
Contact Detection Algorithms

S. Kockara1, T. Halic1, C. Bayrak1, K. Iqbal1, and R. A. Rowe2

University of Arkansas at Little Rock1, University of Arkansas for Medical Sciences2

Abstract— A process that determines whether two or more
bodies make contact at one or more points is called contact
detection or collision detection. Contact detection is
inseparable part of the computer graphics, surgical
simulations, and robotics etc. There are large of methods
that are used for collision detection. We will review a few of
the most common ones. Algorithms for contact
determination can be grouped into two general categories -
broad-phase and narrow-phase-. This paper provides a
comprehensive classification of a collision detection
literature for the two phases. Moreover, we have attempted
to explain some of the existing algorithms which are not easy
to interpret. In the process, we have tried to keep sections
self-explanatory without sacrificing depth of the coverage.

Index Terms—contact detection, collision detection,
deformation, bounding volumes, spanner

I. BROAD-PHASE COLLISION DETECTION

When given the two models and their placements in the
world space, the simplest brute force approach to perform
a collision query is to test each of the primitive segments
in object A against each of the primitive segments of
object B; that process requires number of A’s primitive
segments times number of B’s primitive segments
overlap tests. This approach is reasonable for relatively
small models. However, we cannot perform exhaustive
pair-wise testing on models which have thousands of
primitives since a collision query needs to be performed
in every simulation step in order to detect colliding
objects. Animations can have many objects, all of which
may have a complex geometry such as polygonal soups
of several thousands facets. Therefore, performing
collision detection is computationally extensive task. Yet,
it can be difficult to obtain real time interaction. Thus, to
eliminate these computationally costly pair-wise tests
different algorithms are proposed in the literature.

Hubbard [1] was the first to classify the collision
detection into two parts e.g. broad-phase and narrow-
phase. Those concepts of broad-phase and narrow phase
collision detection reduce the computational load by
performing a coarse test in order to prune an unnecessary
pair test. Broad-phase collision detection identifies
disjoint groups of possibly intersecting objects. On the
contrary, pruning unnecessary primitive-pair test is
narrow-phase collision detection which identifies disjoint
groups of possibly intersecting objects’ primitives e.g.
polygons. Most of the literature uses Hubbard’s broad
and narrow phase collision detection scheme to classify
collision detection algorithms [2]-[3]. The same

classification technique will also be used throughout this
survey along with introduction of new algorithms. Some
of the methods such as bounding volumes or boxes are
included in both broad and narrow phase collision
detection.

II. BROAD-PHASE COLLISION DETECTION

From computational geometry [4], we know that broad
phase collision detection can be achieved by answering
these questions: which box contains a given point and/or
which boxes overlap a given box. Therefore, for broad-
phase collision detection, approximating objects with
boxes make broad-phase collision detection easier.
However, we also need to know which boxes will be
overlapped in the next iteration because in physics-based
animations objects can move and deform in time. To
perform this, broad-phase collision detection can be done
with three different kinds of algorithms: All-pair test
(Exhaustive Search), sweep and prune (Coordinate
Sorting), and hierarchical hash tables (multi level grids).

An exhaustive search is the brute-force approach which
compares each object’s bounding volume with others’
bounding volumes. If algorithm finds colliding bounding
volumes then it starts further investigation with narrow
phase collision detection algorithms. Sweep and prune
algorithm [5][6] projects every object’s bounding
volume’s starting and ending points onto the coordinate
axes. If there is intersection among the entire principal
coordinate axes then there is a collision between those
objects. Another approach for broad-phase collision
detection is hierarchical hash tables, such as grid [7]. This
algorithm divides the entire scene into the equal size grids
along all the principal axes. All points overlapping with
the given grid cell is identified by the algorithm. If there
is more than one object sharing the same cell, those
objects are possibly colliding objects.

III. NARROW-PHASE COLLISION DETECTION

Broad phase lists pairs of possible colliding objects and
narrow phase inspects further each of these pairs and
finally contact determination algorithms verify the exact
collisions. Narrow phase algorithms usually return more
detailed information such as separation distance,
penetration depth, closest points etc. This information can
be later used for the computation of time of impact,
collision response and forces, and contact determination.

Narrow phase collision detection algorithms can be
categorized into four groups [8]: feature-based, simplex-

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 1053

© 2009 ACADEMY PUBLISHER



based, volume-based, and spatial data structures
(bounding volumes and spatial subdivisions).

Feature-based Algorithms

These kinds of algorithms directly work on the
geometric primitives of the objects. Some of the well
known feature-based algorithms are polygonal
intersection [8], Lin-Canny [9], V-Clip[10], and
SWIFT[11][12]. Another feature-based algorithm is
image space based technique. Because image space based
algorithms are suitable to implement on the graphical
processing unit (GPU), they are currently more preferred
techniques.

Lin-Canny algorithm is the first feature-based
algorithm in literature. There are other feature tracking
algorithms proposed based on Lin-Canny including
Voronoi-Clip (V-Clip) and SWIFT. In real-time
simulations objects tend to change their orientations or
rotations by small amounts from one frame to another.
This is called frame-to-frame coherence. This coherence
assumes that the closest points between two non-
intersecting objects are located in the near vicinity of the
closest points between the same objects located at the
previous frame. However, for a polyhedron, even a
minute change in orientation can cause a big change in
closest points’ locations between consecutive frames.
Therefore, for polyhedra, Lin et al. [9] proposed using the
closest features (vertices, edges, or faces) rather than
tracking closest points from one frame to another. Then
the frame-to-frame coherence theorem for closest features
becomes: “A pair of features from each of two disjoint
polyhedra are said to be closest features if they contain a
pair of closest points for the polyhedra.” Lin-Canny has
some drawbacks. It does not terminate when presented
with penetrating polyhedra. The other drawback is that it
sometimes exhibits poor convergence in degenerate
situations. Another algorithm based on Lin-Canny is V-
Clip which eliminates some serious defects of Lin-Canny.

