
Modeling and Analysis of Multi-agent Systems
using Petri Nets

Jose R. Celaya, Alan A. Desrochers, and Robert J. Graves
Email: jcelaya@mail.arc.nasa.gov, aad@ecse.rpi.edu, and Robert.Graves@Dartmouth.edu

Abstract—The development of theoretical-based methods
for the assessment of multi-agent systems properties is of
critical importance. This work investigates methodologies
for modeling, analysis and design of multi-agent systems.
Multi-agent systems are regarded as discrete-event dynamic
systems and Petri nets are used as a modeling tool to assess
the structural properties of the multi-agent system. Our
methodology consists of defining a simple multi-agent system
based on the abstract architecture for intelligent agents.
The abstract architecture is modeled using Petri nets and
structural analysis of the net provides an assessment of the
interaction properties of the multi-agent system. Deadlock
avoidance in the multi-agent system is considered and it is
evaluated using liveness and boundedness properties of the
Petri net model.

Index Terms—Petri nets, multi-agent systems, deadlock.

I. INTRODUCTION

Multi-agent systems have been studied for the past few
decades. Several multi-agent systems frameworks have
been defined in order to apply the multi-agent system con-
cept to different applications in control and optimization
of complex systems [1]–[4]. An agent is a computer sys-
tem or computer program that presents several complex
characteristics. The most important characteristic of an
agent is that of autonomy. An intelligent agent inhabits
an environment and is capable of conducting autonomous
actions in order to satisfy its design objective [3], [5]–[7].
An intelligent agent or autonomous agent is an agent that
presents some degree of autonomous flexibility by being
reactive, pro-active and perhaps sociable [3]. This flexible
autonomy is a building block in a multi-agent system.
In a multi-agent system, several agents communicate and
interact in order to solve a complex problem.

Several interaction frameworks have been defined and
they range from collaboration among agents, through
competition for resources requiring some level of ne-
gotiation in the multi-agent system [3], [7]. In general,
the multi-agent system is expected to work properly in a

J. R. Celaya is with the Research Institute for Advanced Computer
Science at NASA Ames Research Center, Moffett Field, CA 94035;
previously with the Decision Sciences and Engineering Systems De-
partment, Rensselaer Polytechnic Institute, Troy, New York 12180.

A. A. Desrochers is with the Electrical, Computer, and Systems
Engineering Department, Rensselaer Polytechnic Institute, Troy, New
York 12180 (corresponding author phone: 518-276-6718; fax: 518-276-
8715; e-mail: aad@ecse.rpi.edu).

R. J. Graves is the Krehbiel Professor of Emerging Technologies,
Thayer School of Engineering, Dartmouth College, Hanover, New
Hampshire 03755.

dynamic large-scale complex environment (open environ-
ment) by having autonomy, adaptability, robustness, and
flexibility.

This work presents analytical methodologies for mod-
eling and analysis of multi-agent systems. Multi-agent
systems are regarded as discrete-event dynamic systems
and Petri nets are used as a modeling tool to assess
properties of the system.

This document is organized as follows. The problem
statement and related work are presented next. Section II
presents a brief introduction to multi-agent systems which
considers the abstract architecture of intelligent agents, as
well as a description of communication and interaction in
multi-agent system. Section III presents an introduction
to Petri nets. Section IV shows a simple multi-agent
system which is modeled with the abstract architecture for
intelligent agents as well as Petri nets. Section V presents
a methodology to model and analyze multi-agent systems
with indirect communication. Finally, section VI discusses
the results.

A. Motivation

The complexity and capabilities of a multi-agent system
are greater than those presented in distributed software
systems. In both cases the study of system properties is
becoming more important due to the fact that we are
faced more and more with dealing with large complex
dynamic systems. Computer simulation is generally used
to assess system properties and to verify that the system
is achieving its design objectives. An important challenge
in this field is the development of analytical methods
to assess key properties of such systems [1], [8]. Such
methods could be used to provide a preliminary analysis
of the multi-agent system, providing design and operation
feedback before the development of expensive simulation
models.

B. Problem statement

A multi-agent system can be studied as a computer
system that is concurrent, asynchronous, stochastic and
distributed. These characteristics of multi-agent systems
make them also a discrete-event dynamic system, and
these have been studied under several analytical method-
ologies, particularly Petri nets. Petri nets have a well-
defined mathematical structure that can be leveraged to
provide formal analysis on discrete-event systems. In
addition, Petri Nets have been successfully used in several

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 981

© 2009 ACADEMY PUBLISHER

areas for the modeling and analysis of distributed systems
[9], flexible manufacturing systems [10]–[13], concurrent
and parallel programs [14], [15]. From the discrete-
event dynamic system (DEDS) point of view, multi-agent
systems lack analysis and design methodologies. Petri
net methods are used in this work to develop analytical
methodologies for such systems.

As mentioned earlier, there are several frameworks and
applications of multi-agent systems. High-level design is
considered here as the actual architecture of individual
agents, and the communication and interaction frame-
works to use. This work focuses on the interaction level,
and studies the interactions between different agents in the
system. This will provide insight in how the interaction
impacts the operation and performance of the multi-agent
system.

C. Methodology

The problem addressed in this study can be considered
in two parts: properties, and methodologies for modeling
and analysis.

1) Properties: If a multi-agent system is regarded as
a discrete-event system and modeled using Petri nets,
then properties known to be important in the discrete-
event systems and Petri net domains could be used to
study multi-agent systems. There are properties we would
like to analyze and demonstrate for multi-agent systems.
Examples of these are boundedness and liveness as related
to deadlock avoidance in the Petri net domain. These
properties from the Petri net domain could be related to
characteristics of the communication and interaction of
the multi-agent system. If modeled properly, a deadlock
found in a Petri net domain will mean that the interaction
mechanism in use in the multi-agent system is prone to
deadlocks in the interaction among individual agents.

2) Methodologies for modeling and analysis: Consid-
ering that a multi-agent system can be regarded as a
discrete-event system, Petri nets can be used as a mod-
eling tool. This will require methodologies for mapping
multi-agent systems into Petri net models. These method-
ologies will require the right level of detail/abstraction
in order to map all the important behaviors of the com-
munication and interaction framework into the resulting
Petri net models. Having Petri net models of multi-agent
systems will allow us to use the existing analysis method-
ologies for Petri nets. Important properties of discrete-
event systems will be obtained with Petri net analysis
methods such as the reachability graph and the analysis
of the network invariants.

D. Related work

Petri nets and Petri net extension methodologies have
been used to model systems with more than one agent.
Murata et al. [16] presented an algorithm to construct
predicate/transition models of robotic operations. Basi-
cally, robot actions were considered as firing transitions
and the model was used for the planning of concurrent

activities of multiple robots (agents). Even though the
robotic system considered does not have direct interaction
between the agents, the model used shows the ability of
the Petri net-like models to capture interactions between
the agents that are not evident in the design process. In a
similar way, Xu et al. [17] proposed a methodology based
on predicate/transition nets for multiple agents under
static planning of activities. In addition, they proposed
a validation algorithm for plans with parallel activities.
The verification is done based on reachability graphs due
to the fact that agents actions are modeled as transitions.
Petri nets also have been used to model specific multi-
agent system frameworks but the resulting models have
not been used to provide a study of the properties of
the multi-agent system. Ahn et al. [18] proposed a multi-
agent system architecture for distributed and collaborative
supply-chain management. A Petri net model is presented
but no structural analysis of the model and no verification
of the coordination activities were performed. The work
of Leitao et al. [19], proposed a Petri net model approach
to formal specification of holonic control systems for
manufacturing. They developed a Petri net submodel for
each of the four types of holons (agents) suggested in
the ADACOR (Adaptive Holonic Control Architecture for
Distributed Manufacturing Systems) architecture. There
was no attempt to study the structural properties of the
Petri net model in order to assess some sort of depend-
ability in the proposed architecture.

II. MULTI-AGENT SYSTEMS

The architecture of the agents in a multi-agent system
and the interaction among them are the two main aspects
in a multi-agent system framework. The architecture of
an agent can be reactive, deliberative or a hybrid of
both. The concepts from single agents as “perception
and action,” and “belief, desire and intention” are being
extrapolated to the concept of multi-agent systems [3].
Several interaction frameworks have been presented in the
literature.

The interactions between agents can be either a di-
rect agent-to-agent interaction or an indirect interaction.
Indirect interactions are based on the environment. In
the indirect interaction, an agent modifies another agent’s
environment triggering a reaction. The indirect interaction
occurs in the cases when two or more agents share
a subset of the environment. An agent that is part of
the multi-agent system has its own environment that is
somehow related to the meta level environment of the
multi-agent system. This meta level environment of the
multi-agent system is described in the literature as being
an open environment. A complex problem will provide
an open environment, which is dynamic, has components
that are unknown in advance; its structure changes over
time and might be heterogeneous in its implementation
[8].

