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Abstract—In the 2006 RoboCup Virtual Rescue Robots 
competition, teams from different research labs developed 
methods for controlling teams of  mobile robots in a 
simulated urban search and rescue scenario.  The scoring 
procedure used in this inaugural competition rewards 
participants for the number of victims found, the amount of 
area explored in the environment, the quality of  the maps 
created by the robot teams and penalties participants for 
colliding  with a victim or relying on human operators. The 
analysis of the strategies and scores  suggests that the scoring 
procedure may lead teams to adopt strategies that are not 
consistent with the needs of  a real search and rescue 
scenario. This  paper introduces Robotic Exploration Utility 
as  a measure of  exploration quality and analyzes the results 
of  the competition based on this measure.  Individual robot 
contributions to the system were reviewed to account for the 
costs associated with adding a robot to the environment, 
indicating that value added per robot is an important 
measure that is overlooked.  The analysis also revealed 
substantial  performance variation, depending on the 
behavior that was being rewarded, which may indicate a 
lack of  focus for evaluative performance measures  of  robotic 
urban search and rescue systems.  The Robotic Exploration 
Utility metric enables the research community to focus on a 
performance measure which reflects the needs of  the 
domain, while allowing task performance to be easily 
compared across systems. 

Index Terms—urban search and rescue, robotics, 
performance measure, robotic exploration

I.  INTRODUCTION

Using robots for urban search and rescue activities first 
occurred in 2001 in response to the World Trade Center 
disaster in New York City [1]-[3].  Since that time, there 
has been much interest in using robots as part of urban 
search and rescue teams, though much of the research has 
resulted in anecdotal observations [1]-[4].  There is a 
genuine need for quantitative and repeatable research in 
this area.  RoboCup, in an effort to encourage research, 
innovation, and advancement in urban search and rescue, 
recently introduced a new competition called Virtual 
Rescue Robots, focused on developing control 
mechanisms for robots in a virtual setting [5], [6].  By 
introducing a simulation competition, the costly and time-
consuming mechanical aspects of the robot are 

eliminated, allowing the competition to focus on robotic 
control.   The simulation also allows for repeatable trials, 
quantitative data collection, and cross-institutional 
cooperation that did not previously exist.  The 
competition requires an open source policy for 
competition algorithms, further supporting the 
advancement of development in robotic urban search and 
rescue.

This effort to use a research competition to stimulate 
interest and progress in a research area is a growing trend.  
RoboCup, in which different teams compete to develop 
teams of robots to compete in different leagues, is an 
outgrowth of a desire to rapidly advance and share results 
within the autonomous robotics community [5], [6].  
Recently DARPA has adopted the same approach with the 
DARPA Grand Challenge to encourage researchers to 
build autonomous off-road navigation robots for a large 
cash prize.   NASA has also experimented with offering 
prizes for various competitions to encourage students and 
researchers to focus on problems relevant to NASA’s 
needs.  These competitions are a useful and fun way to 
advance various research goals, but their introduction is 
rather recent and it is unclear how quickly and effectively 
the competitions will achieve the research goals of the 
people behind their introduction.

The simulated disaster environments and robots in the 
Virtual Rescue Robots competition are powered by the 
high fidelity Unreal Tournament 2004 game engine (Epic 
Games, Inc.,  Raleigh, N.C., USA), interfaced by an open 
source software package called USARSim.  USARSim, 
originally developed at the University of Pittsburgh and 
now supported by NIST, allows researchers to develop 
realistic models of robots and control them within the 
Unreal Tournament 2004 architecture.  Unreal 
Tournament contains its own environment editor that 
allows researchers to develop their own environments to 
exacting specifications.  This simulation allows for 
repeatable trials to test individual platforms or robot 
teams and allows for repeatable testing of performance 
metrics.