The V-clip algorithm operates on a pair of polyhedra. It
is based on the theorem which defines the closest points
between the two polyhedra in terms of the closest features
of the pair of polyhedra. Figure 1 shows pair of 3D
polyhedra satisfying the theorem. F(X) and F(Y)are
closest pair of features and P(X) and P(Y) are closest pair
of points (not necessarily unique points) between two
polyhedra X and Y. Red lines indicate Voronoi region for
object X and yellow lines indicate Voronoi region of
polyhedron Y. V-Clip starts with two features one from X
and another from Y. In this example, feature F(X) is edge
E and feature F(Y) is vertex V. If P(X) is in Voronoi
region of Y and P(Y) is in the Voronoi region of X, the
F(X) and F(Y) are closest pair of features. In each
iteration of the algorithm, the features are tested to see if
they are satisfying the conditions of the theorem. If they
satisfy the theorem, algorithm terminates and returns
nonintersecting between two polyhedra. If the theorem is
not satisfied, one of the features is updated with a
neighboring feature. Neighbors of a feature are defined as
follows: the neighbors of a vertex are the edges incident
to the vertex, the neighbors of a face are the edges

bounding the face, and the neighbors of an edge are the
two vertices and the two faces incident to the edge.

Figure 1 Closest pair of features and closest pair of
points (P(X), P(Y)) for Vertex-Edge feature pair

The V-Clip become trapped in a local minimum in the
vertex-face state where the vertex lies below the
supporting plane of the face and at the same time lies
inside all of the Voronoi planes of Voronoi region. That
can cause objects penetrations before collision detection.

Simplex Based Algorithms

The simplex is the convex hull of an affinely
independent set of points. The GJK (Gilbert-Johnson-
Keerthi) [26] is the well known ancestor of this group of
algorithms [27]-[30]. Simplex based algorithms works by
incrementally improving over a simplex. Each
incrementally improving step approximates the
configuration space of the object.

GJK is a simplex-based that takes two sets of vertices
as input and finds the Euclidean distance and closest
points between the convex hulls. A simplex is a convex
hull which has property that removing a point from it
reduces the dimensionality of the simplex by one. Thanks
to Gilbert et al. [31], GJK was generalized to be applied
to arbitrary convex point sets, not just polyhedra. An
important fact in GJK is that it does not operate on the
two input objects; however, it operates on the Minkowski
difference between the objects. Minkowski difference
provides transformation of the problem from finding the
distance between two convex sets to that of finding the
distance between the origin and a single convex set. The
GJK searches a sub-volume of the Minkowski difference
object iteratively (each sub-volume being a simplex). We
take a cue from the work of Ericson et al. [3] and clarify
the GJK algorithm.

Let A and B be two convex point sets and x and y two
position vectors corresponding to pairs of points in A and
B respectively. Then Minkowski sum of two sets A and B
in Euclidean space, A B⊕ defined as

{ : , }A B x y x A y B⊕ = + ∈ ∈ where x y+ is the

vector sum of the position vectors x and y. The
Minkowski difference also uses the same analogy which
is defined as { : , }A B x y x A y BΘ = − ∈ ∈ . The GJK

algorithm based on the fact that separation distance
between two convex polyhedra A and B is equal to the

1054 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



distance between Minkowski sum and the origin as
shown in Figure 2 [3] below.

Figure 2 Minkowski Difference

Minkowski difference is important for collision
detection point of view because two convex objects
collide if and only if their Minkowski difference contains
the origin as shown in Figure 2. Moreover, closest points’
distance of two objects is equal to the minimum distance
of Minkowski difference object to the origin. Therefore;

min{ : , } min{ : }AB x y x A y B c c A B= − ∈ ∈ = ∈ Θ
Figure 3 [3] illustrates how GJK algorithm finds a point

closest to origin O. In this case, the distance of closest
point to the origin is equal to the minimum distance
between two convex polyhedra due to the Minkowski
difference being used as a convex hull.

Figure 3 GJK Algorithm

In Figure 3, the algorithm arbitrarily begins with vertex
C as the initial simplex set Q={C}. For a single-vertex
simplex, vertex itself is the closest point to the origin X.
Searching in the direction (from vertex C to the origin)
leads to vertex D as a supporting point or extreme point at
this direction. So, D is added to the simplex set
Q={C,D}. The point in convex hull Q closest to the origin
is E now. Since both C and D are needed to express point
E, we keep these vertices in the simplex Q={C,D}. Now
F is the extreme point in the direction from E to the
origin. That results new convex hull Q, Q= {C,D,F}. The

closest point to the origin from convex hull Q is now
point G. Since representing point G is possible with only
D and F, C is removed from the simplex, Q={D,F}. Now,
direction of the supporting vector is from point G to the
origin and new extreme point is H. H is added to the
simplex Q, Q={D,F,H}. The point on Q closest to the
origin is now J. Since F and H are smallest set of vertices
to represent J, D is removed from Q, Q={F,H}. After this
point, there is no vertex closer to the origin in direction
from J to the origin. Therefore, J must be the closest point
to the origin and the algorithm terminates.

Image-Space Based Algorithms

With the improvements of the GPU graphics hardware,
the GPU can be used to accelerate collision detection.
Image space base techniques are computed by image-
space occlusion queries which are convenient to
implement on the GPU. Therefore, image space base
techniques are more preferred techniques to be
implemented on the GPU. Contrary to common belief
that they can be implemented only on the GPU, they can
also be employed on the CPU such as [13]. Memory read-
backs are expensive processes on the graphical units. [14]
shows occlusion queries have lower bandwidth than
buffer read-backs and thus are more convenient for GPU
implementations. Some examples of image-space base
techniques are based on stencil and depth testing which
require memory read-backs and use graphics hardware.
Frontiers of image space based methods include [15]-[18]
and [19]-[23]. All image space based collision detection
methods have several common drawbacks. They are
much slower than hierarchical approaches. They usually
have O(n) complexity. On the contrary, hierarchical
approaches such as bounding volumes have O(log n)
complexity. Since image space based approaches are
rendering geometric primitives, these approaches
introduce geometric errors. During the rendering, objects
are discretized to the image space. This causes erroneous
representations. These errors not only depend on the size
of the viewport, but also the internal representation of the
numbers, and the number of bits per pixel in the z-buffer.
Therefore, the size of the viewport has significant impact
on the performance.