The abstract architecture of a single intelligent agent
is presented by Wooldridge in [3] and [7] allows the
representation of reactive, deliberative or hybrid agents

982 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

in a higher level of abstraction. It is based on the concept
of perception and action where the agent is assumed to
be living in an environment and reacting to changes on
it [5]. The level of abstraction of agents modeled by the
abstract architecture makes it a good candidate for a study
of multi-agent systems as discrete-event dynamic systems.
The concepts of the single agent abstract architecture
can be extrapolated to multi-agent systems by assuming
first a very simple communication and interaction scheme
between the agents.

A. Intelligent agent architectures

Abstract architecture for intelligent agents: The abstract
architecture models how an agent behaves with respect
to changes in its environment. Here, an agent has its own
environment and this environment is defined by the nature
of the agent. The goals, objectives and the general purpose
of the agent define its environment.

The environment of an agent only considers those
things that matter to that specific agent. Consider two
agents controlling different elements of a manufacturing
cell. For example one agent controlling a conveyor belt
and the other agent controlling an assembly operation.
The environment of each of the agents will be different.
This does not mean that these environments are indepen-
dent from each other. In fact, actions taken by one agent
could result eventually in a change in the environment of
the other agent.

The block diagram of figure 1 shows how the agent
works. The Perception block records the changes in the
state of the environment. The Action block computes the
actions to be taken in order to change the environment.
The agent environment changes based on the actions
applied by the agent, as well as actions by other agents,
and it may be dynamic in that it may change by itself.

An agent can also have an internal state as a deci-
sion mechanism for the actions to undertake. An agent
with perception and internal state capabilities has more
computational power than an agent without them and
its computational power is now comparable with that of
the Belief-Desired-Intention architecture as described by
Wooldridge in [7].

Definition 1: (Purely reactive agents with no internal
state) The environment consists of a set of states S =
{s1, s2, · · ·}. The agent can undertake a set of actions
A = {a1, a2, · · ·} and perceive a set of percepts P =
{p1, p2, · · ·}. For a purely reactive agent, the behavior of
the agent can be represented as the function

action : P 7→ A (1)

for the action block (refer to figure 1), and the function

perception : S 7→ P (2)

for the perception block. The deterministic behavior of an
environment can be represented by the function

environment : S ×A 7→ S. (3)

perception(s) action(p)

environment(s,a)

P

AS

AGENT

ENVIRONMENT

Fig. 1. Agent abstract architecture block diagram.

The perception part has to do with the way the agent
senses the environment, which is called a percept. The
perception function maps the environment state into a
percept.

Having the perception mechanism provides a complete
and more general characterization of the agent’s abstract
architecture by separating the sensory capabilities (per-
ception) from the decision making capabilities (action). It
is intended to represent the agent’s capability of sensing
the environment. Suppose that the agent will take the same
actions for environmental states s1 and s2. This means
that both states have the same percept: perception(s1) =
perception(s2) = p1, and then the action function will
execute the same action as if it depends on the percepts
instead of the environmental state.

Agents can also be defined with an internal state and the
actions that the agents undertake depend on the internal
state only. Figure 2 presents a block diagram of the
complete abstract architecture. From this we can see that
the capabilities of the abstract architecture previously pre-
sented are now enhanced in the complete definition, but
the essential perception/action paradigm is still consistent.
An intelligent agent with internal state will react to the
changes in its internal state instead of reacting directly
to the changes in the environment. The internal state
will then change based on changes in the environment
as processed by the perception mechanism.

Definition 2: (Purely reactive agents with internal
state) Let a discrete set I = {i1, i2, · · ·} be the set of all
internal states, and S and P be the set of environmental
states and percepts respectively as described in defini-
tion 1. Then the action(·) function will be defined as
action : I 7→ A where A is the set of actions as described
before. Since the agent’s actions are now dictated by
the evolution of the internal state and not that of the
environment, an additional function is needed to describe
that evolution as a function of the percepts and the current
state; that function is defined as new state : I ×P 7→ I .
An execution loop is defined for the complete abstract
architecture in [7].

B. Communication and interaction

The communication in multi-agent systems is the way
agents exchange and interpret messages among them-
selves, it is concerned with the language to be used and its

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 983

© 2009 ACADEMY PUBLISHER

Environment
Agent A

perception

new_state

action

Internal
State

Fig. 2. Complete definition of the intelligent agent abstract architecture.

meaning in a certain context. A communication protocol
defines a language for the exchange and understanding
of messages between the agents [3], [5], [7]. Interaction
in multi-agent systems is the way conversations take
place among agents, which is provided by a structure
for the exchange of messages. Such conversation is the
passing of multiple messages among agents both ways.
Interaction deals with a higher level of abstraction than
communication. It defines if the agents will cooperate to
execute tasks, or will compete for resources, or if they will
engage in negotiations in order to fulfill their individual
goals in the case of self-interested agents.

The interaction mechanism in multi-agent systems is
the structure of the conversations that can take place
among agents, and it is intended to provide social be-
havior which is essential to achieve system level goals
[23]. Several issues related to interaction are present in the
design of a multi-agent system. The interactions depend
on the problem decomposition. As a result, there will
be a need to try different types of interactions from
the ones currently described in the literature or develop
a new methodology for the specific problem [8], [23].
It is also not clear how to ensure coherence. The rule
of thumb is to exploit positive interactions and avoid
negative interactions but there is no clear methodology to
identify conflicts nor direct how to solve them [8], [23].
It is also not clear how to coordinate the agents and how
to make the agents reason about such coordination [8].

III. INTRODUCTION TO PETRI NETS

Petri nets are a graphical and mathematical modeling
tool used to describe and analyze different kinds of
real systems. Petri nets were first introduced by Carl
Adam Petri in 1962 in Germany [15], and evolved as a
suitable tool for the study of systems that are concurrent,
asynchronous, distributed, parallel and/or stochastic. A
multi-agent system is a kind of DEDS that is concurrent,
asynchronous, stochastic and distributed. From the DEDS
point of view, multi-agent systems lack analysis and
design methodologies. Petri net methods are used in this
study to develop analytical methodologies for multi-agent
systems.

A. Petri nets definition

Definition 3: The following is the formal definition of
a Petri net [14], [15], [29], [30]. A Petri net is a five-tuple

(P, T,A, W, M0) (4)

where:
P is a finite set of places
T is a finite set of transitions
A ⊆ (P × T) ∪ (T × P) is a set of arcs
W : A 7→ {1, 2, 3, . . .} is a weight function
M0 : P 7→ Z+ is the initial marking

The meanings of places and transitions in Petri nets
depend directly on the modeling approach. When model-
ing, several interpretations can be assigned to places and
transitions. For a DEDS a transition is regarded as an
event and the places are interpreted as a condition for an
event to occur.

Places, transitions and arcs: Places are represented
with circles and transitions are represented with bars.
The arcs are directed from places to transitions or from
transitions to places. The places contain tokens that travel
through the net depending on the firing of a transition. A
place p is said to be an input place to a transition t if
an arc is directed from p to t. Similarly an output place
of t is any place in the net with an incoming arc from
transition t.

Transition firing: A transition can fire only if it is
enabled. For a transition t to be enabled, all the input
places of t must contain at least one token1. When a
transition is fired, a token is removed from each input
place, and one token is added to each output place. In
this way the tokens travel through the net depending on
the transitions fired.

Definition 4: (Marking) The marking mi of a place
pi ∈ P is a non-negative quantity representing the
number of tokens in the place at a given state of the
Petri net. The marking of the Petri net is defined as the
function M : P 7→ Z+ that maps the set of places to
the set of non-negative integers. It is also defined as a
vector Mj = (m1, m2, · · · , m|P |) were mi = M(pi),
which represents the jth state of the net. Mj contains
the marking of all the places and the initial marking is
denoted by M0.

The marking of the Petri net represents the state of the
net. As described above, the transitions change the state
of the Petri net in the same way an event changes the
state of a DEDS.

Definition 5: (Reachability graph) The reachability
graph has the marking of the Petri net (or state of the
Petri net) as a node. An arc of the graph joining Mi with
Mj represents the transition when firing takes the Petri
net from the marking (state) Mi to the marking Mj .

1Assuming the weights W of the Petri net are equal to one. When the
weights are not indicated they are assumed to be one. The weight in an
arc coming to a transition from one of the incoming places indicates the
minimum number of tokens needed in the incoming place in order for
that transition to be enabled. When the transition fires, it will remove
from the incoming place the amount of tokens indicated by the weight
of the arc.

