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Abstract— The capacity of an order-d associative memory
model is O(Nd/logN) where N is the memory size in bit.
In contrast, the capacity of the Hopfield network is limited
to O(N/logN). Among higher order associative memory
models (d > 1), the second order memory (d = 2) has
attractive properties: a relatively small implementation cost
of O(N2), a small number of spurious states, and the
presence of a diagonalization form. Due to these properties,
it is of both practical and scientific interests to investigate
efficient computational mechanisms of such network.

One disadvantage of higher order associative memory is
that it cannot be implemented with simple threshold neurons
or McCulloch-Pitts neurons, thus a direct implementation
of its computational mechanism on a biological substrate
is questionable and its silicon implementation is expensive.
In this paper, we propose two approximation models of
a second order associative memory using threshold logics.
Both are two-layered and employ eigenvalue decomposition
of the correlation tensor. The first model uses a winner-take-
all mechanism and the second uses a weighted voting by
those with significant responses. Architectural-level designs
of these memory models are presented. Extensive numer-
ical simulations demonstrate effectiveness of the proposed
models in retrieving contents with noisy probe vectors.

Index Terms— neural networks, memory capacity, error
correction, architectural level design

I. INTRODUCTION

Associative memory has been consistently an active
research area since the works of Kohonen [1], Cohen and
Grossberg [2], and Hopfield [3]. Most efforts have been
directed to increase the memory capacity, improve the
error correction capability, reduce the number of spurious
memories, and improve biological feasibility [4] [5] [6]
[7]. Advances in this field may reveal important aspects
of brain and perception of animals including humans.

Two popular extensions to a Hopfield type network
for improving the memory capacity are introduction of
self-feedback and relaxation of the synaptic weights to
asymmetric ones. In [5], Gorodnichy demonstrated that
the size of the attraction basin could be increased with a
proper amount of self-feedback in a network trained with
the pseudo-inverse learning. Similarly in [8], it was shown
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that a small amount of self-feedback could reduce the
number of spurious states in Hopefield networks. More-
over, in [7], empirical studies of Hopfield networks with
asymmetric additive random weights were conducted. The
study showed that the asymmetric weights reduced the
number of spurious states while no significant change to
the size of attraction basins.

A number of learning algorithms have been suggested
to replace the traditional Hebbian and Pseudo inverse
learning rules. In [9], the authors proposed a Perceptron
type learning algorithm with a goal of maximizing a
stability measure of the memory. In [8], additional training
vectors were introduced systematically so as to increase
the size of the attraction basin with the learning algorithm
of [9].

A more drastic departure from the traditional first-
order correlation memory has been shown to improve the
retrieval performance of the memory. Memory models
with higher order correlation have been explored and
shown to increase the capacity from O(N/ log N) of
the Hopfield model to O(Nd/ log N) where N is the
number of neurons in the model and d is the order
of the correlation [10] [11] [12]. However, biological
feasibility of such systems is questionable as evaluation
of a polynomial of order d is required for each memory
cell or neuron.

In this paper, we discuss how to arrange the compu-
tational mechanism of a higher-order associative memory
so that it can be approximated with a collection of simple
neuron models. Considering biological feasibility and
cost-effective silicon implementation in mind, we impose
the following design requirements.

1) Each neuron can compute a sum of binary inputs
weighted by real numbers.

2) Each neuron can perform a generalized threshold
operation to the weighted sum to produce a binary
output. The operation is defined as

χ(z) =

⎧⎨
⎩

∆+ z > θ
∆− z < −θ
∆0 otherwise

(1)

where ∆• are either 1, -1 or ± the current neuron
state, and θ is a threshold value.

3) A pair of neurons communicate via a single-bit
wire.
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The model is a slightly generalized version of the
McCulloch-Pitts neuron. The threshold operation (1) can
accommodate both the original Hopfield model and high-
correlation order memories of [10] [11]. To specify the
threshold operation, we use symbols {+,−, ◦, ↑} to de-
scribe specific ∆•. The symbols indicate 1, -1, x and
−x, respectively, with x being the state of the neuron.
Furthermore, we compactly write χ (z; θ, ∆−, ∆+, ∆0) to
fully describe the threshold operation.

When these computational requirements are met, the
system can be constructed with a set of simple processing
elements that are often considered biologically feasible
[13] [14] and amiable to implementation on silicon.
Since each input is bipolar (i.e. the value is ±1), the
weighted sum can be implemented with adders. Thus, no
multipliers are required in the design. Furthermore, the
communication or wiring cost is small and scalable as
data transmitted between processing elements are strictly
binary. The main objective of this work is in two-fold: to
present approximation models of a second-order associa-
tive memory and to design architectural level circuits for
the approximation models.