Cinder [21] is a well known example of image space
based algorithms that is founded on 3D version of Jordan
Curve Theorem [4]. This theorem in computational
geometry states that a semi infinite ray originating within
a solid will intersect the boundary of the solid an odd
number of times as in Figure 4. Cinder is handling both
convex and non-convex geometries. The tests for
collisions are performed in image space. The algorithm
does not require any pre-processing or special data
structures. It uses frame buffer operations to implement a
virtual ray casting algorithm for every pixels that detect
interference between objects. The edges of the objects are
written to the depth buffer and the objects they penetrated
each other are detected by using a virtual ray-casting
algorithm. The virtual ray-casting is a technique that
locates a point relative to an object by casting a ray from
that point. The number of polygons that the ray passes

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 1055

© 2009 ACADEMY PUBLISHER



through is counted in such a way that if summation result
for one ray is even then the point is outside the object. In
contrast, if the summation result is un-even then the point
is inside the object and there is collision. The algorithm
uses a stencil buffer for counting the number of front and
back facing polygons that the rays pass through. The
values in the stencil buffer are increased for front-facing
polygons and decreased for back-facing polygons. If at
the end there is non-zero value in the stencil buffer, then
the edge in the specific pixel is inside an object (meaning
more front-facing polygons than back-facing ones).
Colliding objects’ identifications’ numbers kept in color-
buffer. The algorithm’s running time is linear in the
number of objects and the number of polygons existing in
the objects. With this algorithm, collisions that are about
to happen or have already occurred will not be detected.
This occurs when objects’ very thin parts pass through
each other in space of one frame. There is a restriction on
the object topology with this algorithm. The object must
be closed. Figure 5 below shows an example of CINDER.

CULLIDE [24] is one of the prominent examples of
these group of algorithms which uses occlusion queries
and a hybrid approach. Here, the graphics hardware is
used only to detect potentially colliding objects, while
triangle-triangle intersections are performed in the CPU.
CULLIDE uses clever but simple lemma to prune the
non-colliding objects from possibly colliding objects’ set.
The lemma is: “An object A does not collide with a set of
objects S, when A is fully visible with respect to S.”
CULLIDE keeps potentially colliding objects in a set
which initially includes each and every object in the
scene. Then it prunes the primitives from a potentially
colliding set by rendering in a two-pass algorithm; first
rendering front and then reverse order. Throughout the
rendering, visibility (occlusion) queries remove objects
from potentially colliding list if the object is not visible.
This strategy continues iteratively until no more changes
are made in potentially colliding set (PCS). The
primitives in the final PCS are then made for exact
collision detection. Boldt et. al [25] extended CULLIDE
to handle self collision test. Even though this approach
alleviates Cinder’s restrictions on object topology;
CULLIDE’s effectiveness degrades dramatically when
the density of the environment increases.

Figure 4. Jordan Curve Theorem

Figure 5. Cinder with Virtual semi-infinite ray casting

Volume Based Algorithms

Most of the volume based algorithms are conceptually
founded on the same idea of the image space based
techniques; however, they use different methods to
compute such as layered depth images (LDI), distance
fields etc. These groups of algorithms are also suitable for
GPU implementations. Gundelman et. al [32] proposed
one of the volume based collision detection algorithms.
Assume A and B are objects in the scene and we are
interested to know whether they are colliding or not. This
algorithm works by taking vertices of A and looks them
up in the signed distance function of B. After that, the
vertices of B are looked up in the signed distance
function of A. Each object is represented by a triangular
mesh and the signed distance map. The algorithm in [32]
is for rigid bodies. Thus, both the triangular mesh and
signed distance grid are stored in an object space. This
means that when vertices of A are looked up in B, then
they must be transformed from object space A to object
space B. The drawback of this algorithm is that it is not
tailored for detecting edge-edge intersections.

Bounding Volume Hierarchies

There are two types of spatial data structures for
collision detection: spatial division and bounding volume
hierarchies (BVH). Spatial partitioning recursively
divides the space in which objects are embedded. On the
other hand, BVH recursively or iteratively partitions the
object itself. With spatial partitioning splitting of
polygons is unavoidable. This causes increase of depth of
the tree and so performance is lost. In addition, since cell
size of the spatial partitioning cannot cover objects’
primitives tightly; determining contact status when
objects are close is difficult.

BVHs are more applicable for general shapes than
simplex based and feature based algorithms. They
provide smaller and tighter hierarchies than spatial
partitioning. This is very useful from the accuracy point
of view. BVH can be called as discrete representation of
level of details of objects. At first level, hierarchy
includes one bounding volume and this is very coarse
representation of an object. Further levels include more
detail representations of the object. The leaf level or

1056 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



finest level of the hierarchy generally includes the object
primitives (lines, triangles, or tetrahedra). There is a
parent-child relationship between succeeding levels with
the topology of the tree. Bounding volume (BV) does not
necessarily enclose its children’s bounding volume;
instead it must enclose the geometry of an object that is
included in the children BVs.

BV Traversal: Traversal is testing whether two BVHs
are overlapping or not. If the root BVs are not
overlapping, then we conclude that two objects are not
overlapping. Unfortunately, we cannot say the opposite
because even though objects are not colliding, their BVs
can collide. We must look further down the BVH to
answer the question of whether objects are colliding or
not. We do this by changing one of the root volumes by
its children. This is called descending. Determining
which root volume to descend is called traversal rule.
Generally largest volume is chosen to descend to lower
the chance of finding overlapping. If two volumes are
equal then random choice is made. Non overlapping BVs
are determined by the pair-wise tests between BVs and
next, those non overlapping ones are discarded from
further consideration. This is called pruning. At last in the
traversal, if we reach the two leaf nodes from two distinct
volumes, then we have two choices; whether testing two
primitives are colliding or testing one primitive with the
other’s leaf bounding volume. The first one tests pair-
wise primitives and returns precise description of the
collision. This method has less iteration but more
complexity. The second method skips the testing
primitives rather does primitive leaf BV test. This method
(primitive-volume test) has more iteration but has less
complexity (if the objects are not actually colliding). This
has an advantage when two objects’ primitives are not
colliding since skipping the expensive primitive tests.
However, if objects’ primitives are colliding, after second
methods’ primitive BV overlapping test, we have to test
two primitives anyway. Thus, there is a tradeoff between
the number of iterations and the complexity in the overlap
testing.

Gottschalk et al. [33] states that recursive approach is
often a bad choice since the number of primitives and of
course the hierarchies can be quite large. Therefore,
number of recursive calls would be huge that causes
memory stack overflows. This problem can be solved by
using iterative traversal technique with first-in-first-out
queue. In this method, initially the root BVs are pushed
into the queue then loop starts by popping two root
volumes from the queue and standard overlap test is
applied. If two root volumes overlap, descended volumes
are pushed into the queue. Then those descendents are
processed further in the loop and this process goes on
iteratively. Alternative traversal orders such as breadth-
first (pre-order) or depth-first (post-order or in-order) can
be used .

