  CONCLUSIONS 

Back propagation of the ANN was used to develop 
forecasting models of fish yield prediction using habitat 
features on a macrohabitat scale. This forecasting 
approach required an extensive database and care to 
obtain reliable models. The selection of input variables, 
their ecological significance and the use of a test data set 
to assess the model precision and accuracy are important 
elements of this type of approach. The advantage of ANN 
over MLR models is the ability of ANN to directly take 
into account any non-linear relationships between the 
dependent variables and each independent variable. 
Several authors have shown greater performances of 
ANN as compared to the MLR. The back-propagation 
procedure of the ANN gave very high correlation 
coefficients comparing to the more traditional models, 
especially for the training calculation. In the test set, 
correlation coefficients were lower than in training but 
still remained clearly significant. This difference between 
training and testing sets is more amplified when the data 
set is small, and when each sample is likely to have 
‘unique information’; this is relevant to the model. This 
study demonstrates that neural network models can 
perform reasonably well in predicting the biomass of fish 
that will recruit to the fishery, given prior information on 

the state of several key factors during the first year of life 
of the year-class. Specifically, information on the 
biomass of their parents (i.e., spawners), the biomass of a 
key predator species (i.e., Pacific hake), and some 
important environmental variables that are believed to be 
proxy indicators of other predators and general feeding 
conditions is required. Comparison with a multiple 
regression and modified Ricker model demonstrated the 
superior ability of the neural network model to fit the 
underlying complex relationships between recruitment 
and the independent variables. The recruitment-
environment problem is a difficult one, but it does not 
mean that we should stop exploring models and 
techniques to help understand the factors that control 
recruitment dynamics and their spatial and temporal 
scales of influence. Simple statistical approaches still 
have their place if used appropriately. 
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