In this paper, we consider the following scenario. The
memory consists of N memory cells. During a storage
phase, the memory is presented with K randomly chosen
bipolar vectors of N dimensions (i.e. each element is ±1).
We call them fundamental vectors. We consider that the
set of fundamental vectors is given prior to a retrieval
phase and remains unchanged. During the retrieval phase,
the memory is initially set to a bipolar vector of length
N , which we call probe vector, and the memory performs
internal processing and settles to another bipolar vector of
length N , which is the memory content retrieved by the
probe vector. We only consider auto-association memory,
therefore the retrieval is considered correct if the retrieved
vector is one of fundamental vectors whose Hamming
distance is the smallest to the probe vector.

We use the following notations. Matrices and tensors
are written in upper bold letters (C, for example). Vectors
are written in lower bold letters (v). Scalars are written
in non-bold italic letters (x and N). Sub-scripts are used
to index elements of a countable set. For example, funda-
mental vectors are addresses as u1, u2, ..., and uK . They
are also used to index components in vectors, matrices
and tensors. A set index precedes a component index.
Therefore, jth component of kth fundamental vector
is addressed as ukj . Super-scripts are used to specify
particular memory cell. We use x for the state of the
memory. Therefore, xi denotes the bipolar state of the
ith memory cell. We use (x, y) to denote a dot product of
two vectors, x and y. Memory models run iteratively and
we call each iteration epoch. To avoid ambiguity, we may
attach the epoch number to the memory state and other
associated variables. In the case, a number enclosed in [ ]
indicates the index of the epoch. For example, xk[t] is the
state of kth memory at tth epoch. When x[t] = x[t + 1],
the memory is said to be stable, and otherwise, it is said
to be unstable.

The memory carry various signals internally, which can
be either bit or multi-bit. A bit signal can be transmitted
by a single-bit wire. A multi-bit signal requires a multi-bit
bus to be transmitted. A bit number can be either binary
or bipolar where the former carries 0 or 1 and the latter
carries 1 or -1. When a bit signal is transmitted via a
single wire, we need to keep in mind the semantic of
the signal: binary or bipolar. The distinction between the
two becomes important in designing digital circuits of the
memory in Section V.

In our experiments (Section IV), we impose random
noise to a probe vector. The noise level is indicated by
Q ∈ [0, 1.0]. To add noise, we select �QN� bits in the
probe vector randomly and flip their states. Finally, we
call a correlation memory of order d, d-order memory. In
particular, we call 2-order and 3-order memories second
order memory and third order memory, respectively.

The paper is organized as follows. Section 2 provides
background materials and brief accounts of other relevant
associative memory models. Section 3 describes proposed
memory models. Section 4 provides results of numerical
experiments. Section 5 provides designs of the proposed
memory models and compare them against those of
relevant models. Finally, Section 6 provides summary
and remarks. An earlier and shorter version of this paper
appeared in [15].

II. BACKGROUNDS

A. Correlation Memory Models

The original Hopfield network is a fully connected re-
current one and each neuron stores one bit of information.
In this sense, neurons and memory cells are equivalent.
It obeys the following update rule.

zi[t] = (wi, x[t]), (2)

xi[t + 1] = χ(zi[t]; 0, +,−,+). (3)

We call zi the action potential of an ith neuron. The
synaptic weights, wi, are computed with Hebbian rule
without any self-feedbacks. Thus,

wi
j =

K∑
k=1

ukiukj (4)

for i �= j and wi
i = 0.

A d-order memory uses a d-tensor, Ci, computed with
an extension of the above Hebbian rule.

Ci =
K∑

k=1

ukiuk × uk × ... × uk (5)

where × denotes the cartesian product, which are repeated
for d − 1 times. Typically, any self-feedbacks are set
to zero. For example with d = 2, ith row, ith column,
and diagonal elements are set to zero. In this paper, it is
understood that all self-feedbacks are removed from cor-
relation tensors. Hence, the degree of freedom associated
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with a correlation tensor is
(

n
d

)
. The update of d-order

memory is

zi[t] = Ci · (x[t] × ... × x[t]) (6)

xi[t + 1] = χ(zi[t]; θ, +,−, ↑). (7)

where the cartesian products in (6) are repeated d − 1
times and · is an inner product of d and d − 1 tensors
as defined in [16]. When Ci is defined as (5), (6) can be
written as

zi[t] =
K∑

k=1

uki(uk, x[t − 1])d (8)

The threshold value, θ, is set to 0 for d even and O(K)
for d odd [10]. It has been shown that the capacity of an
d-order memory is O(Nd/ log N) patterns of length N
and the radius of the attraction basin approaches N/2 as
N approaches ∞.