Many metrics to evaluate the performance of robotic 
systems have been created for specific domains, 
including robotic urban search and rescue [7]-[10], while 
some metrics have been designed to be general in order to 
apply to a wide range of robotic systems [7].  Efforts to 
standardize performance metrics for domain specific 
robotics have taken place, but are based mostly on very 
specific end-user requirements [8],  [9].  Example 
requirements include weight and volume specifications, 
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power consumption, camera resolution, specific terrain 
navigation, or sensor payload.  Though these are very 
important aspects of the system to analyze, these 
requirements are based on the physical system and are not 
easy to integrate into an overall system performance 
metric.   System performance metrics, like amount of area 
explored, number of targets acquired, or number of robot 
collisions, are intended to measure task performance [6], 
[11] and are generally not based on the physical aspects 
of the robot.  Attempts have been made to integrate many 
task-oriented performance measures together in order to 
gauge robot systems against one another, such as the 
scoring algorithm used in the Virtual Robot Rescue 
competition [5],  [6].  However, occasionally these 
integrations are weighted in such a way that reward 
certain behaviors that may not be in the best interest of 
the stakeholders, for example, rescue workers [9], [11].  
While examining these measures, we have created the 
Robotic Exploration Utility metric, which can be used to 
easily compare task performance of individual robots or 
robot teams.  In this paper, we present Robotic 
Exploration Utility (REU) as a viable task performance 
measure and demonstrate its use based on the results from 
the 2006 Virtual Rescue Robots competition.

II.  METHODS

A.  Robotic Exploration Utility
Robotic Exploration Utility (REU) is a measure 

designed to assess the effectiveness of a robotic system 
exploration or target search and is based on the idea of 
exploration quality, introduced by Thornburg and Thomas 
[11].  This measure is designed to be applied to individual 
robots or teams of robots and is not dependent on the type 
of control utilized in the system.  Specifically, REU is the 
number of targets acquired (T) over the area explored in 
square meters (m2), as described in (1).

REU = T / m2     (1)

This measure is useful in several different applications 
and domains, not just urban search and rescue robotics.  
Consider scientific robotic exploration: scientists focus 
on exploring the area while finding as many scientifically 
relevant targets as possible.   The same situation is true in 
robotic urban search and rescue,  in which the mission 
requires much area to be explored while finding as many 
survivors as possible.  Even in military reconnaissance or 
combat missions, area explored and enemy targets 
acquired are the mission goals.  Each domain would 
perhaps have different standard REU values for system 
evaluation purposes or for operator training benchmarks.

The main justification for the REU is the combination 
of two priorities of robotic exploration: the successful 
navigation or exploration of an area and the acquisition of 
targets of interest.  In the case of urban search and rescue, 
the main priority is to identify as many victims as 
possible within the environment.  Thus, quality of search 
within an area is of highest importance. 

B.  REU Measure Validation
To validate the REU measure,  the results from the 

2006 Virtual Rescue Robots competition was used.  The 

Virtual Rescue Robots competition relied on two 
simulated environments relevant to a real urban search 
and rescue situation.  The first environment, a damaged, 
multilevel office building, contained rubble, uneven 
surfaces, and flames (see Fig. 1).  The second 
environment,  a rubble-filled city street, featured uneven 
surfaces, flaming and overturned vehicles, and a park 
area with trees (see Fig.  2).  Both environments, 
developed for the competition by NIST, were vast 
(several thousand square meters) and contained victims 
dispersed throughout in a random fashion.   Each 
simulated victim was equipped with a radio frequency 
identification (RFID) tag which transmitted the victim’s 
name and relative location when the robot was within one 
meter of the victim.  Additional information was 
transmitted if the robot reached a closer distance 
threshold to the victim.  False alarms (detecting a victim 
that was not present) were also possible.  Additional 
RFID tags were dispersed throughout each environment 
for judging and scoring purposes. 

All competition participants had access to the same 
robotic platforms (different sized wheeled and tracked 
robots) and sensors (such as sonars, cameras, and laser 
range finders).   The robotic platforms had maximum 
payload specifications that required participants to 
carefully configure the robots with sensors.  Sensor 
feedback was simulated as closely to real sensor feedback 

Figure 1. The simulated indoor environment.

Figure 2. The simulated outdoor environment.
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as possible, adding to the simulator’s fidelity.  The 
number of robots used by any participating team was not 
limited and communications between robots was not 
limited by bandwidth or other constraints. 