The idea of using queue to escape from disadvantage of
recursive nature of the algorithm is taken one step further
by [34] and [35] by introducing a priority on the pair-
wise BV tests. This is useful for time critical collision
detection. The idea behind this is that there will be more

than two objects possibly colliding in the scene. All those
possibly colliding objects are determined in the broad-
phase. Thus, all pairs of root passed from broad-phase are
pushed to the queue and given a priority. Priority queue
based traversal algorithm runs until a certain threshold
time is reached. When the time is up, objects are
determined as colliding if they are not pruned yet.

BV Update: Object space (model frame) is fixed with
respect to the object but changing with respect to the
world coordinate system by the movement. When objects
are in the simulation environment, they are in the world
coordinate system (WCS) which is fixed global
coordinate frame. BVHs are generally created from
object space; thus, are also represented in the model
space. When we perform intersection tests between
different objects, we need to bring those hierarchies to the
common representation ground. For this purpose, there
are two methods: the first is transforming one object’s
hierarchy to the other object’s frame, the second is
transforming both objects’ hierarchy into the WCS. In
model space update scheme, since there is only one
bounding volume that needs to be updated, this scheme
provides a performance and a fitting advantage. In
contrary, since WCS update requires both BVs in the
scene to be updated, it is costly. Therefore, model space
updating is preferable to WCS updating.

BVH aligned to a specific frame such as axis aligned
bounding box (AABB) needs to be realigned if rotation
occurs. Some BVHs such as spheres and oriented
bounding boxes are not aligned; therefore, do not require
refitting. Spheres have a unique property that they are
completely independent of the orientation. Only their
positions need to be updated with the movement.
Rotations turn AABB to an oriented bounding box
(OBB). Therefore, to update AABB involves coordinate
transformation and realignment. This problem can be
solved in two ways as illustrated in Figure 6: one is
placing AABB around OBB which is actually rotated
version of the initial AABB (wrapping AABB around
OBB middle image in the Figure 6). The second method
is refitting the AABB for the rotated object.
Notwithstanding, even though refitting provides tighter fit
and early pruning capability, it is not preferred for
computationally expensive simulations.

Figure 6 Updating Bounding box w.r.t. rotation, (a)
AABB of the geometry, (b) Wrapping AABB around

OBB, (c) Refitting of AABB

Different hierarchy update schemes need to be
considered for rigid and deformable bodies. Deformable
bodies usually represented at WCS cause misaligned

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 1057

© 2009 ACADEMY PUBLISHER



initial BVHs. Thus, deformable objects require different
kinds of updates involving rebuilding, rebalancing, and
refitting of BVH.
Complexity vs Performance: An ideal BVH preferred to
be small size, to have small height, to have good pruning
capabilities, and to be balanced. Small heights and
balanced trees result in performance gains. Balanced trees
provide a good overall worst-case seeking complexity.
Good pruning capabilities imply good performance of a
collision query. That means that BVs comparisons should
have a capability of early rejection as much as possible.
This early rejection criterion depends on the topology
choice of the hierarchy (spheres, OBB, AABB etc.) and
tighter fitting. Tighter fitting provides less space usage
and early rejection. In overall, there is a tradeoff between
BVH complexity and performance as shown in Figure 7
[33]. Complex topology choices establish tighter fitted
BVs and so fewer overlap tests but causes performance
lost. On the other hand, less complex hierarchies provide
faster overlap test but less tight BVs. Unfortunately, the
cost of performing an overlap test between two complex
geometries increases with the complexity. Therefore,
using a simpler geometry with cheaper overlap test is
preferable for highly dynamic environments even though
this will cause unnecessary overlap tests. The
measurement of the tightness of the BV is presented by
[36].

Figure 7 Tradeoff between complexity and
performance for BVs [33]

The topology of the BVH has a large impact on the
collision detection query. Usually balanced binary trees
are desired since they have good search properties.
However, Mezger et. al [37] proved that quad-trees
and/or octrees act significantly faster than binary trees
for collision queries. Gottschalk et. al [33] proved that
OBBs are superior over spheres and AABBs for surface
based BVHs. AABBs are preferred choice of deformable
objects [29][38] since AABBs are cost effective for
frequent refitting operations in deformations. Thus,
AABBs overperform OBBs even though OBBs have
better pruning capabilities. However, for volume based
methods, spheres are the most suitable choice
[34][39][40]. To increase the pruning capability of the
BVH, BV should be short and fat rather than being long
and thin. The long and thin topology increases the chance
of overlapping BV with the other BVs which causes
performance lost. In this sense, spherical or cubic BVs
will reduce possible overlapping with other BVs which
implies a better chance for pruning.
BVH construction: There are three main approaches for
hierarchy construction which are top-down, bottom-up,

and incremental methods. Top-down methods are the
most popular methods. They are especially useful when
there are no geometry changes. Bottom-up approaches
are more complicated to implement and have a slower
construction time; however, they usually produce the best
trees. On the other hand, incremental methods (or
insertion methods) generate BVH incrementally. They are
not widely used methods though. Tree is constructed by
inserting one object at a time in the insertion method.
Insertion methods have two main concerns: finding a
place to insert a BV and then updating the hierarchy.