The size of a correlation tensor is O(Nd), which
reflects the storage requirement imposed on each neuron.
This exponential growth of the storage requirement makes
a network with a large d prohibitively expensive. There-
fore, in practice, we are often limited to d ≤ 3.

Two vectors (say x and x̂) are of opposite polarities if
xi = −x̂i, ∀i. It is well known that the Hopfield network
cannot distinguish two vectors of opposite polarities [17].
In other words, if x is a stable/unstable state of the
network, then −x is also stable/unstable. This behavior
can be easily observed from the update rule of (2) and (3);
Note first that the network is stable if and only if xizi > θ,
∀i. When the sign of every component of x is flipped,
then every zi will change its sign without changing its
magnitude. Therefore, the condition of xizi > θ being
true or false is not affected by the polarity of x. If x is
stable, then so is −x. If x is unstable, then so is −x.
When x is one of fundamental vector but −x is not, then
we consider −x spurious as it is stable yet is not one
being stored in the memory.

In reference to (8), we can observe that the same
behavior holds for a network with an odd d but not for
one with an even d. Due to this behavior, the memory
recall rate of an even order network tends to be less
sensitive to noise imposed on a probe vector. Figure 1
shows the memory recall rates of second order and third
order memories with various Ks and Qs. The size of
the network (N ) is set to 100. K changes from 10 to
1000. Four levels of Q are tested: 0, 0.1, 0.3, and 0.5.
The third order memory shows a larger capacity than
the second order one. However the recall rate of the
third order memory decreases quickly as the noise level
increases. The recall rate of the second order memory is
less sensitive to the noise level. The results agree with the
above observation.

Due to the aforementioned practical feasibility and
good error correction capability, we focus our inves-
tigation to a second-order correlation network in this
paper. The correlation tensor in this case is an N × N

symmetrical matrix computed by

Ci =
K∑

k=1

ukiukuT
k . (9)

where T is a transpose operator. The update of (6)
becomes

zi[t] = Ci · (x[t] × x[t]) = (Cix[t], x[t]). (10)

Since Ci is symmetrical, it can be written as

Ci =
R∑

k=1

λi
kvi

k

(
vi

k

)T
(11)

where R is the rank of Ci, λk is an eigenvalue of Ci,
and vk is the corresponding ortho-normal eigenvector.
This decomposition plays a critical role in developing our
network models in the next section.

With (11), (10) can be expressed as

zi[t] =
R∑

k=1

λi
k(vi

k, x[t])2. (12)

In this paper, we call each eigenvector an eigen-mode of
the second order memory, the sign of λi

k the sign of the
kth eigen-mode of ith neuron, and λi

k(vi
k, x) the response

of x to the kth eigen-mode. We further define

φi
k(x) = (vi

k, x) (13)

and call it the unit response of x to the kth eigen-mode
of the ith neuron.

B. Sparse Distributed Memory

Another important work on associative memory that
has a similar implementation structure with second-order
memory is Sparse Distributed Memory (SDM) [18].

SDM is comprised of pair-wise address and content
blocks where each address holds one content. The address
block contains a large collection of randomly assigned
bipolar vectors whose length is N for auto-associative
memory. For each address, the content block stores a
vector of length N . The content vectors are initially set to
zero. When a fundamental vector is presented to the auto-
associative memory for storage, those addresses whose
Hamming distances to the random vector are less than a
pre-determined constant (select radius) are activated and
the bipolar pattern is accumulated to the content block
of the activated addresses. When a noisy probe vector
is presented to the memory for retrieval, those addresses
whose Hamming distances to the vector are less than
the select radius are activated, and their contents are
accumulated into the output buffer. A retrieved pattern
is the accumulated pattern thresholded at zero. The goal
of SDN is to model human cortical memories.

A critical parameter of the SDM is the select radius.
Kanerva suggests in [19] that the radius be set so that the
signal to noise ratio of the memory is maximized. He then
go on to suggest the following formula for computing the
value.

ρ = Γ−1
N,0.5((2NK)−1/3) (14)
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Figure 1. Comparing memory recall rates between second order and third order memories.

where Γn,p denotes the cumulative distribution of a bi-
nomial distribution with n trials with p probability of
success. In other words,

Γn,p(k) =
k∑

j=0

(
n
k

)
pj(1 − p)n−j (15)

Since the binomial distribution is a discrete one, ρ is
the number of successes whose cumulative probability
according to ΓN,0.5 is closest to (2NK)−1/3.