984 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

B. Properties

This section covers some of the most important prop-
erties of Petri nets such as Reachability, Liveness, Bound-
edness and Reversibility. These are properties that could
be applied to multi-agent systems models. Examples
of these properties are boundedness and liveness since
they are related to deadlock avoidance in DEDS. Other
properties are going to be relevant to multi-agent systems
particularly to the communication, interaction, and single
agent architectures. The analysis methods developed in
this research will focus on the following properties.

Definition 6: (Reachability) A marking Mj is said to
be reachable from marking Mi if there exists a sequence
of transitions that takes the Petri net from state Mi to
Mj . The set of all possible markings that are reachable
from M0 is called the reachability set and is defined by
R(M0).

The concept of reachability is essential for the study
of the dynamic properties of a Petri net [15], [28].

Definition 7: (Liveness) A Petri net is said to be live
for a marking M0 if for any marking in R(M0) it is
possible to fire a transition.

The liveness property guaranties the absence of dead-
lock in a Petri net. This property can also be observed
from the reachability graph. If the reachability graph
contains an absorbent state, then the Petri net is not live
at that state and it is said to have a deadlock [15], [28].

Definition 8: (Boundedness) A Petri net is said to be
bounded or k-bounded if the number of tokens in each
place does not exceed a finite number k for any marking in
R(M0). Furthermore, a Petri net is structurally bounded
if it is bounded for any finite initial marking M0. A Petri
net is said to be safe if it is 1-bounded [15].

Definition 9: (Reversibility) A Petri net is reversible, if
for any marking in R(M0), M0 is reachable. This means
that the Petri net can always return to the initial marking
M0 [15], [28].

C. Structural analysis

The liveness and boundedness of the net will be
assessed by using P-invariants and T-invariants. These
invariants are obtained from the incidence matrix of the
net and they are used to assess the overall liveness and
boundedness of the net.

Definition 10: (Incidence matrix) Let a+
ij = w(i, j) be

the weight of the arc that goes from transition ti to place
pj and a−ij = w(j, i) be the weight of the arc from place
pj to transition ti. The incidence matrix A of a Petri net
has |T | number of rows and |P | number of columns. It
is defined as A = [aij] where aij = a+

ij − a−ij .
Definition 11: (Net-invariants) Let A be the incidence

matrix. A P-invariant is a vector that satisfies the equation

Ax = 0 (5)

and a T-invariant is a vector that satisfies the equation

AT y = 0. (6)

1) Boundedness assessment: A Petri net model is
covered by P-invariants if and only if, for each place s
in the net, there exists a positive P-invariant x such that
x(s) > 0. Furthermore, a Petri net is structurally bounded
if it is covered by P-invariants and the initial marking M0

is finite.
2) Liveness assessment: A Petri net model is covered

by T-invariants if and only if, for each transition t in the
net, there exists a positive T-invariant y such that y(t) > 0.
Furthermore, a Petri net that is finite is live and bounded if
it is covered by T-invariants. This is a necessary condition
but not sufficient.

IV. RESULTS IN MODELING MULTI-AGENT SYSTEMS
USING PETRI NETS

A simple multi-agent system is presented and studied in
this section. The multi-agent system is modeled using the
abstract architecture representation presented in section
II-A. In addition, the multi-agent system is modeled using
a Petri net with the intention of carrying out a structural
analysis of the multi-agent system as a discrete-event
system, that is, focusing on the liveness and boundedness,
as they relate to the absence of deadlock in the system.

The multi-agent system presented here is loosely based
on the behavior of ants as they move food from one place
to another. The system consists of two ants, and each one
will be modeled as an intelligent agent. They move objects
from one place to another which will be the environment
of the agents. The system under consideration can be
viewed in two different ways: a) the system consists
of two “physical” agents and the abstract architecture
and Petri nets are used to model their behavior; b) the
abstract architecture and Petri nets are used to model,
analyze and design the reasoning/control of the two agents
so they could perform their intended tasks in such an
environment.

The objective of the work presented in this section is
to present a proof of concept on how Petri nets can be
used to model and analyze a simple multi-agent system.
Furthermore, it also indicates how the abstract architecture
of intelligent agents can be used to model the behavior
of an intelligent agent. Three different scenarios based on
the multi-agent system (cases) are modeled and analyzed.
First, the system is considered to have an infinite number
of objects to be moved (case 1), resulting in a system
that is known in advance to be deadlock free. A Petri net
model N1 of case 1 is analyzed to corroborate that it is
deadlock free. In addition, an abstract architecture model
M1 is presented for both agents. The system presented
in case 2 considers a finite number of objects to be
moved and will fall into deadlock since the agents do
not have the capability to handle such a situation (no
objects to be moved). An updated Petri net model N2

is analyzed to check that the deadlock can be detected by
the assessment of Petri net properties. The multi-agent
system is upgraded in case 3 so it is able to handle
a finite number of objects. A new abstract architecture
model M3 is presented including additional actions and

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 985

© 2009 ACADEMY PUBLISHER

environmental states for each agent. A Petri net model N3

is also presented to help demonstrate why the modeling
approach (selection of places and transitions and detail
level) is important to ensure that the key properties are
captured by the Petri net model. It supports the theory that
the abstract architecture can be used as an intermediate
step to obtain a Petri net model.

A. Description of the multi-agent system

This section presents a description of a simple multi-
agent system consisting of two physical agents that work
together at a task. This system will be used throughout
this section to illustrate how the Petri net and abstract
architecture models can be applied to multi-agent systems.

This system consists of two agents referred to as agent
A and agent B. They move objects from one end of a path
to the other. Figure 3 shows 4 scenarios in the operation
of the system. Both agents are capable of moving objects
and agent A moves faster than agent B. The objective of
agent A is to go to the end of the path, pick an object,
and return to the start of the path (figure 3a). Since it is
faster than agent B it reaches the objects first (figure 3b).
At the time they intersect in the path, agent A gives its
object to agent B and returns to the end of the path to pick
another object (figures 3c and 3d). On the other hand, the
objective of agent B is to go in the direction of the end of
the path, intersect with agent A and get its object. Once
the agent has an object, it returns to the start of the path,
places the object down and starts all over again.

 B
 A

Move objects

a)

 B
 A

Move objects

b)

 B
 A

Move objects

c)

 B
 A

Move objects

d)

Fig. 3. Multi-agent system for modeling and analysis.

The meta level environment of the system consists of
a single path with a set of objects on one side and no
objects on the other side. The amount of objects at the
end of the path can be considered finite or infinite and
both cases will be considered in the following sections
(see table I).

There is indirect interaction between the agents via
changes in their environments. The exchange of the object
between the agents should be regarded as a result of a
change in the environment of both agents. The two agents
are regarded as purely reactive, which implies they do not
have a record of history and they do not have an internal
state. The decisions they make are about which actions to
undertake and those decisions are directly influenced by
the location of the agent in the path and whether the agent

has an object or not. It should be noted also, that the goal
of the overall multi-agent system is a little different from
the goal of each specific agent.

TABLE I
DESCRIPTION OF MODELS APPLIED TO THE MULTI-AGENT SYSTEM.

Case Description Petri net Abstract
architecture

1 Infinite number of objects N1 M1

to move.
2 Finite number of objects N2 –

to move.
3 Finite number of objects N3 M3

to move. Added capabilities
to agents to handle finite
number of objects.

B. Case 1: Petri net and abstract architecture models

The multi-agent system described in the previous sec-
tions is studied here considering there is an infinite
number of objects at the end of the path that are going to
be moved to the start of the path by the agents. A Petri
net model (N1) of the system is presented and analyzed
in order to check that the system is bounded and deadlock
free. In addition, an abstract architecture model (M1) is
presented for both agents. The objective is to show how
a multi-agent system can be modeled using the abstract
architecture, as well as the Petri net methodologies.

1) Modeling as a discrete-event system using Petri
nets: This section presents a Petri net model of the multi-
agent system described in section IV-A. It assumes that
the number of objects available at the end of the path is in-
finite. This implies that the system should operate without
interruption based on the described agents’ capabilities.
The multi-agent system is considered as a discrete-event
system and the liveness and boundedness properties are
analyzed to check if the system is deadlock free. The
purpose of this model is to show the ability of Petri net
methodologies to model multi-agent systems including the
agents interaction.

Several interpretations can be assigned to places and
transitions. In the Petri net model presented in this sec-
tion places model the activity that a particular agent is
performing. Having a token in a place that represents a
specific activity means that the agent is currently perform-
ing such activity. The transitions model the termination
of an activity of a particular agent. Firing a transition
indicates that the agent finished performing the activity
indicated by the input place and will start performing the
activity of the output place.

