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Abstract— In this paper, we propose a new approach
called information loss to feature detection in competitive
learning. The information loss is defined by the difference
between a full network and a network without some ele-
ments. If this deletion significantly decreases the amount
of information contained in a network, the elements are
considered to be important and are expected to play a very
important role. The method was applied to artificial and
symmetric data to show the features extracted by the infor-
mation loss. Then, we applied the method to the classification
of OECD countries. The experimental results confirmed that
the method was efficient enough to detect main features
comparable to those detected by the conventional SOM.

Index Terms—mutual information, information loss, fea-
ture detection, competitive learning, self-organizing maps

I. INTRODUCTION

There have been many attempts to apply information-
theoretic methods to theoretic and practical problems in
neural networks [1], [2], [3], [4], [5], [6], [7]. Though they
have been successful in dealing with overall information
processing in neural networks, little attention has been
paid to information content in specific elements in a
network, because there have been no methods to compute
the information content for some elements in a network.

We have introduced mutual information as a measure
of structure in neural networks [8], [9], [10]. It is im-
portant to see the change in this information, depending
upon some parts in a network. For information content
about specific parts of a network, we have introduced an
information loss that explains the importance of given
elements. The information loss is defined by the dif-
ference between information content with all elements
and without some elements. If this deletion significantly
decreases information content in a network, the element
surely plays an important role in information processing
of input patterns. Thus, the information loss indicates
to what extent an element plays an important role in
networks.

The information loss in this paper is an extended
version of the previous one [11]. In the previous paper,
we focused upon the importance of input units and tried
to formulate the information loss only for input units. In
this paper, the information loss is generalized to cover all
elements in a network. Thus, the information loss can be
defined for any element or any groups of elements. The
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information loss now becomes more general and more
flexible than the previous one.

In Section 2, after explaining information-theoretic
competitive learning, we present how to compute the
information loss. In Section 3, we present experimental
results on two problems. In the first problem, we use
artificial data to show intuitively the features extracted
by the information loss. In the second example, the
classification of OECD countries, we try to show that
experimental results obtained by the information loss are
comparable or superior in some cases to those obtained
by the conventional computational methods, such as the
U-matrix.

II. THEORY AND COMPUTATIONAL METHODS

A. Competitive Learning and Information Content

In this paper, we apply a new method, called infor-
mation loss, to extract important features in competitive
learning. First, it is necessary to explain the relations
between competitive learning and mutual information.

Competitive learning has been a simple and powerful
technique to extract features in input patterns. Though
many methods have been developed to solve the funda-
mental problems of competitive learning, such as the dead
neuron problem[12],[13],[14],[15],[16], much attention
has been paid to classification performance. There have
been few attempts to explain how competitive learning
can classify input patterns, that is, to interpret internal
representations by competitive learning. In actual data
analyses, it is important to explain why and how clas-
sification by competitive learning is possible.

To interpret final representations obtained by competi-
tive learning, we can consider competitive learning to be a
process of information maximization in neural networks.
In other words, competitive learning is only one aspect
of information maximization in neural networks. We have
so far proposed information-theoretic competitive learning
[8], [9], [10], in which competitive processes are supposed
to be equivalent to information maximization processes.
When mutual information between input patterns and
connection weights is maximized, only one competitive
unit is active, while all the other units are inactive. We can
consider the process of competition as one of information
maximization. In addition, we have observed that the
careful observation of information content reveals many
characteristics in input patterns.
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B. Information-Theoretic Formulation

We think that one of the major objectives of competitive
learning is to store information on input patterns as much
as possible. This means that the close examination of
this information on input patterns reveals some important
information on the features in input patterns.

Now, let us define information to be stored in a neural
system. Information stored in a system is represented by
a decrease in uncertainty [17]. Uncertainty decrease, that
is, information I, is defined by

I = −
∑
∀j

p(j) log p(j)

+
∑
∀s

∑
∀j

p(s)p(j | s) log p(j | s), (1)

where p(j), p(s) and p(j|s) denote the probability of
firing of the jth unit, the probability of the sth input
pattern and the conditional probability of the jth unit,
given the sth input pattern, respectively.