III. MEMORY MODELS

We are interested in implementing a second order
associative memory using a set of generalized threshold
logics as defined in Section I. Note that the Hopfield
network is implementable with the neuron models. while
the second order memory is not. The latter involves
multiplying two multi-bit numbers, which violates the
imposed computational requirements.

For now, let’s relax the requirements and allow neurons
to multiply two multi-bit numbers and to transmit multi-
bit data. Then, Equation (12) suggests a two-layered de-
sign for each one bit portion of the second-order memory.
The first layer consists of R neurons. Each is assigned
a distinct eigen-mode of (12), and computes the unit
response of its eigen-mode to the current state, x[t]. The
second layer consists of a single neuron that computes the
square of each incoming input, computes the sum of the
first layer responses weighted by respective eigenvalues of
the eigen-modes, and then takes a threshold of the result
to produce a bipolar state. The result of the second layer
neuron becomes the state of the bit. This is exactly the
result of carrying out (12).

Figure 2 illustrates an overview of this two-layered
network for a single bit memory. The first layer neurons

(Φi
·) compute

yi = φi
k(x) =

∑
k

(
vi

k, x)
)
. (16)

The second layer neuron (Ψi) computes

zi =
∑

k

λi
k

(
φi

k(x)
)2

=
∑

k

λi
k

(
yi

k

)2
, (17)

xi = χ(zi; 0,+,−, ↑). (18)

This model violates the requirements at three places:
to take the square of a multi-bit number (yi

k), to multiply
two multi-bit numbers (

(
yi

k

)2 and λi
k) and to transmit

a multi-bit number (yi
k = φi

k(x)) from the first layer to
the second layer. Despite the violations, the model does
suggest a computational strategy for carrying out (12) by
a collection of neurons with each computing weighted
sum of inputs. Thus, the model is more amiable to the
first computation requirement given in Section I.

In what follows, we introduce two approximation mod-
els that alleviate these violations and can be implemented
on the two layer network of Figure 2. In regard to the two
layer network, we introduce the following terminology.
We say a first layer neurons is active if its unit response
exceeds the threshold level of the neuron, and is inactive
otherwise. Furthermore, when the neuron is active, then
its eigen-mode is considered significant with respect to
the current memory state.

The two-layered network of Figure 2 will also serve
as the basis for memory implementations that will be
detailed in Section V.

A. Model 1 - Winner-Take-All

Our first model is based on the following conjecture:
it is likely that the sign of the most strongly responding
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Figure 2. A two-layer architecture of the second order network model.

eigen-mode coincides with the sign of zi in (12). Thus,

sgn

(∑
k

λk(vi
k, x)2

)
≈ sgn

(
λi

k̃

)
, (19)

where

k̃ = arg max
k

∣∣∣∣
√

|λi
k|

(
vi

k, x
)∣∣∣∣ . (20)

Equations (19) and (20) suggest the following computa-
tional scheme using the same network architecture shown
in Figure 2; The jth neuron in the first layer for ith neuron
computes

yi
j [t] = χ(φi

j(x[t]); θ, +, +, ↑), (21)

and the second layer neuron computes

zi[t] =
R∑

j=1

√
|λj |yi

j [t] (22)

xi[t + 1] = χ(zi[t]; 0,+,−, ↑) (23)

with θ being determined by the second layer neuron as
described next. We call this approximation model the
winner-take-all model of the second-order memory or
WTA for short.

We need to provide a mechanism such that only one
neuron in the first layer survives the threshold operation.
We can implement such competition in different ways,
and such competitive (winner-take-all) behavior has been
observed in biological systems as well [20] [21]. To com-
ply with our computation requirements, we implement the
competition as a binary search of an optimum threshold
value of θ. The search is controlled by a feedback signal
from the second layer to the first layer in the following
manner.

Let β denote the feedback signal, which is binary.
When more than one neurons in the first layer are active,
β is set to 1, while when no neurons are active, β is set
to 0. Then θ obeys the following rule.

θ =
{

θ + δ β = 1
θ − δ β = 0 , (24)

δ = δ/2. (25)

At the beginning of the search, θ and δ are initialized to

θ =

∑
j |vi

kj |
√|λk|

2
, δ = θ0/2. (26)

This binary search will quickly find an optimal threshold
with which only one first layer neuron is active.

