
Low Power Processor Architectures and

Contemporary Techniques for Power

Optimization – A Review

Muhammad Yasir Qadri, Hemal S Gujarathi and Klaus D. McDonald-Maier
School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, UK

Email: yasirqadri@acm.org, hemalgujarathi@gmail.com, kdm@essex.ac.uk

Abstract—The technological evolution has increased the

number of transistors for a given die area significantly and

increased the switching speed from few MHz to GHz range.

Such inversely proportional decline in size and boost in

performance consequently demands shrinking of supply

voltage and effective power dissipation in chips with

millions of transistors. This has triggered substantial

amount of research in power reduction techniques into

almost every aspect of the chip and particularly the

processor cores contained in the chip. This paper presents

an overview of techniques for achieving the power efficiency

mainly at the processor core level but also visits related

domains such as buses and memories. There are various

processor parameters and features such as supply voltage,

clock frequency, cache and pipelining which can be

optimized to reduce the power consumption of the

processor. This paper discusses various ways in which these

parameters can be optimized. Also, emerging power

efficient processor architectures are overviewed and

research activities are discussed which should help reader

identify how these factors in a processor contribute to power

consumption. Some of these concepts have been already

established whereas others are still active research areas.

Index Terms—Low power, processor architecture, power

optimization techniques

I. INTRODUCTION

The ever increasing range of battery operated devices

with often complex functionality is a major catalyst for

driving the research in the field of low power system

design. Battery technology advances at a slower pace and

hence it is logical to find the ways to optimize power

usage in the hardware architectures. Particularly stand

alone embedded systems are being optimized for the

energy efficiency during their design. The rapidly

evolving field of pervasive computing is major patron for

energy efficient devices or technologies. Many advanced

systems such as mobile phones and personal digital

assistants (PDAs) have multiple processors for achieving

the required computational speed or performance. In such

cases achieving energy optimization becomes a

mandatory requirement rather than a feature. Current

research for low power spans the areas of semiconductor

technologies, VLSI, processor architecture, complier

design and operating systems.

The paper is divided mainly into five chapters: the

introductory chapter is followed by a discussion of

various techniques for power optimization of processor

components and a brief introduction to alternative

methods. Chapter 4 overviews various novel low power

architectures, and in the final chapter a conclusion is

drawn based on these techniques and architectures. In line

with the review focus of this paper, the core attention is

on the principle concepts and provides literature pointers

that allow the reader to probe further.

A. Relation between energy and power

Performance drives the market for the processors [2]

and the system advancement relies on increasing

performance while retaining energy at an acceptable

level. Since , simply reducing

the power consumption in a processor may not decrease

the energy demand if the task now takes longer to

execute. Richard et al. [3] noted a correlation between

energy and performance. However, reducing performance

does not always reduce the overall energy. With a

potential objective of minimum power at a given

performance level, or increased performance at a given

power level, both quantities need to be considered

concurrently. This can be achieved by taking the product

of energy and delay [4].

The power consumption in a processor can be

classified as 1) static and 2) dynamic. Firstly, the static

power consumption of a device is defined as the amount

of power that it consumes while there is no switching

activity. If the operating voltage is assumed fixed then the

static power consumption mainly comprises of leakage

current, and is fabrication process dependent; its general

optimization techniques are beyond the scope of this

paper. Secondly, the dynamic power of a CMOS device

comprises of short circuit power and switching power.

The short circuit current is observed during input signal

transitions, when both the NMOS and PMOS blocks in

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 927

© 2009 ACADEMY PUBLISHER

mailto:yasirqadri@acm.org

static CMOS circuits conduct simultaneously for a short

period of time. This causes a direct current flow from

power rails resulting in short-circuit power [5]. The

switching power consumption is given as

 (1)

where

 = Load Capacitance,

 = Drain to source voltage,

 = activity factor,

 = clock frequency.

Based on (1) it is possible to infer that dynamic power

consumption can be decreased, by decreasing any one of

the factors. Once again and are fabrication

technology dependent; however there are techniques such

as assigning a lower to noncritical paths that could

significantly reduce overall dynamic power consumption.

However, lowering increases circuit delay and

consequently reduces the overall throughput of device

[6]. The circuit delay is given as [7],

(2)

where is a constant that depends on capacitance,

mobility, and transistor dimensions [8] and is the

threshold voltage. Principle processor core level power

optimization techniques are discussed in the following.