Each trial, or run, was limited to 20 minutes, in which 
time each robot was to explore and map as much of the 
area and locate as many victims as possible.   Each team 
started from approximately the same position and 
explored the same environment during each run.  At the 
end of the 20 minute run,  each team was allowed 10 
minutes to compile the files necessary for scoring.  The 
files submitted by each team for scoring a run included an 
image file of the map created by the robot, integrated 
with other robot maps if multiple robots were used in a 
run, a list of victims found with locations, and any 
additional information about the victims collected by the 
robot, a list of RFID tags and associated locations 
detected in the environment,  and any images of victims 
recorded by the robot.  Additional performance measures 
recorded automatically by the simulator server included 
the amount of area explored in square meters and the 
number of robot collisions with victims.  The judges used 
this information to determine the score for each run.  
Table 1 describes point values given for particular aspects 
of each run.  Equation (2) shows how the points were 
combined to form the final score.  The point values and 
weights for each factor are based on the Real Robot 
Rescue competition to attempt to bridge between the 
virtual and physical competitions [10].

Six participating teams were evaluated over five runs 
with the competition scoring algorithm and the REU 
measure.  The number of victims found and area explored 
per team for each run was recorded and analyzed based 
on the competition algorithm and the REU, along with 
the average contribution from each robot.   Additionally, 
aggregate performance measures over the five runs was 
analyzed in a similar manner. 

TABLE I. MERIT AND PENALIZING FACTORS WITH ASSOCIATED 
POINT VALUES

Merit Factors Variable Point value

Found victim V 10

Victim status reported Vs 10
Victim bonus (picture, etc.) Vb up to 20

Map visual quality Mv up to 50

Map metric quality Mm 0 to 1

Map total Mv*Mm

Area explored         
(environment dependent) A up to 50

Penalizing Factors

Number human operators N divide total score 
by (N+1)2

False victim identification Vf -5
Victim collision Vc -5

(2)

III.  RESULTS

A. Scoring Algorithm Results
Table 2 describes each team's control strategy (fully 

autonomous, teleoperated, or autonomy with supervisory 
teleoperation) and shows the aggregated score over the 
five runs.  Only one team utilized one fully teleoperated 
robot, two teams utilized a combination of teleoperation 
and autonomous activities, and three teams were fully 
autonomous systems.  The table is sorted from highest 
aggregate score to lowest. 

Fig. 3 presents the competition algorithm results per 
run for each team.  There is a general improvement trend 
over the course of the five runs with a wider spread of 
scores in the later runs.

Fig. 4 indicates the per robot contribution of scores 
from the scoring algorithm.  These data are based on the 
aggregated scores divided by the number of robots 
utilized in the runs.  There seems to be two tiers, with 
Red, Yellow, and Green teams scoring higher with their 
robots than the White, Blue, and Black teams.

TABLE II. TEAM COMPOSITION AND AGGREGATED SCORE OVER 
THE FIVE RUNS.

Team Type # Robots Total Score

Yellow Autonomous 8 993.09

Red Autonomous 6 833.01

White Autonomous 6 473.13

Black Teleop & Auto 6 341.85

Blue Teleop & Auto 4 207.49

Green Teleoperated 1 139.22

Figure 3. Competition scoring algorithm results per run for each 
team.

B. REU Results
Fig. 5 shows the REU for each team per run for the 

five runs.  This figure looks significantly different from 
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Fig. 3,  but is to be expected.  Fig. 6 indicates the 
aggregate REU for each team over the five runs.   The 
aggregate REU is based on the total number of victims 
found in the environments and the total area explored 
over the five runs.  Fig.  7 shows the per robot 
contribution for the REU metric.  The per robot 
contribution is based on the aggregate REU divided the 
number of robots used during the runs.

IV.  DISCUSSION

A. Scoring Algorithm
Preliminary conclusions based solely on the final 

scores indicate a preference to autonomous systems

Figure 4. Per robot contribution from aggregate score.