B. Model 2 - Weighted Significant Voting

As K increases, Ci approaches full-ranked and its
spectrum (or the set of eigenvalues) approaches uniform.
As a result, the approximation of (19) using a single
eigen-mode becomes insufficient. Note that∑

j

[
φi

j(x)
]2

= N (27)

where x is any bipolar vector. This is because the length
of x does not change by rotation of the coordinate system.
Thus, unit responses,

{
φi

j(x)
}

i
, are not independent with

one another.
If a probe vector is responding strongly to one mode,

say k, φi
k(x)2 ≈ N and φi

j(x)2 ≈ 0, ∀j �= k. This is
the case assumed by WTA model. When either K or
Q grows large, a probe vector tends to respond strongly
to more than one eigen-modes. Assume M eigen-modes
are responding strongly with their unit responses being
more than θ. Then, due to (27), their unit responses are
constrained by θ < φi

k <
√

N − (M − 1)θ2. As M
increases, the permitted range of φi

k becomes smaller and
smaller. Consequently, φi

k shares similar values and∑
j

λi
j(φ

i
j)

2 ∝
∑

j∈Ω(x)

λi
j . (28)

where Ω(x) is a set of eigen-modes responding signifi-
cantly to a given x. This observation leads to our second
model, which is to approximate the second-order memory
with

xi[t + 1] ≈ sgn

⎛
⎝ ∑

j∈Ω(x[t])

λi
j

⎞
⎠ (29)

The approximation can be implemented with the archi-
tecture of Figure 2 using the following rules. The first
layer neurons compute

yi
j [t] = χ(φ(x[t]); θ, +,+,−), (30)

and the second layer neuron computes

zi[t] =
∑

j

λi
jy

i
j [t] +

∑
j

λi
j , (31)

xi[t + 1] = χ(zi[t]; 0, +,−, ↑). (32)

The bias term
∑

j λi
j in (31) is to cancel inputs from

insignificant first layer neurons. This term is not necessary
if yi

j is interpreted as binary instead of bipolar as seen in
Section V. We call this approximation model weighted
significant voting model of the second order memory or
WSV for short.

An important component of WSV model is the thresh-
old value of θ. Note that when N is large, the constraint
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of (27) on each φi
j is weak and φi

j has approximately a
Chi-square distribution of 1 degree of freedom. Then the
mean and standard deviation are 1 and 2, respectively,
and are independent of N . We can set θ to the mean plus
the standard deviation times some positive constant. In
this paper, we are concerned with networks of N ≥ 10,
and consider the Chi-square model applicable under such
condition.

IV. EXPERIMENTS

In this section, we provide numerical experiments for
evaluating the performance of proposed memory models
in terms of memory recall rates. A set of K randomly
generated bipolar patterns are stored in the memory. To
evaluate the performance of memory retrieval, one of the
fundamental vectors is selected randomly and noise is
added to it to form a probe vector. A recall is considered
successful if the retrieved pattern is one of stored patterns
that are closest in terms of Hamming distance to the probe
vector. Therefore, the Hamming network [22] provides a
100% recall rate and an upper bound of the performance.

To impose noise on a probe vector, we randomly select
�NQ� bits and flip their values. Thus, when N = 100
and Q = 0.1, exactly QN = 10 bits have their values
flipped. Four levels of noise are used in the experiments.
They are Q = 0, 0.1, 0.3, and 0.5.

For each experiment, the recall rate presented is the
average of 20 independent experiments, in which 30 probe
vectors are used to compute the each recall rate. An
accompanying error bar provides a standard error of the
mean recall rate estimate.

A. Threshold in Weighted Significant Voting

First, we examine the performance of WSV with re-
spect to a threshold level, θ. We tested 8 levels between
1.5 and 3.25 with 0.25 increments. Results are shown in
Figure 3. Neither a single setting performs the best overall
nor a simple rule predicting the performance is apparent.
However, we make the following observations:

• Results are similar for 1.75 ≤ θ ≤ 3 in all the
conditions tested.

• When K/N is small (K < 2N ), a higher θ in the
range of 2.75 ≤ θ ≤ 3.0 performs better.

• When K/N is large (K ≥ 2N ), a lower θ in the
range of 1.75 ≤ θ ≤ 2.5 performs better.

We can explain the behavior as follows. When K/N
is small, there tend to be a few eigen-modes that are
dominant. Since the sum of the squared response is always
N , the unit responses of these eigen-modes are relatively
high. Thus, we can set θ high to extract them reliably.
When K/N is large, a larger number of eigen-modes
respond strongly and their unit responses are not as high
as when K/N is small. Thus, θ needs to be lowered
to include them into the approximation. Based on these
observations, we fix θ = 2.5 in the remaining of our
experiments. However, this choice does not appear to be
critical.