B. Dynamic Voltage-Frequency Scaling (DVFS)

Dynamic Voltage and Frequency Scaling (DVFS) is an

effective technique to attain low power consumption

while meeting the performance requirements. Energy

dissipation is reduced by dynamically scaling the supply

voltage of the CPU, so that it operates at a minimum

speed required by the specific task executed (i.e.

maintaining real-timeliness) [9].

The DVFS technique principally involves scheduling

in order to determine when each request of the task is to

be executed by the processor and allows to slow down the

processor, so that it consumes less power and takes

greater time to execute. The tasks can be assigned

priorities statically (when the priorities are fixed) or

dynamically (when priorities are changed from one

request to another). An example for well known dynamic

priority assignment is Earliest Deadline First (EDF) and

an example for static assignment is Rate-Monotonic

Scheduling (RMS) [10] for periodic tasks.

DVFS can be classified based on timing constraints,

scaling granularity, and scheduling policy basis (Fig. 1).

The timing constraint based scheduling can be either non-

real time or real time. Pillai et al. [11] present a class of

novel algorithms for real-time DVS that modify the

operating systems' real-time scheduler and task

management service to provide significant energy savings

while meeting real-time deadlines. Their results show a

reduction of energy consumption by 20% to 40%. Based

on scaling granularity, DVFS can be classified as pre-

emptive and non-pre-emptive. In pre-emptive scheduling,

the time is typically divided into fixed intervals, as

proposed in [12, 13]. DVFS is then applied by a task level

scheduler based on processor utilization statistics over

preceding interval. Smoothing (or spreading processing

cycles) is used to utilize idle cycles. While in non-pre-

emptive scheduling tasks run to completion and cannot be

interrupted during execution [14]. This in turn compels

DVFS decisions to be applied after the completion or

before the start of individual tasks. A non pre-emptive

scheduling technique that treats voltage as a variable is

e.g. discussed in [7]. Jeffay et al. [15] analyzed

scheduling of a set of periodic and sporadic tasks on a

uniprocessor without pre-emption and without inserted

idle time. Their results showed the universal viability of

earliest deadline first algorithm for given sets of sporadic

and periodic tasks.

DVFS scheduling can also be classified into offline

and online techniques [9]. Offline scheduling [12] has a

lower runtime processing overhead, by assuming the

worst case scenario or pessimistic scheduling approach,

thus resulting in lower power savings. Online scheduling

techniques as proposed in [16] could result in higher

power savings than their static counterparts, however

they are associated with a higher processing overhead.

Jung et al. [17] present a supervised learning based

dynamic power management (DPM) framework for

multicore processors. The framework predicts on

available input features such as the state of service queue

occupancy and the task arrival rate. Then the predicted

state is used to look up the optimal power management

action from a pre-computed policy lookup table. This

technique - in spite of being online - could result in

smaller run time energy overhead. Sasaki et al. [18]

propose a hybrid technique which takes advantage of

lower processing overhead along with greater power

efficiency. The technique uses both static and dynamic

information and based on appropriate frequency/voltage

set points inserted as a run-time code by the compiler. As

per claim, the proposed technique can significantly

reduce the energy consumption while satisfying soft

DVFS

Timing
Constraint

Based

Non Real-time

Real-time

Scaling
Granulaity Based

Preemptive

Non-preemptive

Scheduling
Policy Based

Online

Offline

Figure 1. DVFS Classification. Adapted from [1]

928 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

timing constraints. Interestingly, DVFS can also be

applied to secure the device from power attacks, which

infer program behaviour from observing power supply

current into a processor core: In [19] a power attack

resistant cryptosystem is presented, which uses dynamic

voltage and frequency switching to make the power

traces show random properties and prevent the power

attackers from carrying out time correlation between

different power traces, while at the same time facilitating

the energy saving task.

C. Clock Gating

A straightforward technique to reduce dynamic power

consumption is to reduce gate toggling either by reducing

the number of gates in a device or minimizing the number

of times each gate toggles i.e. the clock frequency. This

technique achieves a power reduction by reducing the

switching capacitance at the cost of computational speed.

Typically, the clock accounts for 20% to 40% of the total

power consumption [20]. Clock gating is used to bypass

the unused components of the system as shown in Fig. 2.