As shown in Figure 1, a network is composed of input
units xs

k and competitive units vs
j . The jth competitive

unit receives a net input from input units, and an output
from the jth competitive unit can be computed by

vs
j = exp

(
−

∑L
k=1(x

s
k − wjk)2

2σ2

)
, (2)

where σ represents the Gaussian width, L is the number
of input units and wjk denote connection weights from
the kth input unit to the jth competitive unit. The output
is increased as connection weights come closer to input
patterns. To compute mutual information, we suppose that
the normalized activity vs

j represents a probability with
which a neuron fires. The conditional probability p(j | s)
is computed by

p(j | s) =
vs

j∑M
m=1 vs

m

, (3)

where M denotes the number of competitive units. Since
input patterns are supposed to be given uniformly to
networks, the probability of the jth competitive unit is
computed by

p(j) =
1
S

S∑
s=1

p(j | s), (4)

where S is the number of input patterns. Information I
is computed by

I = −
M∑

j=1

p(j) log p(j)

+
1
S

S∑
s=1

M∑
j=1

p(j | s) log p(j | s). (5)

As information becomes larger, specific pairs of input
patterns and competitive units become strongly correlated.
In addition, in maximizing mutual information, entropy
−∑M

j=1 p(j) log p(j) must be maximized. This means

L input units

s

Wjk

x
k

s
v

j
p(j|s)

Fig. 1. A network architecture for competition.

p(j|s)

(a) Final state by competiton

p(j|s)

(b)  No information loss

           Deleted unit

           Deleted unit

p(j|s)

(c) Large information loss

Fig. 2. A process to obtain information loss.

that all competitive units must equally be used on average.
Thus, we can realize competitive processes by maximiz-
ing mutual information.

C. Information Loss

Sensitivity analysis [18], [19], [20], [21] has been well
established in supervised learning, because one of the ma-
jor problems of neural networks consists in the difficulty
in interpreting final internal representations. However,
there are few studies on unsupervised learning comparable
to the sensitivity analysis in supervised learning, because
it has been difficult to identify criteria comparable to
those in the error terms between targets and outputs.
In this context, we consider mutual information between
input patterns and connection weights as one of the main
criteria to identify the structure in competitive learning.

We have defined mutual information between input
patterns and connection weights for competitive unit acti-
vations. Now, let us show how to compute the information
loss for input units. Figure 2 presents an example to
illustrate a process of information loss. In Figure 2(b),
when the first input is deleted, no change in competitive
unit activations can be seen, meaning that no change in
information about competitive unit activation patterns can
be seen. Thus, no information about input patterns is lost
by deleing the first unit. Because the first input unit is
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not so important, the unit can be deleted without drastic
change for a network. However, when the second input
unit is deleted, as seen in Figure 2(c), the first competitive
unit becomes smaller and inactive, meaning that the
second unit plays a very important role in information
storage.

D. Information Loss for Input Units

We examine whether mutual information is changed by
deleting some elements in competitive networks. Now, we
focus upon the tth input unit and try to define information
loss for the input unit. Distance when the tth input unit
is deleted is defined by

ds
jt =

L∑
k=1

Φkt(xk − wjk)2, (6)

where

Φkt =
{

1− ε, if k = t;
ε, otherwise.

and where the parameter ε ranges between 0.5 and 1 for
all experiments explained in the following sections. By
using this equation, we have competitive unit activations
for the tth input unit

vs
jt = exp

(
− ds

jt

2σ2

)
. (7)

We can normalize these activations, and we have

pt(j | s) =
vs

jt∑M
m=1 vs

mt

. (8)

The probability of the jth hidden unit is defined by

pt(j) =
S∑

s=1

p(s)pt(j | s). (9)

By using these probabilities, we have mutual information
when the kth input unit is deleted,

It =
S∑

s=1

M∑
j=1

p(s)pt(j | s) log
pt(j | s)

pt(j)
. (10)

We can compute the difference between mutual informa-
tion or information loss by

ILt = I − It. (11)

For easy interpretation, we normalize this information
loss and compute normalized information loss ILnrm

k

where
∑

t ILnrm
t = 1 with all positive values, because

mutual information varies greatly according to the Gaus-
sian width and the parameter ε. In addition, there is a
possibility of negative information loss.