Figure 5. REU per run for each team.

Figure 6. Aggregate REU for each team.

Figure 7. Per robot contribution for REU.

(see Table II) as an effective means to searching for and 
finding victims in an urban search and rescue 
environment.   Table II also indicates a preference toward 
using more robots during a search and rescue mission, as 
the higher scoring teams had higher number of robots.  
Fig. 3 indicates the scoring algorithm results per run for 
each team, highlighting the fact that more robots leads to 
a higher score throughout individual runs as well.  
However,  it seems that, depending on the control 
algorithms used, increasing the number of robots will not 
increase the contribution of each robot.   Fig. 4 shows the 
per robot contribution for each team.  The Green team, 
only using one robot,  had essentially the same per robot 
contribution score as the Red team which was using six 
robots and a higher per robot contribution score than the 
Yellow team which used eight robots.  The other three 
teams seemed to be relatively ineffective in using their 
robots.

B. REU
The REU presents an interesting measure of robot 

effectiveness to detect victims within the environment.  
Fig. 5 presents the REU per run for each team, while Fig. 
6 presents the results of the aggregate calculations.  The 
Green team has the highest aggregate REU, possibly 
because a human was in control of the robotic system 
during the entire run, rather than operating from a 
supervisory position like the operator of the Black team, 
which had the second highest REU.  With the exception 
of the Yellow team, all the teams with a human in some 
sort of control capacity had a higher ratio than fully 
autonomous teams, indicating that the human had a direct 
role in locating victims within the environment.  This is 
evident in Fig. 7, which shows the per robot contribution 
to the REU.  The Green team, with only one robot, had a 
much higher per robot contribution, indicating the other 
teams utilized ineffective search strategies. 

Different performance measures may indicate different 
levels of success.  If the overall robotic system is 
considered with the competition scoring algorithm, the 
Yellow team created the best robotic system, as indicated 
in Table II.  However, the aggregate REU suggests the 
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Green team utilized the best strategy by being far more 
effective in searching than the other teams.  The overall 
score contribution per robot, as shown in Fig. 4, indicates 
that ineffective robot use should be a penalizing factor to 
reflect the cost of adding robots to the environment.  The 
same is shown in the REU contribution per robot (Fig.  7).  
It is quite obvious from these differing measures that the 
performance measures for robotic urban search and 
rescue need to be standardized to focus on the most 
important part of a search and rescue mission. 

C. Team Strategies
Each of the six teams had slightly different exploration 

strategies.  Though 2006 was the first year for the Virtual 
Rescue Robots competition, five of the six team strategies 
have not been used in the field.  The Yellow team 
deployed 8 robots in the environments, with the intention 
the robots would autonomously coordinate search efforts.  
Because of computation constraints, the robots 
independently planned each route based on the 
environment in a four square meter box around the robot.  
Each robot dropped RFID tags to ensure a collective 
ground truth through the team, but chose navigation paths 
based on their own local environment.  Based on the 
scoring algorithm, this strategy was quite effective, as the 
Yellow team gained the highest aggregate score and 
seemed to effectively use the robots based on per robot 
contribution.  However, the REU shows a different side, 
indicating that the Yellow team’s exploration strategy 
may not have been the best (see Figs. 5 and 6).  This 
discrepancy shows that the scoring algorithm places more 
weight on items that may not be fundamentally necessary 
to the domain.

The Red team utilized a similar strategy to the Yellow 
team, though only operating 6 robots in the environments.  
The main difference between the Red and Yellow teams 
is that the Red team robots attempted no information 
sharing during the run and each robot always acted in a 
selfish way.  This strategy also seemed to work well 
given the scoring algorithm and indicates an effective use 
of robots based on the contribution per robot.  However, 
the REU indicates the same effect seen with the Yellow 
team strategy,  suggesting that the Red team exploration 
strategy is based more on the scoring algorithm metrics, 
rather than quality exploration.