It shows a combinational logic where ENABLE controls

when the clock signal is passed to the further stages.

Clock-gating algorithms can be grouped into three

categories [21]: 1) system-level, 2) sequential and 3)

combinational. System-level clock-gating stops the clock

for an entire block and effectively disables its‟ entire

functionality. On the contrary, combinational and

sequential clock-gating selectively suspend clocking

while the block continues to produce output.

In [22] a logic synthesis approach for domino/skewed

logic styles based on Shannon expansion is proposed that

dynamically identifies idle parts of logic and applies

clock gating to them to reduce power in the active mode

of operation, which results improvements of 15% to 64%

in total power with minimal overhead in terms of delay

and area compared to conventionally synthesized

domino/skewed logic.

D. Power Gating

Power gating is one of the most effective techniques to

reduce both sub-threshold leakage and gate leakage as it

cuts off the path to the supply [23].

Fig. 3 shows a simple schematic of a logic block that

has been power gated by a header switch or a footer

switch. While the logic block is not active, assertion of

the SLEEP signal results in turning off the either of the

switches, thus disconnecting the logic block from supply,

and reducing the leakage by orders of magnitude [24].

This technique is widely applied for implementing

various sleep modes in CPUs. The examples of power

gating architectures can be found in [25, 26].

ENABLE

CLOCK

GATED_CLOCK

Figure 2. Gating circuit

Header Switch

Footer Switch

Logic Block

Supply Voltage

SLEEP

SLEEP

Figure 3. Power Gating using Header/Footer Switches

(Adapted from [23])

In the following chapter power optimization

techniques for different components are discussed.

II. COMPONENT LEVEL POWER REDUCTION TECHNIQUES

The major power consuming components such as the

cache, pipeline, and buses are explored below and

schemes to optimize the power in these components are

discussed.

A. Cache

Cache power dissipation is contributed to by the tag

and data arrays [27] since these are employed as static

RAMS so that the cache access rate matches the pipeline

clock rate. A further contribution is the frequency of

access. Lastly the cache area is more densely packed than

other areas on the die, which means more transistors and

hence more power dissipation. A significant amount of

power is dissipated by on–chip caches, as exemplified in

the following [28]:

 The on–chip caches in the DEC 21164

microprocessor account for 25% of the total

power dissipation

 In the bipolar, multi–chip implementation of a

300–MHz. CPU, 50% of the total dissipated

power is due to the primary caches.

 A low–power microprocessor the DEC SA–110,

dissipates 27% and 16% of the total power,

respectively, in the on–chip instruction cache

and data cache respectively [29].

Caches clearly present one of the most attractive

targets for power reduction, this power reduction in

caches can be achieved through several means:

semiconductor process improvements, memory cell

redesign, voltage reduction, and optimized cache

structures [30].

Important additional techniques are:

 Adding buffers/filter cache/block

buffering/Horizontal partitioning

 Turn off cache lines

 Sub-banking/Vertical partitioning

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 929

© 2009 ACADEMY PUBLISHER

 Efficient tagging scheme (i.e. reducing tag

comparisons)

(1) Adding buffers

A large number of low power cache ideas have been

centered on the principle that adding an extra cache or

buffer, usually small in size, and designing the system to

fetch data directly from this buffer, allows thereby

preventing an access to the original cache altogether.

Since the buffer is relatively small, it is possible to

achieve significant power savings if one can ensure a

high hit rate to the buffer [9]. Another term that is used in

the same context is filter cache. It has been observed that

the instruction fetch and decode can consume more than

40% of processor power [31]. Experimental results across

a wide range of embedded applications show that the

filter cache results in improved memory system energy

efficiency. For example, a direct mapped 256-byte filter

cache achieves a 58% power reduction while reducing

performance by 21%, corresponding to a 51% reduction

in the energy-delay product over a conventional design

[32]. An instruction filter cache or so called level zero

cache [30] can be placed between the CPU core and the

instruction cache to service the instruction stream. Power

savings in instruction fetch result from accesses to a small

cache [31]. Fig. 4 shows the effect of additional filter

cache on the memory organization [30], where parts of

the memory hierarchy can be on-chip or off-chip. The

filter cache can be more efficiently optimized according

to Kin et al. [32], who propose a scheme to predict the

subsequent fetch addresses at run-time to identify

whether the next fetch address is in the filter cache. In

case a miss is predicted, it reduces the miss penalty by

accessing the instruction cache directly.