E. Information Loss for Competitive Units

Then, we consider a case where a competitive unit
should be deleted. Competitive unit activations when the
rth unit is deleted are given by

V s
jr = Φjrv

s
j , (12)

where

Φjr =
{

1 − ε, if r = j;
ε, otherwise.

and where 0.5 < ε < 1. By normalizing the activations,
we have

pr(j | s) =
V s

jr∑M
m=1 V s

mr

, (13)

and

pr(j) =
S∑

s=1

p(s)pr(j | s). (14)

By using these probabilities, we have mutual information
for the rth competitive unit

Ir =
S∑

s=1

M∑
j=1

p(s)pr(j | s) log
pr(j | s)
pr(j)

. (15)

Information loss is defined by the difference

ILr = I − Ir . (16)

We also normalize this information, and normalized in-
formation loss ILnrm

r is used in experiments for easy
interpretation or comparison.

F. Information Loss for Input Patterns

Then, we consider a case where an input pattern should
be deleted. Competitive unit activations when the qth
input pattern is deleted are given by

dsq
j = Φsq

L∑
k=1

(xk − wjk)2, (17)

where

Φsq =
{

1 − ε, if q = s;
ε, otherwise.

and where 0.5 < ε < 1. By using this equation, we have
competitive unit activations for the rth competitive unit

vsq
j = exp

(
− dsq

j

2σ2

)
. (18)

By normalizing the activations, we have

pq(j | s) =
vsq

j∑M
m=1 vsq

m

, (19)

and

pq(j) =
S∑

s=1

p(s)pq(j | s). (20)
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By using these probabilities, we have mutual information
for the rth competitive unit

Iq =
S∑

s=1

M∑
j=1

p(s)pq(j | s) log
pq(j | s)
pq(j)

. (21)

Information loss is defined by the difference

ILq = I − Iq . (22)

We also normalize this information, and normalized in-
formation loss ILnrm

q is used in experiments for easy
interpretation or comparison.

G. Information Loss for Input and Competitive Units

We have competitive unit activations

V s
jrt = Φjrv

s
jt. (23)

By normalizing the activations, we have

prt(j | s) =
V s

jrt∑M
m=1 V s

mrt

, (24)

and

prt(j) =
S∑

s=1

p(s)prt(j | s). (25)

By using these probabilities, we have mutual information
for the rth competitive unit

Irt =
S∑

s=1

M∑
j=1

p(s)prt(j | s) log
prt(j | s)
prt(j)

. (26)

Information loss is defined by the difference

ILrt = I − Irt. (27)

We also normalize this information, and normalized in-
formation loss ILnrm

rt is used in experiments for easy
interpretation or comparison.

III. RESULTS AND DISCUSSION

A. Artificial Data

We first applied the method to simple and symmetric
artificial data, as shown in Figure 3(a). In the architecture,
the number of input and competitive units was eight.
Because the data was symmetric, we expected similar pat-
terns of information loss for input units and competitive
units.

Figure 4 shows three types of information loss when
the Gaussian width is changed from 0.1 to 5, keeping
another parameter, ε, a constant (0.6). Figure 4(a) shows
three types of information loss when the Gaussian width
is 0.1. Figure 4(a2) typically shows the characteristics of
this state; that is, all units show almost equal information
loss. When the Gaussian width σ is increased from 0.1 to
0.5, some elements show strong information loss. When
the Gaussian width is increased further to 1, 3 and 5, as
in Figure 4(c) to (e), the patterns of stable information
loss can be seen. For example, moving from the corner
to the center, the information loss is gradually decreased,

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Input unit Competitive unit

(a) Data (b) Network architecture

Fig. 3. Data (a) and a network architecture (b) for artificial data.

corresponding to the input pattern shown in Figure 3.
Figure 5 shows three types of information loss when the
parameter ε is increased from 0.7 to 0.99, keeping the
Gaussian width at 5. We can immediately see that the final
patterns of information loss remain stable independently
of the parameter values. This means that final patterns
are strongly influenced by the Gaussian width σ. Figure
6 shows information loss for input and competitive units.
Figure 6(1) to (4) shows information loss for the first
four input patterns. Though the first four competitive units
show relatively stable information loss, the second four
competitive units clearly show a decrease in the number of
competitive units with high information loss. Figure 6(5)
to (8) shows information loss for the fifth to the eighth
input units. In this case, information loss on the right-
hand side remains stable, while information loss on the
left-hand side shows that the amount of strong information
loss corresponds to input patterns.