The White team focused on mapping, with each of the 
six robots creating a separate exploration map.  Each 
robot explored the area in a random fashion, while not 
sharing its internal map of the environment.  The 
difference between the White and Red team strategies is 
that the White team robots navigated randomly, not 
selfishly.  Based on the scoring algorithm, this strategy 
was not nearly as good as the Yellow or Red team 
strategies, which is supported by the contribution per 
robot scores.  The REU shows the quality of exploration 
by the White team was not very good.  Fig. 6 indicates 
this strategy is a fairly ineffectual use of robots within the 
environment.

The Black team used a supervisory control strategy to 
control six robots in the environments.  The human 
operator had the ability to toggle modes for each robot: 
fully autonomous, path planning, or teleoperated.  The 
fully autonomous mode allowed the robot to operate in a 

selfish manner, as used by the Red team.  The path 
planning mode allowed the operator to assign a 
navigation path to a particular robot to search a particular 
area.  The teleoperated mode allowed the operator to take 
full control of the robot’s navigation.  Based on the 
scoring algorithm, this strategy was not ideal.  The 
contribution per robot score also indicates ineffectual 
robot exploration.  However,  the scoring algorithm 
severely penalizes teams for using a human operator (see 
Table I).  If this penalty did not exist, the Black team 
would have the highest score based on the scoring 
algorithm [11].  The REU metric for the Black team 
shows a fairly effective use of robots in terms of 
exploration quality.  Though this contradicts the results of 
the scoring algorithm, it is directly related to the weights 
applied to certain aspects of the scoring algorithm.

The Blue team strategy was similar to the Black team, 
though focused more on autonomous behaviors combined 
with teleoperation for four robots.  The scoring algorithm 
suggests that this strategy was ineffectual compared to the 
other strategies.  The REU metric indicates the strategy 
may be effective for quality exploration,  as the aggregate 
REU is higher for the Blue team than two fully 
autonomous teams.

The Green team strategy was to use a teleoperated 
robot which carried a full payload of sensors to allow the 
operator to collect as much data as possible about the 
environment.   The scoring algorithm results suggest this 
strategy should not be used.   However, this strategy 
showed an effective use of the robot, as seen in Fig. 4.  
The aggregate REU shows the Green team strategy as the 
most effective for high quality exploration.  The REU for 
each run shows the Green team being the most effective 
explorers four out of five runs (Fig. 5).  These results 
imply that better exploration is achieved by keeping an 
operator in direct control of the robot.    The Black team’s 
use of a supervisory system is also fairly effective for 
quality exploration based on the REU, though some 
information is lost when the operator is required to attend 
to more than one robot.  Interestingly, the Green team's 
teleoperated robot system is very similar to the 
interaction rescue workers currently have with search and 
rescue robots. It seems likely that, at least for the 
foreseeable future, urban search and rescue will be 
dominated by the need to use robots to search for victims 
in cooperation with human teams [1]-[4].   The ability of 
the robot to exhaustively and reliably search a region and 
to provide excellent documentation about what areas 
were searched and exactly where victims were found is 
likely to be the most important criteria for many years.

Like any integrated performance measure, there are 
limitations to the REU.  The REU measure does not take 
into account the number of operators required to 
effectively operate a robot, nor does it account for the 
cost of adding an additional robot to the team.  The REU 
measure also does not examine the quality of information 
feedback the robot or robots provide to the operator or 
other personnel.  Additionally, the REU does not 
explicitly take into account the difficulty of navigating 
the terrain.  However, the priorities of robotic exploration 
are reflected in the measure: area explored and targets 
acquired.  Combining these measures creates a metric of 
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exploration quality that can provide additional evaluative 
information.

V.  CONCLUSIONS

Based on the results of this brief analysis, it is clear 
there is merit in the REU metric.  A repeatable analysis of 
teams of robots within the USARSim structure will 
provide more evidence for the continued use of the REU 
as an assessment measure.  Additionally, implementing 
this assessment measure can help scientists, rescue 
workers, and military personnel analyze and select the 
best systems for their purposes or facilitate the creation of 
training benchmarks for operators.  The creation of the 
Robotic Exploration Utility metric is an important first 
step toward standardizing measures for urban search and 
rescue and exploration robotics in general.
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