Let N1 = (P, T,A, W, M0) be the Petri net presented
in figure 4 that models the multi-agent system under con-
sideration. Table II presents the description of the places
P = {pA1, pA2, pA3, px, pB1, pB2, pB3}, and W : A 7→ 1
therefore the weights for all the arcs are omitted from the
graph. The transitions are T = {t1, t2, t3, t4, t5, t6} and
the initial marking M0 = [1, 0, 0, 0, 1, 0, 0].

986 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

 pA1

 pA2

 pA3

 px

 pB1

 pB2

 pB3

 t1

 t2

 t3

 t5

 t4

 t6

Fig. 4. Petri net model N1 for system with infinite number of objects.

TABLE II
PLACES DESCRIPTION FOR N1 .

Places (P) Description
pA1 Agent A going to the end of the path to pick object
pA2 Agent A is at the end of the path loading an object
pA3 Agent A is going to start of the path to intersect

with agent B
pB1 Agent B going to the end of the path to intersect

with object A
pB2 Agent B going to the start of the path to leave object
pB3 Agent B unloading object at the start of the path
px Both agents are exchanging the object

2) Analysis of the reachability graph: At this point
we are concerned with the net being bounded and live.
An assessment of these properties based on the initial
marking of the net can be performed by analyzing the
reachability tree of N1, using M0 as the root node
as shown in figure 5. A reachability tree is a graph
representation of the markings of a net. Each node in
the tree represents a marking and the edges represent a
transition firing [15]. The resulting tree is small enough to
be analyzed by inspection and it can be concluded that:
a) the reachability set R(M0) is finite, b) the number
of tokens of every place in all markings is bounded
(1 − bounded), and c) there are no dead transitions (all
transitions can fire). As a result, it can be concluded that
the net is bounded.

By looking at the reachability graph of N1 with initial
marking M0 presented in figure 6, it can be seen that there
is always an active transition regardless of the state of the
net, and all the transitions of T are included in the graph.

M0=[1 0 0 0 1 0 0]

M1=[0 1 0 0 1 0 0]

M2=[0 0 1 0 1 0 0]

M3=[0 0 0 1 0 0 0]

M4=[1 0 0 0 0 1 0]

M8=[0 1 0 0 0 1 0]

t1

t2

t3

t4

M5=[1 0 0 0 0 0 1]

t6t1

M0: "old"

t5

M6=[0 1 0 0 0 0 1]

t1

M7=[0 0 1 0 0 0 1]

t2

M1: "old"

t5

M2: "old"

t6

M6: "old"

t6

M9=[0 0 1 0 0 1 0]

t2

t6

M7: "old"

Fig. 5. Reachability tree of N1.

From this it can be concluded that the Petri net model of
the multi-agent system is bounded and live. This implies
that the interaction between the agents does not fall into
deadlocks.

M0 M1 M2 M3 M4 M5

M8

M6

M7 M9

t1 t2 t3 t4

t1

t2

t6
t6

t1

t6

t2

t5

t6

t5

Fig. 6. Reachability graph for N1.

For models with a large number of places and transi-
tions, the reachability graph construction is not practical
without the use of computer tools to automate the reach-
ability graph generation and the assessment of properties.
Under this scenario, it is preferable to use the algebraic
network representation (incidence matrix) and invariance
theorems to assess the structural net properties.

3) Structural analysis of N1: The structural behavior
of the net can be assessed using the algebraic analysis

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 987

© 2009 ACADEMY PUBLISHER

of the incidence matrix (invariant analysis) as described
in section III-C. The incidence matrix is defined as
A = [aij], where aij = a+

ij − a−ij , a+
ij = w(i, j) is the

weight of the arc from ti to pj , and a−ij = w(j, i) is the
weight of the arc from pj to ti. Let A1 be the incidence
matrix of N1. The order of the places in the matrix is
P = {pA1, pA2, pA3, px, pB1, pB2, pB3} (columns), and
the order of the transitions is T = {t1, t2, t3, t4, t5, t6}
(rows).

A =


−1 1 0 0 0 0 0

0 −1 1 0 0 0 0
0 0 −1 1 −1 0 0
1 0 0 −1 0 1 0
0 0 0 0 1 0 −1
0 0 0 0 0 −1 1

 (7)

A P-invariant is a vector that satisfies the equation
Ax = 0, and a T-invariant is a vector that satisfies the
equation AT y = 0. The following invariants were ob-
tained from the incidence matrix A1. The T-invariant y1 =
[1, 1, 1, 1, 1, 1]T , the P-invariants x1 = [1, 1, 1, 1, 0, 0, 0]T ,
and x2 = [−1,−1,−1, 0, 1, 1, 1]T .

A net is said to be covered by P-invariants if and only
if, for each place p in the net, there exists a positive P-
invariant x such that x(p) > 0. The net N1 is covered by
P-invariants since there is a positive element either on x1

or x2 for every place, e.g., x1(pB1) = 0 but x2(pB1) = 1.
In addition, a net is covered by T-invariants if and only
if, for each transition t in the net, there exists a positive
T-invariant y such that y(t) > 0. N1 is also covered by
T-invariants.

A Petri net is structurally bounded if it is covered
by P-invariants and the initial marking M0 is finite.
Furthermore, a net is live and bounded if it is covered
by T-invariants; this is a necessary condition only. The
Petri net N1 is covered by T-invariants and P-invariants.
Since the initial marking is finite, we can conclude that
the Petri net is bounded and that the necessary condition
for liveness is met.

Discussion: A marked graph is a subclass of Petri nets
where each place has exactly one incoming arc and
exactly one outgoing arc [15] [30]. There is a theorem that
states that every marked graph is live and also bounded
if the initial marking is bounded [15]. The net N1 is a
marked graph and M0 is bounded, therefore the net is live
and bounded.

4) Abstract architecture model: The abstract architec-
ture of intelligent agents presented in section II-A is used
here to model the multi-agent system with an infinite
number of objects present. Agents will be considered to
be purely reactive where the environment consists of a
set of states S = {s1, s2, · · ·}, the agent can undertake
a set of actions A = {a1, a2, · · ·}, and perceive a set
of percepts P = {p1, p2, · · ·}. For a purely reactive
agent, the behavior of the agent can be represented as the
function action : P 7→ A and perception : S 7→ P .

The deterministic behavior of an environment can be
represented by the function environment : S ×A 7→ S.

Let M1 be the multi-agent system with agents A and
B modeled with the abstract architecture. The model
presented below assumes that P = S for both agents, as
a result action : S 7→ A.

Abstract model for agent A: Agent A can undertake
a set of actions AA, its environment is defined by SA

and the function actionA defines the actions to undertake
based on the changes in the environment. The following
tables describe the abstract model for this agent, the en-
vironmental states and actions descriptions are presented
in tables III and IV respectively; equation 8 defines the
action function.

TABLE III
DESCRIPTION OF STATES FOR AGENT A OF M1 .

States (SA) Description
s1 Agent has object
s2 Agent has no object and it is not at the end
s3 Agent has no object and it is at the end

TABLE IV
DESCRIPTION OF ACTIONS FOR AGENT A OF M1 .

Actions (AA) Description
a1 Walk to the end
a2 Pick an object
a3 Walk to start

actionA(s) =

 a1 if s = s2

a2 if s = s3

a3 if s = s1

 (8)

It should be noted that agent A has no actions for
the exchange of an object at the intersection with agent
B. Agent B is assumed to take over the object from
agent A, thus changing the environment of agent A and
incurring an indirect interaction.

Abstract model for agent B: Agent B can undertake a set
of actions AB , its environment is defined by SB and the
function actionB defines the actions to undertake based
on the changes in the environment. The environmental
states and actions descriptions are presented in tables
V and VI respectively; equation 9 defines the action
function. Agent B is assumed to take over the object from
agent A when they intersect. This action is reflected in
AB and function actionB .

TABLE V
DESCRIPTION OF STATES FOR AGENT B OF M1 .

State (SB) Description
s1 Agent has no object
s2 Agent has object and it is not at the start
s3 Agent has object and it is at the start
s4 Agent is at the intersection with agent A

988 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

TABLE VI
DESCRIPTION OF ACTIONS FOR AGENT B OF M1 .

Action (AB) Description
a1 Walk to the end
a2 Take over object from agent A
a3 Walk to start
a4 Put object down at start

actionB(s) =


a1 if s = s1

a2 if s = s4

a3 if s = s2

a4 if s = s3

 (9)

5) Discussion: The analysis performed in this sec-
tion (case 1) shows that the multi-agent system under
consideration has appropriate structural properties. This
system will not go into a deadlock and will work correctly
under the current modeling assumptions. Assumptions
with respect to the agents’ behavior may not hold if
the assumptions in the agents environment change. The
strongest assumption in this scenario case 1 (for abstract
model M1 and Petri net model N1) is the fact that the
number of objects to move is infinite. If this is changed
to a finite number of objects, the current agent behavior
may not work for the overall system objective; in fact,
the multi-agent system will deadlock.