B. OECD Data Description

We tried to classify 23 OECD countries by four vari-
ables, that is, the total fertility rate, the women’s labor
rate, the tertiary industry labor ratio and the gender
development index [22]. Figure 7(a) shows the U-matrix
obtained by the SOM1. On the U-matrix, we can see a
boundary in red or brown separating the countries into
two parts.

Figure 8 shows three types of information loss when
the Gaussian width σ is changed from 1 to 20, keeping the
parameter ε at a constant (0.6). As the Gaussian width σ is
gradually increased from one to 20, as shown in Figure
8(a1) to (e1), a more stable pattern of information loss
appears, which is indicated in the middle of the map as
a dark blue boundary. On the other hand, the other types
of information loss, that is, information loss for input
units and input patterns, are quite stable. For example,
Figure 8(a2) to (e2) shows the information loss for input
units. For any parameter values of the Gaussian width,
the information loss for the third and the fourth input
unit shows large values. This means that the countries are
classified mainly based upon the women’s labor rate and

1We used SOM Toolbox 2.0, February 11th, 2000, by Juha Vesanto
http://www.cis.hut.fi/projects/somtoolbox/. No special options were used
for easy reproduction.
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(a) Sigma=0.1

(b1) Competitive  unit (b2) Input unit (b3) Input pattern

(b) Sigma=0.5

(c1) Competitive  unit (c2) Input unit (c3) Input pattern

(c) Sigma=1

(d1) Competitive  unit (d2) Input unit
(d3) Input pattern

(d) Sigma=3

(e1) Competitive  unit (e2) Input unit (e3) Input pattern

(e) Sigma=5

Fig. 4. Three types of information loss for an artificial data when the Gaussian width σ is changed from 0.1 to 5, keeping another parameter, ε,
at 0.6.

the tertiary industry labor ratio of the four variables. For
the information loss for input patterns, when the Gaussian
width σ is below 5, rather random patterns are generated,
as shown in Figure 8(a3) and (b3). When the Gaussian
width is larger than 5, a stable pattern is generated.
In addition, we can see a clear relation between this
information loss and labels obtained by the conventional
SOM. Countries No. 12 (Italy) and No. 9 (Greece) have
the highest values of information loss, as shown in Figure
8(e3). As shown in Figure 7(b), Italy and Greece, with

the highest information loss, are located on the upper end
of the map. When the information loss is smaller, the
corresponding competitive units are located on or near a
boundary. On the other hand, when the information loss
is larger, the competitive units are located at the corners.

Then, we tried to change the information loss parameter
ε from 0.6 to 0.99. As can be seen in Figure (a2) to (e2)
and (c3) to (e3), we can see that information loss for input
units and input patterns is very stable. On the other hand,
we can see that the information loss for competitive units
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(a1) Hidden unit (a2) Input unit (a3) Input pattern

(a) Epsilon=0.7(sigma=5)

(b1) Hidden unit (b2) Input unit (b3) Input pattern

(b) Epsilon=0.8(sigma=5)

(c1) Hidden unit (c2) Input unit (c3) Input pattern
(c) Epsilon=0.9(Sigma=5)

(d1) Hidden unit (d2) Input unit (d3) Input pattern
(d) Epsilon=0.99(Sigma=5)

Fig. 5. Three types of information loss when the parameter σ is changed from 0.6 to 0.99.
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Fig. 7. U-matrix (a) and a map with labels (b). Warmer and cooler colors show larger and smaller values of the U-matrix.
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Fig. 8. Information loss for competitive units, input units and input patterns when the Gaussian width is increased from 1 to 20 (ε = 0.6). Warmer
and cooler colors show larger and smaller values of information loss.
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Fig. 6. Information loss for input-competitive units.