B. Comparisons with randomized experiments

Second, the number of neurons in the network (N )
is set to 100 and the number of fundamental vectors
(K) is varied from 10 to 200. For comparisons, we
implemented the Hopfield network, second order memory
and SDM, and tested them under the same condition
with our approximation models. The number of addresses
in SDM is set to N2 to make the storage requirements
comparable to our models. The select radius of SDM is
set using the formula described in Section II-B.

The results are shown in Figure 4. Due to its limited
capacity, the performance of the Hopfield network is low
compared to others. SDM performs well when no noise
is present to a probe vector; The recall rate is the highest
when N ≤ 50 and comparable to that of the second order
memory for N > 50. However, it does not retain the
performance as Q increases. The performance of WSV
is consistently better than that of the WTA, except for
Q = 0.5 and K < 50. The performance of WSV model is
highly comparable to the second order model for K ≤ N .
Although the second order model retains high recall rates
as K becomes more than N , both WTA and WSV fail to
do so. The results suggest that the approximation models
are capable of storing patterns as many as N .

Next, K is fixed to 100, and N is varied from 10
to 100. The results are shown in Figure 5. Observations
similar to ones for Figure 4 can be made. When there is
no noise in a probe vector, SDM has the highest recall
rate of close to 100%. The performance degrades quickly
as noise is being introduced. Recall rates of the Hopfield
network are consistently low due to its limited capacity.
The performance of WSV is consistently better than that
of WTA, except for N < 50. The performance of WSV is
comparable with the second order model when Q ≤ 0.1
and N ≈ K.

Some descriptive statistics of mean recall rates normal-
ized by corresponding mean recall rates of the second
order memory are shown in Table I. The normalized mean
recall rate is 1.0 if the mean recall rate is the same with
that of the second order memory and less than 1 if it is less
than that of the second order memory. Shown in the table
are the mean, median, first quartile (1st Q), third quartile
(3rd Q), and standard deviation (Std). The mean of SDM
is deceptively high because of a few entries that are more
than 3. Overall, the proposed approximation models are
most comparable to the performance of the second order
memory. The results also suggest better and more stable
performance of the weighted significant voting than the
winner-take-all model.

V. ARCHITECTURE

In this section, we look at our second objective: to in-
troduce architectural level designs of the memory models
considered in Section IV. Rough designs of the models
have been described in Sections II and III. We will make
them more precise so that translation of the algorithms to
hardware become straightforward.
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Figure 3. Comparing memory recall rates of the Weighted Significant Voting with various θs.
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Figure 4. Comparing memory recall rates with N = 100 and various K.

TABLE I.
DESCRIPTIVE STATISTICS OF THE NORMALIZED MEAN RECALL

RATE.

Method Mean Median 1st Q 3rd Q Std
Hopfield 0.09 0.00 0.00 0.00 0.226

SDM 0.834 0.686 0.138 1.00 0.870
WTA 0.751 0.782 0.550 0.992 0.238
WSV 0.764 0.850 0.531 0.987 0.232

One subtle but critical issue to the designs is the
semantic of a bit signal. We want to allocate a single bit
to encode the state of a single memory cell (xi

j), which

is bipolar (±1). However, most conventional computing
platforms use the binary representation (0/1). To utilize
the rich existing computing conventions, therefore, the
bipolar signals need to be converted into the binary rep-
resentations internally. Fortunately, all designs considered
in this section interface the state vector (x) with either bit-
word or bit-bit multiply-accumulator (MAC), and we can
build-in the bipolar-binary conversion into the MAC with
little overhead. More details of MAC designs are given
below.

The following conventions are used throughout in illus-
trations. A bit signal is shown by a gray arrow. When the
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Figure 5. Comparing memory recall rates with K = 100 and various N .

signal is interpreted as bipolar, the arrow accompanies a
small line segment perpendicular to the arrow. A multi-
bit signal is shown by a black arrow. A vector signal
carrying number of either bit or multi-bit signals is
shown by a thick arrow. The shade of the thick arrow
is dependent on the type of the signal. A bit vector signal
is in gray, a multi-bit vector signal is in black. For our
discussion, we assume that eigenvalues and eigenvectors
of the decomposition (11) are represented with L-bits
multi-bit signals. Figure 6 shows the different kinds of
arrows used in this section.