When analyzing the abstract model M1 when this
assumption does not apply, it can be seen that eventually,
agent A will reach state s3 and no object will be there
to be picked. Then, action a3 will have no effect and
will not change the state of the local environment. In the
case of agent B, it will eventually remain at state s4 and
action a2 will not be executed as expected. In the case
of the Petri net model M1, t2 will never fire even if it is
active because the activity modeled by place pA2 cannot
be concluded without objects to pick. This model fails
and no longer represents the dynamics of the real system.

C. Case 2: Petri net model

The multi-agent system described in section IV-A is
studied here considering now that there is a finite number
of objects at the end of the path. Since the agents do not
have the capability to handle a lack of objects to transport,
it is expected that the system falls into deadlock. A Petri
net model (N2) is presented and analyzed in order to
check that the system falls into deadlock.

1) Petri net model and analysis: Let N2 =
(P, T,A, W, M0) be the Petri net presented in figure 7
that models the multi-agent system under consideration.
It is based on net N1 presented in the previous section to
model an infinite number of objects. An additional place
was added to the previous model in order to include a
representation of the finite number of objects to be moved
from the end to the start of the path. This additional place
will serve as a buffer place, and should be linked in a way
to the action taken by agent A when picking the object
at the end of the path. The buffer place pb was added to

model the finite number of objects. Transition t2 is now
active when there is a token in place pA2 (agent A is at
the end of the path loading an object) and there is at least
one token in place pb (there is at least one object at the
end of the path). From inspection of the Petri net it can
be seen that eventually the net execution will reach a state
with no enabled transitions. Consider the instance where
M(pb) = 0 (no more objects available at the end of the
path) and M(pA2) = 1. Transition t2 can not be enabled
anymore because pb works as a source of tokens and have
no incoming arcs from other transitions, therefore the net
is not live.

 pA1

 pA2

 pA3

 px

 pB1

 pB2

 pB3

 t1

 t2

 t3

 t5

 t4

 t6

 pb

 k tokens

Fig. 7. Petri net model N2 for system with finite number of objects.

The description of places P =
{pA1, pA2, pA3, px, pB1, pB2, pB3, pb} for N2 is the
same as that of N1 presented in table II, plus the
buffer place pb described above. The transitions
T = {t1, t2, t3, t4, t5, t6} have the same interpretation
and the initial marking M0 = [1, 0, 0, 0, 1, 0, 0, k] where
k is a positive integer denoting the number of objects in
the path. The weights of the arcs are all one as in N1.

The liveness and boundedness properties can be verified
by inspection of the reachability graph or by analysis of
the incidence matrix which is the approach presented for
this case. The reachability graph will be large even for
small k and it will be impractical to build by hand, but it is
easy to visualize that it will contain at least one node with
no outgoing arc, e.g., Mi = [0, 1, 0, 0, 1, 0, 0, 0] (where
M(pb) = 0 and M(pA2) = 1). This indicates that there
is a marking Mi ∈ R(M0) with no enabled transition.
As a result, the net is not live for the initial marking

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 989

© 2009 ACADEMY PUBLISHER

M0. A similar reasoning can be used to see that there is
no unbounded place in R(M0). At any execution point
of the net, the largest marking is that of place pb, with
M(pb) = k at the initial marking. As a result, any place
of the network will have a marking less than or equal to
k, hence the net is bounded.

The structural analysis can be carried out in this
case. Let A2 be the incidence matrix of the model.
The order of the places in the matrix is now P =
{pA1, pA2, pA3, px, pB1, pB2, pB3, pb}, and for transitions
it is T = {t1, t2, t3, t4, t5, t6}. The incidence matrix has
no T-invariants since A′y = 0 has only the trivial solution
y = 0. The P-invariants are x1 = [1, 1, 1, 1, 0, 0, 0, 0]T

and x2 = [−1,−1,−1, 0, 1, 1, 1, 0]T . Therefore, the net
is neither covered by T-invariants nor P-invariants.

A2 =


−1 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 −1
0 0 −1 1 −1 0 0 0
1 0 0 −1 0 1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 −1 1 0


(10)

Since the net is not covered by P-invariants we cannot
use this method to assess boundedness. Similarly, we
cannot assess liveness directly, if it is assumed that the
net is bounded, and taking into account that M0 is finite,
it can be concluded that the net is not live due to the fact
that it is not covered by T-invariants and the necessary
condition is not met.

2) Discussion: This model also shows how the analy-
sis by visual inspection of the reachability graph quickly
becomes cumbersome indicating the need for computa-
tional tools even for small systems. On the other hand, it
also shows that the structural analysis theorems are not
always useful and other techniques are required. Another
way to perform the analysis will be to reduce the Petri
net model into one with a smaller number of places and
transitions that preserves the liveness and boundedness
properties. The smaller model can then be analyzed by
means of the reachability graph.

D. Case 3: Abstract and Petri net models

The abstract model M1 presented in case 1 (section
IV-B) can be modified to allow the system to behave
properly when there are a finite number of objects to be
moved. In Case 1 the Petri net model assumed an infinite
number of parts, as a result the system never deadlocks.
On the other hand, Case 2 considered a finite number
of parts and the system deadlocked. The abstract model
for case 1 did not consider the fact that there could be
finite resources. Basically, we can increase the number of
environmental states S of the agents A and B, so they
will now allow the fact that there might not be any object
to pick up at the end of the path.

There should be a new state for each of the agents of
the multi-agent system and a set of actions to perform
when there are no more objects at the end of the path.

The state and action for each of the agents can be defined
independently. Lets consider agent A to remain at the
end of the line until more objects are available. In order
to make use of the previous strategy now agent B must
return to the start of the path when there is no part to
take over in the intersection with agent A. Note that in
the case of no parts left, the intersection will happen at
the end of the path.

1) Abstract model for Case 3: Let M3 be a multi-agent
system with agents A and B modeled with the abstract
architecture and let P = S (action : S 7→ A). Agent A
can undertake a set of actions AA, its environmental states
are SA, and actionA defines the actions to undertake
based on the changes in the environment. In addition,
Agent B can undertake actions AB , its environment is
defined by SB , and the action function actionB .

a) Abstract model for agent A:: The following tables
describe the upgraded abstract model for agent A. There
is one additional action and an additional state. Tables
VII and VIII show the states and actions descriptions
respectively, actionA is presented in equation 11.

TABLE VII
DESCRIPTION OF STATES FOR AGENT A OF M3 .

State (SA) Description
s1 Agent has object.
s2 Agent has no object and it is not at the end.
s31 Agent has no object, it is at the end of the path

and there are available objects.
s32 Agent has no object, it is at the end of the path

and there are no available objects.

TABLE VIII
DESCRIPTION OF ACTIONS FOR AGENT A OF M3 .

Actions (AA) Description
a1 Walk to the end
a2 Pick an object
a3 Walk to start
a4 Wait for more objects

action(s) =


a1 if s = s2

a2 if s = s31

a3 if s = s1

a4 if s = s32

 (11)

b) Abstract model for agent B:: Agent B is assumed
to take over the object from agent A when they intersect.
The additional environment state allows agent B to behave
properly when it is at the intersection with agent A and
there is no object to take over. Table IX presents the
description of the environmental states, table X is the
description of the actions the agent can undertake, and
equation 12 is the function actionB .

action(s) =


a1 if s = s1 or s = s42

a2 if s = s41

a3 if s = s2

a4 if s = s3

a5 if s = s5

 (12)

990 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

TABLE IX
DESCRIPTIONS OF STATES FOR AGENT B OF M3 .

State (SB) Description
s1 Agent has no object
s2 Agent has object and it is not at the start
s3 Agent has object and it is at the start
s41 Agent is at the intersection and there is a part
s42 Agent is at the intersection and there is no part
s5 Agent is at the end of the path (no objects available)

TABLE X
DESCRIPTION OF ACTIONS FOR AGENT B OF M3 .

Actions (AB) Description
a1 Walk to the end
a2 Take over object from agent A
a3 Walk to start
a4 Put object down at start
a5 Wait

2) Petri net model: The multi-agent systems presented
in this section will work properly when there are no more
objects at the end of the path. The added capabilities make
the agents wait at the end of the path until more objects
are available.