in Figure 9 (a1) to (e1) varies greatly. The information
loss becomes clearer as the parameter ε is increased from
0.6 to 0.99 which means that the parameter ε should be
as large as possible to obtain clearer feature maps for
competitive units. Figure 10 shows information loss for
competitive units when the Gaussian width σ is 10 and
the parameter ε is 0.99. As can be seen in the figure,
information loss for competitive units becomes clearer.
The information loss for competitive units shows the
clearest map, in which a dark blue boundary is located in
the middle.

Figure 11 shows component planes or connection
weights and information loss for input units and competi-
tive units. As can be seen in the figure, connection weights
and information loss naturally show the same tendency.
One of the differences is that the information loss shows
the importance of competitive units and becomes stronger
(brown) at the corners. This means that competitive units
at the corners are very important in terms of information
content about input patterns.

Figure 12 (a) shows a U-matrix, labels and information
loss when the map size is increased to 6 by 6. As can be
seen in the U-matrix on the left (a1), a clear boundary can
be seen in the middle. Corresponding to the boundary in
the middle, weak information loss in dark blue can be
seen in Figure 12(a3). Figure 12 (b) shows a U-matrix,
labels and information loss in a 12 by 4 matrix. As can be

(a) U-matrix
(a1) (a2) (a3) (a4) 

(b) Signa=20(epsilon=0.99)

(b1) (b2) (b3) (b4) 

Fig. 11. Component planes or connection weights (a) and information
loss for input-competitive units (b) when the Gaussian width is 20.

seen in Figure 12(b1), a boundary in the oblique line can
be seen. To this boundary correspond weak competitive
units in Figure 12(b3).

Experimental results presented here can be summarized
by three points. First, the information loss can produce
clearer boundaries by which input patterns are classified
into several groups. The boundaries become more stable
as the Gaussian width becomes larger. Second, final maps
obtained by information loss are greatly dependent upon
the Gaussian width σ and the loss parameter ε. The
Gaussian width σ should be relatively large enough to
detect the macroscopic features of input patterns. On the
other hand, the loss parameter ε should be as large as
possible to show the effect of the loss of some elements
more clearly. Third, we can obtain two types of maps by
information loss: a map in which a boundary is located
in the middle of the map, and on the other hand, another
map in which an oblique line can be seen.

IV. CONCLUSION

In this paper, we have proposed a new type of
information-theoretic approach to feature detection in
competitive learning. The new method is called informa-
tion loss and defined by the difference between mutual
information with all elements and without some elements
in a network. When these elements are deleted, and
information lost is significantly large, the elements surely
play an important role in information processing. We
have applied the method to artificial and symmetric data
to show intuitively how well the method extracts the
features of input patterns. In addition, we have applied the
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Fig. 9. Three types of information loss when the Gaussian width σ is 5 and the other information loss parameter ε is changed from 0.7 to 0.99.
Warmer and cooler colors shows higher and lower values of information loss.
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Fig. 10. Information loss for input-competitive units when the Gaussian width σ is 10. Warmer and cooler colors show higher and lower values
of information loss.
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Fig. 12. U-matrices, labels and information loss for competitive units when the size of maps is increased to 6 by 6 (a) and 12 by 4 (b).

method to the classification of several OECD countries.
Experimental results have confirmed that the information
loss can clearly classify the countries. These results have
been comparable to those obtained by the conventional
SOM.

For the method to be applicable to more practical and
large-scale problems, we should solve three problems.
First, final representations are naturally dependent upon
two parameters, σ and ε. We have experimentally de-
termined two parameters. If explicit relations between
the parameters and final representations are determined

theoretically, the new method can be more easily ap-
plied to complex problems. In addition, we should more
extensively compare the results obtained by the new
method with those by the conventional neural methods
as well as statistical methods. Finally, we should apply
the information loss to larger building blocks of neural
networks. Though several problems should be solved,
the information loss can be applied to many practical
problems because of the simplicity and flexibility of the
method.
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