The designs deploy a number of multiply-accumulate
(MAC) units which computes an inner product of two
vectors. Figure 7 shows five different types of MAC
units used in our designs. Each type is shown its block
representation (left) and architectural-level design (right).
Figure 7(a) shows a binary-binary MAC, where both
inputs are binary vector signals. It can be implemented
with N multiplexers and one N -input accumulator (shown
as N-AC in the figure). The accumulator can be built with
N − 1 adders of at most log2 N bits. It does not require
any multipliers, thus can be implemented inexpensively.
Figure 7(b) shows a bipolar-bipolar MAC where both
inputs are bipolar vector signals. As for the binary-binary
MAC, it can be implemented with N multiplexers and one
N -input accumulator. However, in this case, the output
of the accumulator needs to be multiplied by 2 and then
subtracted by N . This arithmetic implements a binary-
bipolar conversion.

Figure 7(c) shows a word-binary MAC, which takes
one multi-bit vector and one binary vector. Like the
binary-binary MAC, it requires N multiplexers and an
N-input accumulator, but does not require multipliers.
The N -input accumulator is more expensive than that of
Figure 7(a) and (b) as additions involve at most L log2 N

(c) Binary vector signal

(d) Bipolar vector signal (f) Multi−bit vector signal

(a) Binary signal

(e) Multi−bit signal

(b) Bipolar signal

Figure 6. Different signal types and corresponding arrow representa-
tions.

bits.
Figure 7(d) shows a word-bipolar MAC, which takes

one multi-bit vector and one bipolar vector. It is similar to
the word-binary MAC of Figure 7(c) except that the inputs
to multiplexers are the multi-bit input and its negative.
For a sign-magnitude format, computing the negative of
a multi-bit number is as simple as to invert the sign
bit. For a 2’s complement number, it is to take the 2’s
complement. When the multi-bit vector is fixed, we can
employ an alternative approach, which can reduce the
implementation cost for a large N . This alternate scheme
is shown in Figure 7(e). Instead of computing the negative
of each multi-bit number, it converts a word-binary MAC
to a word-bipolar MAC using a similar strategy with the
bipolar-bipolar MAC of Figure 7(b). In our designs, we
employ this alternative approach in implementing word-
bipolar MACs.

Finally, Figure 7(d) shows a word-word MAC, which
takes two multi-bit vectors as inputs. It requires N L-
bit multipliers and one N -input 2L log2 Naccumulator.
Therefore, it is considerably more expensive than the
other two.

A. Second-Order Model
First model to be considered is the second order corre-

lation memory implemented with the eigen decomposition
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Figure 7. Various types of multiply-accumulate units used in the memory designs.

of Equation (12). Figure 2 shows its architectural-level
design of the ith memory cell.

The jth neuron (Φi
j) in the first layer computes a dot-

product between x and vi
j to compute the unit response.

The output of Φi
j is delivered to the second layer neuron

via an L-bit bus. The second layer neuron (Ψi) first
squares each input and takes a dot-product between the
squared inputs and λi = [λi

1, λ
i
2, ..., λ

i
R].

B. Sparse Distributive Memory Model
Next model to be considered is the Sparse Distributive

Memory (SDM). Figure 9 shows its architectural-level
design of the ith memory cell. The architecture departs
slightly from the two-layered one shown in Figure 2. It
requires an additional layer at the very front as indicated
with a set of shaded blocks (η·s). We call this layer
the address layer, as it implements the address block
of the memory. The address layer is shared among all
memory cells in the memory. Each neuron in the address
layer computes a dot-product between x and a random
vector (rj) associated with the neuron. The result of the
dot-product is thresholded with the select radius (ρ) to
produce a binary signal ξj , which is used to activate the
corresponding entry in the content block. See Section II-
B for details of the address and content blocks. Note
that there are N × N neurons in the content block as
determined in Section IV.

The jth neuron in the first layer (Φi
j) after the address

layer contains a single multiplexer which selects either 0
or the ith entry of the content memory at the j location
(ai

j). It requires at most log2 2K bits to store ai
j as ai

j can
take values between [−K, K]. Therefore, we consider the
output of Φi

j to be log2 2K bit long. When ξj = 0, 0 is
selected, and when ξj = 1, ai

j is selected. The output from
N×N neurons in the first layer is collected in the second
layer neuron, Ψi. It needs to calculate the sum of the N×
N numbers, each being log2 2K bits long. This process
requires N × N − 1 adders of at most 2 log2 N log2 2K
bits. The result of the additions is thresholded at 0 to
produce the next ith state of the memory.

Costly parts of the design are log2 K-bit data-pathes
connecting the first layer to the second layer, and the N×
N -MAC in Ψi.