Let N3 = (P, T,A, W, M0) be the Petri net that
models the multi-agent system under consideration. Fig-
ure 8 shows the Petri net model of the system and
table XI presents the description of the places P =
{pA1, pA2, pA3, px, pB1, pB2, pB3, pb, pint}. The transi-
tions are T = {t1, t2, t3, t4, t5, t6, t7} and the initial mark-
ing M0 = [1, 0, 0, 0, 1, 0, 0, k, 0]. The new capabilities
consist only of waiting for more objects to be available
in order to be able to move. This capability is already
modeled since agent A will remain in place PA2 (waiting
for more objects to be available). In the case of agent B,
this will be reflected in place Pint but in the original
model N2 (figure 7) place PB2 could also model this
capability.

TABLE XI
PLACES DESCRIPTION FOR N3 .

Place Description
PA1 Agent A going to the end of the path to pick object
PA2 Agent A is at the end of the path loading an object or

waiting
PA3 Agent A is going to start of the path to intersect with

agent B
PB1 Agent B going to the end of the path to intersect with

agent A
PB2 Agent B going to the start of the path to leave object
PB3 Agent B unloading object at the start of the path
Px Both agents are exchanging the object

Pint Agent B is at an intersection at the end of the line
waiting for more objects

3) Discussion: The modeling approach used previ-
ously models agent activities as places. Having a token
in a place means that an agent is executing the activity
indicated by the place. The modeling approach is now
important because previous results show that there is no

 pA1

 pA2

 pA3

 px

 pB1

 pB2

 pB3

 t1

 t2

 t3

 t5

 t4

 t6

 pb

 k tokens

 t7

 pint

Fig. 8. Petri net model of N3.

uniqueness in the Petri net models obtained. The objective
of modeling the multi-agent system as a discrete-event
system is to analyze structural properties, and use those
results to infer something about the behavior of the multi-
agent system and its interaction protocol.

V. MODELING OF MULTI-AGENT SYSTEMS WITH
INDIRECT INTERACTION

The methodology presented here consists of defining a
simple multi-agent system based on the abstract architec-
ture for intelligent agents (M4). The abstract architecture
is modeled as a discrete-event system using Petri nets
(N4) and structural and reachability analysis provides an
assessment of the interaction properties.

The purpose of this work consists of the definition
of an abstract architecture for multi-agent systems with
indirect interaction, analogous to the abstract architecture
for intelligent agents. The proposed architecture allows
the description of agent-to-agent interactions via changes
in the environment and serves as an initial description
of the discrete-event dynamics of the multi-agent system.
In addition, this work presents an algorithm (algorithms
5.1 and 5.2) to obtain a Petri net model of a multi-agent
system by making use of the multi-agent system’s abstract
architecture. Finally, a methodology to ensure that the
multi-agent system is deadlock free is presented; it is
based on the analysis of the properties of the Petri net
model.
Modeling approach based on interaction among
agents: The interactions between agents can be either a
direct agent-to-agent interaction or an indirect interaction.
It shows how the agents interact among each other and
how they operate over a meta-level (multi-agent level)
environment. Arrows define direct agent interactions from
agent to agent; the indirect interactions are based on the
environment. In the indirect interaction, an agent modifies

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 991

© 2009 ACADEMY PUBLISHER

another agent’s environment triggering a reaction. The
indirect interaction occurs in the cases when two or
more agents share a subset of the environment. It should
be noted that the overall multi-agent system acts over
a macro level environment. An agent that is part of
the multi-agent system has its own environment that is
somehow related to the macro level environment of the
multi-agent system. This macro level environment of the
multi-agent system is referred to in the literature as being
an open environment [8]. A complex problem will provide
an open environment, which is dynamic, has components
that are unknown in advance, its structure changes over
time and might be heterogeneous in its implementation
[8]. By focusing on the interactions among agents as
described above, it is natural to regard a multi-agent
system as a discrete-event system.

A. Petri net models from the abstract architecture

The artificial intelligence research considers three dif-
ferent paradigms for intelligent agents: a) reactive and b)
deliberative; and c) hybrids between them. The abstract
architecture models how an agent behaves with respect
to changes in its environment. Here, an agent has its
own environment and this environment is defined by
the nature of the agent. The goals, objectives and the
general purpose of the agent define its environment. This
abstract architecture is based on the reactive paradigm
of perception and action. A purely reactive agent has
a perception of the environment and it is used in the
decision mechanism that provides an action in the agent.
A reactive agent can also have an internal state as a
decision mechanism for the actions to be undertaken. An
agent with perception and internal state capabilities has
more computational power than an agent without them
and its computational power is now comparable with that
of the Belief-Desired-Intention architecture as described
in [7].
Abstract model for purely reactive agents: In a purely
reactive agent, the perception part records the changes in
the state of the environment. The action part computes
the actions to be taken in order to react to changes in
the environment. The agent environment changes based
on the actions applied by the agent, as well as actions by
other agents, and it may be dynamic in that it may change
by itself.

The environment consists of a set of states S =
{s1, s2, · · ·}. The agent can undertake a set of actions
A = {a1, a2, · · ·} and perceive a set of percepts P =
{p1, p2, · · ·}. For a purely reactive agent, the behavior of
the agent can be represented as the function action : P 7→
A and perception : S 7→ P . The deterministic behavior
of an environment can be represented by the function
environment : S × A 7→ S. A detailed explanation of
the abstract architecture was presented in section II-A.
Petri net modeling of multi-agent systems: A Petri net
is defined as a five-tuple (P, T,A, W, M0) where: P is a
finite set of places, T is a finite set of transitions, A ⊆
(P ×T)∪(T ×P) is a set of arcs, W : A 7→ {1, 2, 3, . . .}

is a weight function, and M0 : P 7→ Z
|P |
+ is the initial

marking.
1) Obtaining Petri net models from the abstract ar-

chitecture: Places model the environmental state of the
agent. Having a token in a place representing state si

means that the agent is currently in such a state. Transi-
tions model the actions of an agent. The environmental
state is changed by actions so, for the Petri net model
having tokens move from one place to another by firing
transitions, this agrees with the execution process of the
abstract architecture.

Algorithm 5.1: (Petri net sub model for agent i) Let Si

be the set of environmental states of agent i, and sij ∈ Si

be the jth environmental state of agent i. Similarly, let
Ai be the set of actions of agent i, and aik ∈ Ai be the
kth action of agent i.

1) Add a place for each element of the environment
Si and label each place using notation Pij for sij .

2) Add a transition for each action in Ai and label
each transition using notation Tik for aik.

3) For each instance of the function environment :
Si × Ai 7→ Si say sij × aik 7→ sil: a) add an arc
leaving from place Pij and ending in transition Tik;
b) add an arc leaving from transition Tik and ending
in place Pil; c) add a weight of 1 to each arc.
If an arc from transition Tik to place Pil already
exists, add a new transition and label it T

′

ik; perform
this step using T

′

ik instead of Tik.
4) Add a token in the place representing the initial

state of the environment.
Algorithm 5.2: (Petri net model of the multi-agent sys-

tem) The Petri net sub-models of each of the individual
agents in the system should be joined based on their
indirect interactions. In general, this indirect interaction
will be in such a way that an agent i action will change
an environment state of agent j. This communication act
can be regarded as a regular action in the construction of
the complete model. There will be arcs added from the
places modeling the environmental states of agent j to the
transition modeling the communication in agent i.

2) Analysis of the Petri net model: Inspection of the
reachability graph of the Petri net model can indicate if
the model is live and bounded. On the other hand, liveness
and boundedness properties can also be assessed using
invariant analysis [30].

B. Case 4: Multi-agent system modeling and analysis

This system consists of two agents moving objects from
one end of a path to the other. Figure 3 shows 4 scenarios
in the operation of the system. The system is defined by
the abstract architecture of agents under the following
assumptions to ensure that the overall system will be
deadlock free: a) there are always available objects at the
end of the path; b) agent A moves faster than agent B so it
reaches the objects first (figure 3b); and c) agent B takes
the object from agent A when they intersect in the path
and it returns to leave the object (figures 3c and 3d). There
is no direct interaction between the agents; they interact

992 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

via changes in their environments. The interchange of the
object between the agents should be regarded as a result
of a change in the environment of both agents. It should
be noted that there is no way to avoid the interaction
since it is assumed that the agents meet (see figure 3c) in
the path and they cannot avoid each other. The two agents
are regarded as purely reactive, which implies they do not
have a record of history and they do not have an internal
state.

The objective of agent A is to go to the end of the
path, pick an object and return to the start of the path
(figure 3a). Since it is faster than agent B, at the time they
intersect in the path, agent A gives its object to agent B
and returns to the end of the path to pick another object. In
addition, the objective of agent B is to go in the direction
of the end of the path, intersect with agent A and get
its object. Once the agent has an object, it returns to the
start of the path, places the object down and starts all over
again.