Top-down approach implies fit and split strategy where
BV is fitted to cover all the primitives and the BV
partitioned and this continues until each BV contains a
single primitive. Fitting answers the question of “In a
given BV topology and the geometry, how the smallest
and tightest BV is found”. Partitioning strategies answer
“In a given degree, d, and the geometry, how the
geometry is divided into d groups”.
Partitioning Criteria
These methods have certain criteria which are min-sum,
min-max, and longest side etc. Min-max stands for
minimize the sum of the volumes of the child volumes.
The probability of an intersection between a BV and
either of the two child volumes are expected to be
proportional to their volume. Hence, minimizing the sum
of the volumes minimizes the likelihood of intersection.
Max-min approach is choosing the axis that minimizes
the larger of the volumes of the two resulting children.
Although the previous approach results in one volume
much larger than the other, this (max-min) strategy makes
the larger volume as small as possible which leads to
more equal volumes. Longest side method is selecting the
axis along the longest BV. The last method is not suitable
for spheres; however, suitable for OBBs, AABBs, k-
DOPs BV types. We can extend Klosowski’s criteria in
[41] with Min-int, Max-sep, and Divide equally criteria.
Min-int is another strategy that minimizes the volume of
the intersection of the child volumes. This approach has
the potential to decrease the probability of both children
being overlapped and traversed into. Max-sep is a
strategy of the separation of the child volumes. Even
though children are not overlapping, separation of
children can further decrease the probability of both
children being traversed into. Another strategy is dividing
primitives equally between the child volumes. This
strategy is also called as median-cut algorithm. In this
algorithm, the BV is divided in two equal size parts with
respect to their projection along the selected axis which
results in balanced trees.
Fitting
It is also called finding smallest enclosing volume. There
are many types of bounding volumes presented in the
literature. However, spheres, AABBs, and OBBs are most
widely used ones.
Welzl algorithm to find minimum bounding sphere is
presented in [42]-[44]. Welzl algorithm is applicable to
both bounding circles in 2D and bounding spheres in 3D.
Welzl algorithm does not compute the minimum sphere

1058 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



bounding the other spheres. Solution to this problem is
given in [44].
Splitting

BV splitting methods (or partitioning methods) are
usually based on the idea of: first; determining splitting
axis to indicate a direction of splitting, second;
calculation of splitting point on the already determined
splitting axis, third; defining splitting plane or dividing
plane by making splitting axis’ direction as normal vector
of the splitting plane and containing splitting point on the
plane. Splitting stops or sometimes fails when some
particular stop or fail criterion is reached. Stop criteria are
for instance; the node that contains only a single
primitive, the BVs that reach the certain threshold
volume, or depth of the hierarchy that reaches the
predefined depth. Fail criteria results in early termination
of the algorithm they include situations where all
primitives fall on one side of the split plane, child
volumes or one of them ends up with nearly as many
primitives as the parent volume, or child volumes are as
large as the parent volume.

Figure 8 a) Bad splitting (left), b) Good Splitting
(right) examples

Splitting Axis
Klosowski et. al [41] proposed to choose splitting plane

orthogonal to local x, y, or z coordinate axis. This is very
simple and fast approach. Longest side method is another
approach for finding splitting axis by selecting the axis
along which BV is longest. Another simple method is
using already existing axis of bounding volume as
splitting axis. In this case BV cannot be sphere since
spheres do not have any associated axis. The last and the
most accurate method is statistics based method which
aligns the splitting axis along the axis where the
covariance is the largest.
Splitting Point

Subsequent to splitting axis determination split point
needs to be chosen since there are infinite numbers of
possible splitting points along the splitting axis. Again the
choice for the point must be restricted to a small set of
points with the following strategies: object median, object
mean, spatial median, BV projection, and centroid
coordinates. Object median method is splitting at the
object’s median calculated from primitives’ centers.
Cormen et. al [45] reduced the cost of median finding by
using a sophisticated method. Klosowski et. al [41]
reports that using the object mean is superior to using the
object median since resulting smaller volume trees with a
lower number of operations performed and better query
times. Splitting at the spatial median is another method
which is equal to splitting the volume to two equal parts.
In this technique, split point is found in constant time

because this method only deals with the BV not the data
included in the BV. This approach is used when the axis
is selected from the parent volume such as that used in
the longest side rule. BV projection method splits BV
projection into evenly spaced points and instead of
spending the time for intelligent point guessing, it spends
the time for finding best splitting point among those
evenly spaced points by using brute force methodology.
The centroid coordinates method finds splitting point
between random subset of the centroid coordinates.
Figure 9 shows some of these methods.

Figure 9 Splitting at (a) the object median, (c) the
object mean, (c) the spatial median

BVH for Deformable Objects

Deformable objects are very challenging for BVH.
Deformations can make representation of the object’s
geometry with BVH useless. Since it is impossible to
reconstruct the BVH for each time step from scratch for
complex objects and deformations, it is necessary to find
better approaches. [46]-[50], and [37] investigate faster
approach to refit the currently misaligned BVH tree by
using bottom-up update scheme. There are certain
drawbacks of these studies. One is coming from the
nature of the bottom-up scheme that an update requires
one to traverse the entire BVH. The second problem with
the bottom-up update is that not all BV types can be
updated very fast. The third problem with bottom-up
scheme is that pruning capabilities of BV can be damaged
during the update due to a possible increase among
sibling BVs. Instead of bottom-up scheme, top-down
scheme can be used in certain situations; however, both
have deficiencies at times. Therefore, Larsson et. al [38]
proposed hybrid approach to benefit from both schemes’
advantages. Recently, deformable spanners [53] have
been proposed to encode all proximity information which
may turn out to be very useful for deformable and rigid
bodies’ collision detections. Deformable spanners are
geometry independent (means that the geometry can be
open, close, convex or concave) proximity queries with
different resolutions that makes the deformable spanners
very useful for surgical simulations. However, it may be
difficult to get real time performance out of the
deformable spanners without further algorithmic
improvements.

Ultimate goal for collision detection researchers is
development of new algorithms that handle rigid and
deformable bodies, self collisions, convex and non-
convex or open and close geometries and process all in

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 1059

© 2009 ACADEMY PUBLISHER



real-time. To that end, deformable spanner can be a good
solution for abovementioned requirements. Thus, we will
introduce an example construction of deformable spanner
in the next section.

IV. DEFORMABLE SPANNER CONSTRUCTION

In order to have concrete grasp of deformable
spanner’s hierarchy (called balls hierarchy in this study)
we need to exploit hierarchy construction steps which are
illustrated by step-by-step example where minimum
radius r =0.3, expansion ratio � =3, and neighbor distance
� = 3.2 are selected. For simplicity of explanation, 3
static 2D points are chosen which are {4,4}, {4,5}, and
{5,5} respectively. Node IDs are given for avoiding
confusions on nodes at each level.

Construction process is started with an arbitrarily
chosen point. Each arbitrary chosen point leads to a
different hierarchy structure; in other words hierarchy is
canonical, meaning that with different insertion orders
equally good deformable spanner can be constructed.
Figure 10 shows insertion process of the first point
P0={5,5} and corresponding tree hierarchy.