(2) Turn off cache lines and Cache decay

During a fixed period of time the activity in a cache is

often only centered on a small subset of the lines. This

behavior can be exploited to cut the leakage power of

large caches by putting the so called cold cache lines

(with no recent activity) into a state preserving, low-

power drowsy mode [33]. Various policies for turning

lines off are based on generational aspects of cache line

usage [34]. Since some architectures take advantage of

dual caches (level one - L1 & level 2 - L2) different

policies apply to these. Abella et al. [35] propose a

technique to reduce leakage for L2 cache which occupies

large area and hence more power consumption. A new

approach, IATAC (inter access time per access count)

introduced to reduce the leakage of L2 caches by turning

off those cache lines that are not expected to be reused.

For each cache line, it keeps track of the inter-access time

and the number of accesses, providing decay times for

each individual line.

In [36] the authors explore options for reducing

leakage power by proactively discarding items from the

cache, marking the lines invalid, and then putting the

cache lines “to sleep” in a way that dramatically reduces

their leakage current. Another policy described in [36], is

cache decay that turns a cache line off if a preset number

of cycles have elapsed since its last access.

(3) Sub-banking and Partitioned cache architecture

As feature sizes shrink, leakage power constitutes an

increasing fraction of total processor power [37]. This

affects cache structures disproportionately, since they

have large area requirements. Subdividing the memory

into smaller memories is one of the mechanisms used to

reduce the effective length of the bit lines driven during

memory operations, thereby reducing power dissipation

[9]. In [38] the authors show a way to split the cache into

several smaller units, each of which is a cache by itself.

These so-called Subcache architectures not only reduce

the per-access energy costs, but can potentially improve

the locality behavior as well.

Various paradigms for memory partitioning are

discussed by Golubeva et al. [39]. One such paradigm is

to define portions of a cache of suitable granularity (e.g.,

a cache line, a way, a bank); second, they put unused

portions into a low-leakage state, based on their idleness.

Another scheme proposed is to build a multi-bank cache

architecture, rather than a single cache internally

consisting of multiple banks. A basic structure for sub-

banking [40] is presented in Fig. 5.

Su et al. [40] explain various partitioning schemes for

cache. Vertical partitioning is identical to buffering which

is discussed in “Adding Buffers” section. Horizontal

partitioning saves power by eliminating unnecessary

access to caches (sub-banking techniques). Gray code

addressing takes the advantage of the spatial locality of

sequential memory address.

Since address buses poses a challenge for power

optimization gray code addressing tries to reduce the bit

switching activities for the same number of cache hits.

Tag Index Block

Tag Memory

Match

?

MDR

Data Memory

Address Bus

MAR

Hit/Miss

Figure 5. Cache sub-banking (Adapted from [9])

CPU

Figure 4. Filter cache & memory hierarchy (Adapted

from [32])

Filter
Cache

L1 Cache

L2 Cache (Optional)

Main Memory

930 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

(4) Efficient tagging scheme and efficient set associative

cache

Reading and comparing the tags in the tag arrays

consumes also significant power. For highly associative

caches, the power consumption is a particular concern

since large number of tag comparisons are carried out in

parallel [41]. Tag comparison elimination (TCE)

techniques have been proposed to remove unnecessary

tag comparisons to achieve power reduction. A tag

comparison is considered unnecessary if a match or a

mismatch can be determined without a real comparison.

The decision is made based on the runtime information

that is maintained in low cost hardware.

A fundamental cache design trade-off is between a

direct-mapped cache and set-associative cache. A

conventional direct mapped cache accesses only one tag

array and one data array per cache access, whereas a

conventional four-way set-associative cache accesses four

tags arrays and four data arrays per cache access [42].

Inoue et al. [43] use way prediction for achieving high

performance and low energy consumption of set-

associative caches. It improves the energy delay product

by 60-70% compared to a conventional set associative

cache. The scheme speculatively predicts the cache way

using the MRU (Most Recently Used) algorithm. If it is a

cache hit there is a significant energy saving but if it is a

prediction miss, the cache-access time of the way-

predicting cache increases.