The exchange of the object in the intersection of the
two agents on the path is only a capability of agent B.
As a result, agent A will only react to it but will have
no intelligence on that matter. The decisions they make
are about which actions to undertake and those decisions
are directly influenced by the location of the agent in the
path and whether or not the agent has an object.

1) Abstract architecture description: Under normal
conditions, agent A will be walking to the end of the path
to pick the object to be moved. The object is going to be
taken away by the other agent at the intersection. Let M4

be the multi-agent system with agent A and B modeled
with the abstract architecture. Agent A has environmental
states SA, a set of actions AA, an action function actionA,
and an environment evolution function environmentA.
On the other hand, Agent B has environmental states SB ,
a set of actions AB , an action function actionB , and an
environment evolution function environmentB . Tables
XII and XIII describe the possible environmental states
(SA) and the actions (AA) that agent A can undertake.

TABLE XII
ENVIRONMENTAL STATES OF AGENT A OF M4 .

State (SA) Description
s1 Agent has object
s2 Agent has no object and it is not at the end
s3 Agent has no object and it is at the end

TABLE XIII
ACTIONS FOR AGENT A OF M4 .

Actions (AA) Description
a1 Walk to the end
a2 Pick an object
a3 Walk to start

Table XIV presents the mapping of the environment
(environmentA) describing how it will be changing as
the agent undertakes actions. It should be noted that

the notion of exchanging the part with agent B at the
intersection has not been considered explicitly in the
description of the environmentA : S×A 7→ S for agent
A. The agents decision mechanism is described by the
actionA function as presented in (13).

TABLE XIV
ENVIRONMENT FUNCTION FOR AGENT A OF M4.

AA SA SA Description
a1 s2 s3 Walking towards the end of the path.

Eventually will reach the end with no object.
a2 s3 s1 Now the agent has an object.
a3 s1 s1 Walking to the start of the path.

Eventually will lose object to agent B.

actionA(s) =

 a1 if s = s2

a2 if s = s3

a3 if s = s1

 (13)

Agent B will be walking toward the end of the path
until it intersects with agent A which is on its way back
to the beginning of the path carrying an object. At the
intersection point, agent B takes over the object of agent
A and proceeds to return to the beginning of the path
to drop the object and start the cycle again. The abstract
architecture of agent B is presented in Tables XIV and
XV, and the actionB(s) function is described in (14).

TABLE XV
ENVIRONMENTAL STATES FOR AGENT B OF M4 .

State (SB) Description
s1 Agent has no object
s2 Agent has object and it is not at the start
s3 Agent has no object and it is at the start
s4 Agent is at the intersection with agent A

TABLE XVI
ACTIONS FOR AGENT B OF M4 .

Actions (AB) Description
a1 Walk to the end
a2 Take over object from agent A
a3 Walk to start
a4 Put object down at start

actionB(s) =


a1 if s = s1

a2 if s = s4

a3 if s = s2

a3 if s = s3

 (14)

The mapping of the environment of agent B
(environmentB) is presented in Table XVII. The in-
teraction with agent A (in the exchange of the part) is
implicitly modeled by action a2 although there is no
indication in its abstract architecture that it will change
the environment of agent A.

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 993

© 2009 ACADEMY PUBLISHER

TABLE XVII
ENVIRONMENT FUNCTION FOR AGENT B OF M4 .

AB SB SB Description
a1 s1 s4 Will walk toward the end until intersection

with agent A
a2 s4 s2 Object exchange, now it has an object
a3 s2 s3 Will walk towards start until it reaches it
a4 s3 s1 Will drop the object at start

2) Petri net model: The Petri net model of the multi-
agent system was obtained following the procedure de-
scribed in algorithm 5.1.

Let N4 = (P, T,A, W, M0) be the Petri
net model of the complete system with places
P = {pA1, pA2, pA3, pB1, pB2, pB3, pB4}, transitions
T = {tA1, tA2, tA3, tB1, tB2, tB3, tB4}, and
M0 = [0, 1, 0, 1, 0, 0, 0]. Figure 9 shows N4 and
the interpretation of places and transitions is presented in
Table XVIII. The Petri net sub-models of the individual
agents are not presented due to space limitations but they
can be observed from the complete model.

Transition tB2 which models an action of agent B,
modifies the environmental state of agent A. The Petri
net model can now be analyzed to assess the deadlock
property in a systematic way.

The tokens in places pA2 and pB1 represent the initial
conditions of agent A and B respectively. The tokens
travel through the net representing different environment
states for the agents as the system executes. The systems
execution scenarios presented in figure 3 can be identified
in the Petri net model, e.g., scenario d) of figure 3 will
be represented in the Petri net model as having a token
in pA2 and pB2.

 pA3 pA1

 pB1

 pB4 pB2

 pB3

 tA1 tA2

 tA3

 tB1

 tB2 tB3

 tB4

 pA2

Fig. 9. Petri net model N4.

3) Analysis of the Petri net model N4: The Petri net
model presented in figure 9 (N4) can now be analyzed to
assess the deadlock property of the underlying multi-agent
system. The reachability graph of the model is presented
in figure 10 and it shows that the net is live and bounded.
Therefore, the multi-agent system is deadlock free. Using
the incidence matrix (15) of the net and its invariants (16),
it is shown that the net is bounded and that the necessary
condition for liveness is satisfied; this is a slightly weaker
conclusion on “liveness” than when both necessary and
sufficient conditions are met.

TABLE XVIII
DESCRIPTION OF PETRI NET MODEL N4 .

Element Name Description
pA1 A token in this place indicates the

environment is at state s1 for agent A
pA2 A token in this place indicates the

environment is at state s2 for agent A
pA3 A token in this place indicates the

environment is at state s3 for agent A
Places (P) pB1 A token in this place indicates the

environment is at state s1 for agent B
pB2 A token in this place indicates the

environment is at state s2 for agent B
pB3 A token in this place indicates the

environment is at state s3 for agent B
pB4 A token in this place indicates the

environment is at state s4 for agent B
tA1 Execution of action a1 for agent A
tA2 Execution of action a2 for agent A
tA3 Execution of action a3 for agent A

Transitions (T) tB1 Execution of action a1 for agent B
tB2 Execution of action a2 for agent B
tB3 Execution of action a3 for agent B
tB4 Execution of action a4 for agent B

A4 =



0 −1 1 0 0 0 0
1 0 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 1
−1 1 0 0 1 0 −1

0 0 0 0 −1 1 0
0 0 0 1 0 −1 0


(15)

T -invariants =



0 1
0 1
1 0
0 1
0 1
0 1
0 1


and P-invariants =



1 0
1 0
1 0
0 1
0 1
0 1
0 1


(16)

VI. DISCUSSION

An abstract architecture description for multi-agent sys-
tems with indirect interaction was presented. In addition, a
methodology to obtain Petri net models of such systems
was introduced. The deadlock avoidance property of a
multi-agent system can be assessed systematically from
the Petri net model. A simple example consisting of a
multi-agent system with two agents was introduced and
the proposed methodology was applied to it in order
to show that the system was deadlock free. The results
presented in this work show the potential of using Petri
nets to assess key properties of multi-agent systems.
Future work in this area will focus on the study of direct
agent-to-agent interactions as well as Petri net synthesis
methodologies to assess systems with a large number of
agents.

994 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

M0

M1 M2

M3M4

M6M5

M8 M7

M9 M11

M10 M3

M1

M0

M12

M5

tA1 tB1

tB1
tA2

tA2 tB1

tA3

tA3

tB2

tA1 tB3

tB4

tA2 tB3
tA1

tB4

tA3

tB3 tA2

tB4
tA3

M0=[0,1,0,1,0,0,0]
M1=[0,0,1,1,0,0,0]
M2=[0,1,0,0,0,0,1]
M3=[1,0,0,1,0,0,0]
M4=[0,0,1,0,0,0,1]
M5=[1,0,0,0,0,0,1]
M6=[0,1,0,0,1,0,0]
M7=[0,1,0,0,0,1,0]
M8=[0,0,1,0,1,0,0]
M9=[1,0,0,0,1,0,0]
M10=[1,0,0,0,0,1,0]
M11=[0,0,1,0,0,1,0]
M12=[0,0,1,0,0,0,1]

P={pA1,pA2,pA3,pB1,pB2,pB3,pB4}

tA1

tA2

Fig. 10. Reachability graph of Petri net model N4.

ACKNOWLEDGEMENTS

Portions of this work were supported by NSF grant
DMII-0121902.

REFERENCES

[1] M. Greaves, V. Stavridou-Coleman, and R. Laddaga, “Guest ed-
itors’ introduction: Dependable agent systems,” IEEE Intelligent
Systems, vol. 19, no. 5, pp. 20–23, 2004.