C. Winner-Take-All Model

We now consider proposed models to approximate
the second order correlation memory. First, we consider
WTA. Figure 10 shows an architectural-level design of the
model. It obeys the two-layer model of Figure 2 except
two one-bit feedback signals (β and γ) from the second
to the first layer.

The first layer neurons (Φi
j) computes a dot-product

between
√
|λi

j |vi
j and x. The result is then thresholded at
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θ whose value is determined in the θ-Adj block shown in
Figure 10. When the result of the dot-product is more than
θ or less than −θ, then the neuron outputs 1. Otherwise
it outputs 0. The θ-Adj block implements the following
equation.

θ =

⎧⎨
⎩

θ = θ + δ if β = 1 and γ = 0
θ = θ − δ if β = 0 and γ = 0
θ = θ0 if γ = 1

, (33)

δ =
{

δ/2 if γ = 0
θ0/2 if γ = 1 . (34)

Thus, the block can be implemented with an adder and
either a shift register or an adder for computing the
division by 2. Note that θ0 is an initial threshold value,
which should be set to

∑
k |vi

jk|
√
|λi

j |, the maximum
possible value of the dot-product.

The second layer neuron takes a binary vector of R-bits
as the input. The main goal of the neuron is to provide
βi until only a single bit in the R-bit input vector is 1,
and when this condition is achieved, set γ to 1. To do so,
the sum of the R-bits in the input vector is computed in
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an R-bit accumulator (shown as R-AC in the figure). The
accumulator requires N−1 adders that are at most log2 R
bits long. Denote the result of the accumulator ci. Then,
ci is passed to both β-Gen block and a comparator (=
1?). The β-Gen block basically implements the following
equation.

βi =
{

0 if ci = 0
1 if ci > 0 . (35)

The comparator implements the following equation.

γi =
{

0 if ci �= 1
1 if ci = 1 . (36)

Thus, γ1 = 1 signals that a winner (k̃ in Eq. (20)) of the
competition is found. The signal is then used to latch the
sign of λi

k̃
, which is computed by a dot-product between

yi and a vector whose kth entry is the sign of λi
k.

The second layer neuron requires, therefore, two com-
parators (one for detecting ci = 0 and the other detecting
ci = 1), one R-AC whose adders are at most log2 R bits,
one binary-binary R-MAC, and a latch. Communication
between first layer and second layer neurons involve only
bit signals.

D. Weighted Significant Voting Model

Finally, we consider WSV. It obeys the two-layer
network of Figure 2. There are R neurons in the first
layer. The jth first layer neuron (Φi

j) computes a unit
response of vi

j to x using a word-binary N-MAC. The
result is thresholded at a pre-defined threshold value of θ.
When the unit response is more than θ or less than −θ,
the neuron outputs 1. Otherwise, it outputs 0. The neuron
can be completely implemented with one word-binary N-
MAC and one threshold logic.

The second layer neuron (Ψi) first computes a dot-
product between the input binary vector and λi =
[λi

1, λ
i
2, ..., λ

i
R]. The result is then thresholded at 0. Again,

the neuron can be completely implemented with one
word-binary R-MAC and one threshold logic. The com-
munication among neurons involves only bit signals.

VI. CONCLUSIONS

The paper introduced two associative memory models
that are derived as an approximation to a second order cor-
relation model. Both are constructed from an eigenvalue
decomposition of a correlation tensor of the second order
model. The winner-take-all model selects the eigen-mode
with maximum response, while the weighted significant
voting selects those that are deemed significant in terms
of the unit response. The memory can be implemented
with a collection of simple processing units without mul-
tipliers, interconnected by a single wire per input/output
to transmit its state.

Our numerical experiments suggest better and more
stable performance of the weighted significant voting than
the winner-take-all model. The design of the weighted sig-
nificant voting is simpler than the winner-take-all model,
as no feedbacks are necessary. Thus, we can conclude

that the weighted significant voting is preferable to the
winner-take-all model for implementing a second order
memory.

No theoretical analysis of the approximation models
are available at this time. Future works include studying
the convergence properties of the models, and deriving
the capacity of the models and the size of the attraction
basin. With a decent amount of capacity, robustness
against noise, and relatively small computational cost,
the proposed memory models are valuable alternatives to
constructing associative memories.

Another limitation of this study is that it does not
consider on-line storage of fundamental vectors. The
storage phase is done off-line with a set of fundamental
vectors, and eigen-modes are pre-computed and pre-stored
in the circuits. For the memory models to become wide-
spread use, they needs to be able to update the memory
contents with new fundamental vectors with minimum
user interactions in a computationally efficient manner.
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