Figure 10. Insertion of first point

Since there is no other point inserted in the hierarchy
yet, P0 is parent of itself in the first level (Level 1) with
0.9 radius (minradius* �Level). Bottom level (Level 0) with
radius 0.3 includes P0 itself. Second point to be inserted is
P1={4,4}. First, the perimeter of radius 0.3 is searched
(see Figure 11). Due to the absence of points in this
perimeter, P1 goes one level up. Now, the new perimeter
for P1 is 0.9. This is the new range that will be searched.
Since there is no point involved in this perimeter of P1, P1

will be (node id 4) parent of itself. This creates virtual
edge which is represented as vertical straight line in the
illustrations. Following the insertion, edge between nodes
1 and 2 is created since distance between nodes with IDs
1 and 2 is less than neighbor coefficient � times the
radius at that level which is 0.9 (<=� *0.9) (see Figure
11, white straight line). Hierarchy construction process is
still incomplete for two points. After second points’
insertion, root of the tree must be determined. When the
situation like equality holds between two nodes which are
competing to be new root or parent, one of them is
arbitrarily chosen. Whichever has fewer children , can be
chosen as a root or parent of the other one. In this
situation, importance of Lemma 4, 5, 6, and 7 become
more obvious. For instance, a node which has already
reached or almost reached its maximum number of
children can be skipped in selection process as a root or
parent in the implementation.

In our illustrations in Figure 11 and Figure 12, node 2
is arbitrarily chosen as a new root. Node ID of this new
virtual node is 3. Figure 12 shows insertion of P2={4,5}.
First, vicinity of P2 with radius 0.3 is searched. Since
there is no point in the perimeter, P2 is allowed to go to
upper level (Level 1). It is now parent of itself with node
ID 5 and radius 0.9. At that level, node 5 is neighbor of
nodes 2 and 1 since distance among them is smaller than
�*0.9. There will be neighbor edge among nodes 1,2, and
5 which are illustrated as dashed lines in Figure 13.
Corresponding tree representations are also shown in the
same figure. Node 5 is included in the node 3’s radius
which is 2.7 (0.3*�Level 2 = 0.3*(3)2 = 2.7); thus, it is
not permitted to go to the upper level.

Figure 11. Insertion of second point and neighbor
relation

Figure 12. Insertion of third point

Figure 13. Final tree structure

An efficient neighborhood coefficient �, expansion
ratio �, and minimum radius r selection process has
profound impact on the balls hierarchy. These parameters
will be application specific; therefore, these parameters
must be selected with careful analyses or using trial and
error procedure. A small value for the neighborhood
coefficient makes hierarchy enormous and inefficient; on
the contrary, a large value of the coefficient adds many
useless edges to the hierarchy. In order to perform a
spanner construction, a user must be able to estimate the
minimum radius of the hierarchy at the bottom level

1060 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



which will affect the efficiency of the application.
Smaller radius values result in larger hierarchies;
however, it provides better accuracy and pruning
capabilities during hierarchy traversal. Expansion ratio
(�) has also very important impact on the hierarchy. It
affects the efficiency of the spanner. Smaller values of
expansion ratio also increase the unnecessary number of
edges included in the hierarchy and makes hierarchy
extremely large. However, larger values of expansion
ratio can result in faster construction time and lower the
accuracy and pruning capabilities. If point sets are
geometrically close to each other, hierarchy level will
decrease. However, number of children belonging to a
parent will increase. If points are far away from each
other, hierarchy level and virtual edges (vertical lines in)
increase whereas average number of children decrease.

V. CONCLUSION

We have classified collision detection algorithms into two
groups; broad and narrow phase. Spatial partitioning and
bounding volumes are well-known examples of the
broad-phase. Feature based (FB), simplex based (SB),
ISB, volume based, and bounding volume based
algorithms belong to a group of algorithms in narrow-
phase. FB approach only works for closed objects and it
is not known how algorithm behaves in degenerate
conditions. Problem with FB algorithms is that it does not
terminate when presented with penetrating polyhedra. SB
methods are only for convex objects. ISB techniques
require close objects in the scene and cannot detect self
collisions. Also, collisions that are about to happen or
have already occurred will not be detected in ISB.
Therefore, FB, SB, and ISB are not considerable for
dynamic simulations and deformations e.g. surgical
simulations. Those methods cannot handle open objects
which occur during the surgical procedures such as
incision. With spatial partitioning, splitting of polygons is
unavoidable and determination of cell size is very
difficult. Therefore, when objects are close, determining
contact status is difficult. BVHs are generally most
suitable for collision detections but they are highly
dependent to the topology choice of the hierarchy. There
is a trade off between complexity of the topology of BV
and construction cost. For deformable objects, BVs
require different kind of update involving rebuilding,
rebalancing, and refitting of BVH. There is still no well-
informed hierarchy update scheme for deformations in
that deformable spanners may introduce.

ACKNOWLEDGMENT

The authors wish to thank Dr. N. Samadi for his
valuable comments and feedback.

REFERENCES

[1] P. M. Hubbard, “Interactive Collision Detection”, In
Proceedings of the IEEE Symposium on Research
Frontiers in Virtual Reality, 1993, pp.24-32.

[2] Physics-Based Animation, Kenny Erleben et al. Charles
River Media, 2005

[3] Real-time Collision Detection, Christer Ericson, Morgan
Kaufman, 2005.

[4] Computational Geometry in C, O’Rourke, 2005.
[5] D. Baraff, A. Witkin, J. Anderson, and M. Kass, “Physical

Based Modelling”, SIGGRAPH Course Notes, 2003.
[6] M. C. Lin, and D. Manocha, “Efficient Contact

Determination between Geometric Models”, Technical
Report TR94-024, The University of North Carolina at
Chapel Hill, Dept. of Computer Science, 1994.

[7] B. Mirtich, “Impulse Based Dynamic Simulation of Rigid
Body Systems”, Phd. Thesis, University of California,
Berkley, 1996.

[8] M. Moore, and J. Williams, “Collision Detection and
Response for Computer Animation”, In Computer
Graphics, vol. 22, pp. 289-298, 1988.

[9] M. Lin and J. Canny, “A fast Algorithm for Incremental
Distance Calculation”, Proc. of the 1991 IEEE
International Conference on Robotics and Automation, pp.
1008-1014, 1991.

[10] B. Mirtich, “V-Clip: Fast and Robust Polyhedral Collision
Detection”, ACM Transactions on Graphics, vol. 17(3), pp.
177-208, 1998.