[2] R. Khosla and T. Dillon, Engineering intelligent hybrid multi-agent
systems. Kluwer Academic Publishers, 1998.

[3] G. Weiss, Ed., Multiagent systems: a modern approach to dis-
tributed artificial intelligence. Cambridge, MA, USA: MIT Press,
1999.

[4] S. S. Heragu, R. J. Graves, B.-I. Kim, and A. St Onge, “Intelligent
agent based framework for manufacturing systems control,” IEEE
Transactions on Systems, Man and Cybernetics, Part A, vol. 32,
no. 5, pp. 560–573, 2002.

[5] N. J. Nilsson, Artificial intelligence: a new synthesis. Morgan
Kaufmann Publishers Inc., 1998.

[6] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[7] M. J. Wooldridge, Introduction to Multiagent Systems. John Wiley
& Sons, Inc., 2001.

[8] K. P. Sycara, “Multiagent systems,” AI Magazine, pp. 79–92, 1998.
[9] W. Reisig, Elements of distributed algorithms: modeling and

analysis with Petri nets. New York, NY, USA: Springer-Verlag
New York, Inc., 1998.

[10] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets
in Manufacturing Systems: Modeling, Control, and Performance
Analysis. IEEE Press, 1995.

[11] M. D. Jeng, “A petri net synthesis theory for modeling flexible
manufacturing systems,” IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics, vol. 27, no. 2, pp. 169–183,
April 1997.

[12] M. Zhou, F. DiCesare, and A. A. Desrochers, “A hybrid methodol-
ogy for synthesis of petri net models for manufacturing systems,”
IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp.
350–361, 1992.

[13] M. Zhou, K. McDermott, and P. A. Patel, “Petri net synthesis
and analysis of a flexible manufacturing system cell,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 23, no. 2,
pp. 523–531, March 1993.

[14] T. Agerwala, “Putting petri nets to work,” Computer, vol. 12, no. 2,
pp. 85– 94, December 1979.

[15] T. Murata, “Petri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.

[16] T. Murata, P. C. Nelson, and J. Yim, “A predicate-transition net
model for multiple agent planning,” Inf. Sci., vol. 57-58, pp. 361–
384, 1991.

[17] D. Xu, R. Volz, T. Ioerger, and J. Yen, “Modeling and verifying
multi-agent behaviors using predicate/transition nets,” in SEKE
’02: Proceedings of the 14th international conference on Software
engineering and knowledge engineering. New York, NY, USA:
ACM Press, 2002, pp. 193–200.

[18] H. J. Ahn and S. J. Park, “Modeling of a multi-agent system for
coordination of supply chains with complexity and uncertainty,”
in Intelligent Agents and Multi-Agent Systems, ser. Lecture Notes
in Computer Science, J. Lee and M. Barley, Eds., vol. 2891,
6th Pacific Rim International Workshop on Multi-Agents, PRIMA
2003 Seoul, Korea. Springer-Verlag Berlin Heidelberg, November
2003, pp. 13–24.

[19] P. Leitão, A. W. Colombo, and F. Restivo, “An approach to the
formal specification of holonic control systems,” in Holonic and
Multi-Agent Systems for Manufacturing, ser. Lecture Notes in
Computer Science, V. Marı́k, D. McFarlane, and P. Valckenaers,
Eds., vol. 2744, First International Conference on Industrial Ap-
plications of Holonic and Multi-Agent Systems, HoloMAS 2003
Prague, Czech Republic, September 1-3, 2003. Springer Berlin /
Heidelberg, 2004, pp. 59–70.

[20] F.-S. Hsieh, “Model and control holonic manufacturing systems
based on fusion of contract nets and petri nets,” Automatica,
vol. 40, no. 1, pp. 51–57, 2004.

[21] M. R. Lyu, X. Chen, and T. Y. Wong, “Design and evaluation of
a fault-tolerant mobile-agent system,” Intelligent Systems, vol. 19,
no. 5, pp. 32–38, 2004.

[22] A. W. Krings, “Agent survivability: An application for strong
andweak chain constrained scheduling,” in HICSS ’04: Proceed-
ings of the Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04) - Track 9. Washing-
ton, DC, USA: IEEE Computer Society, 2004, p. 90297.1.

[23] S. Bussmann, N. R. Jennings, and M. Wooldridge, Multiagent
Systems for Manufacturing Control. Springer Verlag, 2004.

[24] J. M. Vidal. Fundamentals of multiagent systems with netlogo
examples. [Online]. Available: http://www.multiagent.com/fmas

[25] S. Kraus, Strategic negotiation in multiagent environments. Cam-
bridge, MA, USA: MIT Press, 2001.

[26] C. Tessier, L. Chaudron, and H.-J. Müller, Eds., Conflicting agents:
conflict management in multi-agent systems. Norwell, MA, USA:
Kluwer Academic Publishers, 2001.

[27] C. G. Cassandras, Discrete Event Systems, Modeling and Perfor-
mance Analysis. Aksen Associates Incorporated, 1993.

[28] A. A. Desrochers, “Performance analysis using petri nets,” Journal
of Intelligent and Robotic Systems, vol. 6, no. 1, pp. 65–79, August
1992.

[29] J. L. Peterson, Petri net theory an the modeling of systems.
Prentice Hall, 1981.

[30] W. Reisig, Petri nets, An Introduction, ser. EATCS: Monographs
on Theoretical Computer Science. Springer-Verlag, 1985, vol. 4.

[31] D. Gross and C. M. Harris, Fundamentals of Queuing Theory, ser.
Wiley Series in Probability and Statistics. Wiley-Interscience,
1998.

Jose R. Celaya is a visiting scientist with the Research Institute
for Advanced Computer Science at the Prognostics Center of
Excellence, NASA Ames Research Center. He received a Ph.D.
degree in Decision Sciences and Engineering Systems in 2008, a
M. E. degree in Operations Research and Statistics in 2008, a M.

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 995

© 2009 ACADEMY PUBLISHER

S. degree in Electrical Engineering in 2003, all from Rensselaer
Polytechnic Institute, Troy New York; and a B.S. in Cybernetics
Engineering in 2001 from CETYS University, México.

Alan Desrochers received the B.S.E.E. degree from University
of Massachusetts, Lowell, in 1972 and the M.S. and Ph.D.
degrees in electrical engineering from Purdue University, West
Lafayette, Indiana, in 1973 and 1977, respectively.

During 1974 he was employed in the Guidance and Con-
trol Systems Department at the Lockheed Missiles and Space
Company, Sunnyvale, California. From 1977-1980, he was an
Assistant Professor in the Department of Systems and Com-
puter Engineering at Boston University. In 1980, he joined the
Electrical and Systems Engineering Department at Rensselaer
Polytechnic Institute, Troy, New York. During the 1986-1987
academic year he was a Visiting Scientist in the Laboratory
for Information and Decision Systems at MIT, Cambridge,
Massachusetts. He is presently a Professor in the Electrical,
Computer, and Systems Engineering Department at Rensselaer.

He is the author of Modeling and Control of Automated Man-
ufacturing Systems, IEEE Computer Society Press,1990, a co-
author of Application of Petri Nets in Manufacturing Systems,
IEEE Press, 1995 (A. A. Desrochers and R.Y. Al-Jaar), editor
of Intelligent Robotic Systems for Space Exploration, Kluwer
Academic Publishers, 1992, and co-author of State Variables
for Engineers, second edition, John Wiley & Sons, 1998 (P.M.
DeRusso, C.M. Close, R. J. Roy, and A.A. Desrochers).

Dr. Desrochers is a past Editor for the IEEE Transactions
on Robotics and Automation. In 1987 he was part of a six-
faculty member team that received the LEAD award from the
Society of Manufacturing Engineers. Since 1995 he has been a
Fellow of the IEEE for contributions to manufacturing systems
engineering and manufacturing systems education

Dr. Robert J. Graves is with the Thayer School of En-
gineering , Dartmouth College, Hanover, NH 03755 USA.
(Robert.J.Graves@dartmouth.edu). Dr. Graves led Rensselaer’s
Electronics Agile Manufacturing Research Institute (EAMRI)
since its inception in 1994. He has published over 200 books
and technical papers on his research findings. He is an Associate
Editor of the Journal of Manufacturing Systems and regularly
reviews for other prominent journals in the field. He has received
the David F. Baker Distinguished Research Award from IIE, the
Reed-Apple Award from the Material Handling Education Foun-
dation, and the RPI School of Engineering Research Professor
Award in 2003. He is a Fellow of IIE and a Fellow of SME as
well as a Senior member of IEEE.

996 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