[11] S. A. Ehmann, and M. Lin, “Accelerated Proximity
Queries between Convex Polyhedra by Multi-level
Voronoi Marching”, IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2000, vol. 3, pp.
2101-2106, 2000.

[12] S. A. Ehmann and M.C. Lin, “Swift: Accelerated
Proximity Queries between Convex Polyhedra by Multi-
level Voronoi Marching”, Technical Report, Computer
Science Dept., University of North Carolina at Chapel Hill,
http://www.cs.unc.edu/~geom/SWIFT/, 2000.

[13] B. Benes and N. G. Villanueva, “GI_COLLIDE- Collision
Detection with Geometry Images”, In SCCG 2005, Proc.
of the Spring Conference on Computer Graphics, pp.95-
102, 2005

[14] oss.sgi.com/projects/ogl-
example/registry/ARB/occlusion_query.txt, SGI 2005

[15] M. Shinya and M.C. Forgue, “Interference detection
through rasterization”, Journal of Visualization and
Computer Animation 2, pp. 132-134, 1991

[16] K. Myszkowski, O.G. Okunev, and T. L. Kunii, “Fast
Collision Detection Between complex Solids using
Rasterizing graphics Hardware”, Visual Comput. 11, pp.
497-512, 1995

[17] J.-C. Lombardo, M.-P. Cani, and F. Neyret, “Real-time
Collision Detection for Virtual Surgery”, in proc. of
Computer Animation, Geneva, Switzerland, pp. 82-90,
1999

[18] G. Baciu and W.S.-K. Wong, “Hardware Assisted self
collision for deformable surfaces”, in Proc. of the ACM
Symposium on Virtual Reality Software and Technology
(VRST), ACM press, pp. 129-136, 2002

[19] G. Baciu and W.S.-K. Wong, “Image based techniques in a
hybrid collision detector”, IEEE Trans. On Visualization
and Computer Graphics 9, pp. 254-271, 2003

[20] K. E Hoff, A. Zaferakis, M. Lin, and D. Manocha, “Fast
and Simple 2D Geometric Proximity Queries Using
Graphics Hardware”, In Proc. Of ACM Symposium on
Interactive 3D Graphics, pp. 145-148, 2001.

[21] D. Knott and D. Pai, “Cinder: Collision and Interference
Detection in Real–time Using Graphics Hardware”, In
Proc. of Graphics Interface ’03, 2003.

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 1061

© 2009 ACADEMY PUBLISHER



[22] B. Heidelberger, M. Teschner, and M. Gross, “Volumetric
Collision Detection for Deformable Objects”, Technical
Report #395, Computer Science Dept., ETH Zurich, 2003.

[23] B. Heidelberger, M. Teschner, and M. Gross, “Detection of
Collisions and Self-collisions Using Image-space
Technique”, In Proc. WSCG, pp. 145-152, Plzen, Czech
Republic, 2004

[24] N. Govindraju, S. Redon, M. Lin, and D. Manocha,
“CULLIDE: Interactive Collision Detection between
Complex Models in Large Environments Using Graphics
Hardware”, ACM SIGGRAPH/Eurographics Graphics
Hardware, 2003.

[25] N. Boldt and J. Meyer, “Self-intersections with
CULLIDE”, DIKU project # 04-02-19, the department of
Computer Science at the University of Copenhagen, 2004.

[26] E. Gilbert, D. Johnson, and S. Keerthi, “A Fast Procedure
for Computing the Distance Between Complex Objects in
Three-dimensional Space”, IEEE Journal of Robotics and
Automation, vol. 4, pp. 193-203, 1988.

[27] S. Cameron, “Enhancing GJK: Computing Minimum and
Penetration Distances Between Convex Polyhedra”, IEEE
Int. Conf. Robotics and Automation, vol. 4, pp. 3112-3117,
Albuquerque, NM, USA,1997.

[28] G. v. d. Bergen, “A Fast and Robust GJK Implementation
for Collision Detection of Convex Objects”, Journal of
Graphics Tools, vol. 4(2), pp. 7-25, 1999.

[29] G. v. d. Bergen, “Proximity Queries and Penetration
Depth Computation on 3D Game Objects”, Proc. Game
Developers Conf., 2001.

[30] G. v. d. Bergen, “Collision Detection in Interactive 3D
Environments”, Interactive 3D Technology Series, Morgan
Kaufmann, 2003.

[31] E. Gilbert and Chek-P. Foo, “Computing the Distance
between General Convex Objects in Three-dimensional
Space”, IEEE Transactions on Robotics and Automation,
vol. 6, no. 1, pp.53-61, 1990.

[32] E. Gundelman, R. Bridson, and R. Fedkiw, “Nonconvex
Rigid Bodieswith Stacking”, ACM Transaction on
Graphics, Proc. of ACM SIGGRAPH, 2003.

[33] S. Gottschalk, “Collision Queries Using Oriented
Bounding Boxes”, Phd. Thesis, Dept. of Computer
Science, University of N. Carolina at Chapel Hill, 2000.

[34] C. O’Sullivan, and J. Dinglina, “Real-time Collision
Detection and Response Using Sphere-trees”, 1999.

[35] J. Dingliana and C. O’Sullivan, “Graceful Degradation of
Collision Handling in Physically Based Animation”,
Computer Graphics Forum Proc. Eurographics, vol. 19, no.
3 , pp 239-247, 2000.

[36] G. Zachmann and E. Langetepe, “Geometric Data
Structures for Computer Graphics”, SIGGRAPH 2003
Course Notes, 2003.

[37] J. Mezger, S. Kimmerle, and O. Etzmuss, “Hierarchical
Techniques in Collision Detection for Cloth Animation”,
Journal of Winter School of Computer Graphics (WSCG)
vol. 11, no. 2, pp. 322-329, 2003.

[38] T. Larsson and T. Akenine-Moller, “Collision detection
for continuously deforming bodies”, in Proc. of
Eurographics, pp. 325-333, 2001

[39] P. M. Hubbard, “Approximating Polyhedra with Spheres
for Time-critical Collision Detection”, ACM Transactions
on Graphics, vol. 15, no. 3, pp.179-210, 1996.

[40] G. Bradshaw and C. O’Sullivan, “Adaptive Medial-xis
Approximation for Sphere-tree Construction”, ACM
Transactions on Graphics, vol. 23, no. 1, pp. 1-26, 2004.

[41] J. T. Klosowski, “Efficient Collision Detection for
Interactive 3D Graphics and Virtual Environments”, PhD
thesis, State Univ. of New York at Stony Brook, 1998.

[42] E. Welzl, “Smallest Enclosing Disks (balls and
ellipsoids)”, In H. Maurer, editor, New Results and New
Trends in Computer Science, LNCS, Springer 1991.

[43] M. D. Berg, M. van Kreveld, M. Overmars, and O.
Schwarzkopf, “Computational Geometry: Algorithms and
Applications”, Springer-Verlag, 1997.

[44] K. Fischer and B. Gartner, “The Smallest Enclosing Ball of
Balls: Combinatorial Structure and Algorithms”, Proc. of
19th Annual Symposium on Computational Geometry
(SCG), pp. 291-301, 2003.

[45] T. Cormen, C. Leiserson, and R. Rivest, “Introduction to
Algorithms”, MIT Press, 1990.

[46] G. v. d. Bergen, “Efficient Collision detection of Complex
Deformable Models Using AABB Trees”1997,

[47] P. Volino, and N. M. Thalmann, “Collision and Self-
collision Detection: Efficient and Robust Solutions for
Highly Deformable Surfaces”, Technical Report,
MIRALab, 1998.

[48] P. Volino and N. M. Thalmann, “Virtual Clothing: Theory
and Practice”, Springer-Verlag Berlin Heidalbarg, 2000.

[49] R. Bridson, R. Fedkiw, and J. Anderson, “Robust
Treatment of Collisions, Contact and Friction for Cloth
Animation”, Proc. of ACM SIGGRAPH, vol. 21, no. 3, pp.
594-603, 2002.

[50] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger,
Laks Raghupathi, A. Fuhrmann, Marie-Paule Cani,
François Faure, N. Magnetat-Thalmann, W. Strasser,
"Collision Detection for Deformable Objects",
Eurographics State-of-the-Art Report (EG-STAR), 2004,
pp 119-139.

[51] B. Heidelberger, M. Teschner, and M. Gross, "Detection
of collisions and self-collisions using image-space
techniques". Journal of WSCG, vol. 12, no. 1-3, 2004.

[52] T. Larsson and T. Akenine-Moller , “A dynamic bounding
volumehierarchy for generalized collision detection”,
Computers & Graphics, vol 30, no 3, pp 451-460, Elsevier
Ltd, 2006.

[53] J. Gao, L. J. Guibas, and A. Nguyen, “Deformable
spanners and applications”, Computational Geometry:
theory and applications, vol. 35, issue 1, pp. 2-19, 2006.

[54] K. Elissa, “Title of paper if known,” unpublished.

S. Kockara was born in Sivas, Turkey. He received the B.
Sc. in 2002 from Computer Engineering Department at Dokuz
Eylul University, Izmir, Turkey and a Ph. D. degree from
Department of Applied Science at University of Arkansas at
Little Rock, AR, USA, in June 2008. He has been with the
University of Central Arkansas at Computer Science
Department since August of 2008 as a tenure track Assistant
Professor.

His research interests include surgical simulations, collision
detection, virtual and augmented reality, immersive
environments, computer graphics, image processing, and
biomedical engineering. He haspublished over 15 technical
papers including 2 in IEEE Transactions. He also has a book
chapter in Data Engineering: Mining, Information, and
Intelligence published by Springer (2008). He has been a
member of Alpha Epsilon Lambda, the National Honor Society
for Graduate Students since May 2008.

1062 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER



T. Halic was born in Manisa, Turkey. He received the B. Sc.
in 2002 from Computer Engineering Department at Marmara
University, Istanbul, Turkey. He is currently a Ph. D. student at
Department of Mechanical, Aerospace
and Nuclear Engineering in Rensselaer Polytechnic Institute,
Troy, NY, USA. He has been with the University of Arkansas at
Little Rock, Applied Science Department since August of 2005
as a graduate student.

His research interests include surgical simulations, finite
element modeling, and physics based soft tissue deformation by
using finite element model, mass-spring model, and geometric
models. He delved into details of general purpose graphical
processing unit computations. He was graduated as an honor
graduate student from the University of Arkansas at Little Rock.

C. Bayrak was born in Torul, Turkey. He holds a BS from
Slippery Rock University in 1985, and a MS from Texas Tech
University in 1989, and Ph.D. from Southern Methodist
University in 1994 in Computer Science, TX, USA.

Currently is a professor in the department of Computer
Science at the University of Arkansas at Little Rock. He also
has been serving on the Faculty of Applied Science since 2000.
His primary research is in the intersection of software
engineering, component based development, data mining, and
Biomedical Engineering. However, he also has interest in
modeling and simulation, cellular automata, and monitoring and
control. Dr. Bayrak has published over forty research articles in
scientific conferences and journals, given tutorials at major
conferences, and served on program committees for numerous
international conferences and symposiums.

He is a senior member of IEEE and ACM professional
organizations

K. Iqbal was born in Pakistan. He holds BE from Avionics
Engineering at NED university of Engineering and
Technology., Pakistan. He has Ph.D. and MS from Electrical
Engineering at Ohio State University, Ohio, USA. He also holds
MBA from the same institute. He is currently Associate
Professor at Department of Systems Engineering in University
of Arkansas at Little Rock. His research interests include
control systems, biomechanics, motor control, postural stability,
movement coordination.

He is a senior member of IEEE.

R. A. Rowe was born in Georgia, USA. Richard A. Rowe,
M.D., is an associate professor for the Department of
Neurosurgery in the College of Medicine and a neurosurgeon at
Arkansas Cancer Research Center at the University of Arkansas
for Medical Sciences (UAMS). He earned his medical degree at
Emory University School of Medicine in Atlanta, Georgia and
served a surgical internship at Emory University School of
Medicine Affiliated Hospitals. He completed a research
fellowship and a residency in neurosurgery at the Medical
College of Georgia, Department of Surgery, in Augusta,
Georgia. He also completed a fellowship in skull base
neurosurgery at UAMS. He has investigated computer
simulation technology in depth and has presented widely on the
benefits of virtual reality simulators in various aspects of
neurosurgery. He has also developed several software packages,
including Microvascular Atlas of the Head and Neck and
Neuroanatomy: An Electronic Atlas. He is certified by the
American Board of Neurological Surgery and is a member of

the American Medical Association and the Congress of
Neurological Surgeons.

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 1063

© 2009 ACADEMY PUBLISHER