Panwar et al. [44] propose three modifications to

reduce the tag comparison frequency. The first

modification involves comparing cache tags for only

those instructions that result in fetches from a new cache

block. The second modification involves the tagging of

those branches that cause instructions to be fetched from

a new cache block. The third modification involves

augmenting the I-cache with a small on-chip memory

called the S-cache. The most frequently executed basic

blocks of code are statically allocated to the S-cache

before program execution. A non uniform cache

architecture [45] is wherein an algorithm determines the

optimum number of cache-ways for each cache-set and

generates object code suitable for the non-uniform cache

memory. A novel cache tagging scheme was introduced

by Zhou et al. [46], where both virtual and physical tags

co-exist in the cache tag arrays. Physical tags and special

handling for the super-set cache index bits are used for

references to shared data regions in order to avoid cache

consistency problems. By eliminating the need for

address translation on cache access for the majority of

references, a significant power reduction is achieved.

B. Pipelining

The primary method of reducing the effective switched

capacitance, even in a single-issue processor, is to control

speculation, i.e. any operation which is performed before

it is known to be required. In this sense the most

„profound‟ type of speculation is pipelining; letting

instructions into the processor pipeline before knowing

for certain that the instruction flow is not about to branch

is clearly speculative. In most instances this is justified,

however discarded instructions that are fetched and

partially processed waste energy [47]. Here power

performance issues are discussed that relate to pipelining

with focus on branch prediction, pipeline gating and

pipeline depth.

Pipelining a design involves [48] the addition of

registers to create stages with the aim of improving

throughput when the pipeline is fully utilized. Crucially

the location of the pipeline stage will dictate the number

of registers required to implement the stage. Since

registers are power hungry elements, reduction in the

total number of registers will yield reduction in power

consumption. Shimada et al. deploy another technique

called as PSU [49] or pipeline stage unification. PSU

dynamically scales the clock frequency to reduce energy

consumption as with DVFS, but unlike DVFS, it unifies

multiple pipeline stages by bypassing pipeline registers,

instead of scaling down the supply voltage. PSU saves

energy consumption in two ways: 1) by reducing the total

load capacitance of the clock driver; this is accomplished

by stopping the clock signal to bypassed pipeline

registers and 2) PSU reduces the clock cycle count of

program execution by reducing the number of pipeline

stages.

Ruan et al. [50] take advantage of bi-partitioning and

encoding techniques toward optimizing power

consumption of pipelined circuits. A pipeline architecture

can be seen as combinational logic blocks separated by

edge-triggered registers that are driven by a single clock

signal. They propose a bipartition dual-encoding

architecture to decrease power consumption of pipelined

CMOS designs. The approach is based on the observation

that the pipeline registers take a large fraction of total

power dissipation for most of the circuits. In order to

address this issue, a given circuit is bi-partitioned by

using Shannon expansion to minimize the number of

different outputs of both sub-circuits [51]. Subsequently,

both partitions are encoded to reduce the switching

activities of the pipeline registers and logic blocks.

To take advantage of the parallelism at the instruction

level it is necessary to have some kind of prediction or

speculation techniques to identify which instructions can

be executed in future. This speculation can cost

substantial energy if instructions are executed as a result

of wrong prediction. A hardware mechanism called

pipeline gating [2] to reduce overgrowing speculations in

the pipeline can help to avoid this energy wastage. In this

technique a confidence estimator is used to assess the

quality of each branch prediction. A “high confidence”

estimate means the branch predictor is likely to be

correct. A “low confidence” estimate means the branch

predictor has incorrectly predicted the branch. These

confidence estimates decide when the processor is likely

to be executing instructions that will not commit; once

that decision has been reached, the pipeline is “gated”,

stalling specific pipeline stages.

Similarly Bahar et al. [52] introduce a pipeline

balancing (PLB) technique to reduce component and full

chip power without negatively impacting performance.

PLB takes advantage of the inherent IPC (Instruction Per

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 931

© 2009 ACADEMY PUBLISHER

Cycle) variations within a program to adjust the pipeline

issue rate to the dynamic needs of each program.

Hartstein and Puzak [53] show that the optimum

pipeline depth is found to be much shorter when power is

taken into account. They define an appropriate

power/performance metric, and optimize the design to

that metric. Decreasing the pipeline depth slows down the

processor but also saves energy because fewer

„speculative‟ instructions are fetched and decoded. In

addition, hardware that supports pipelining, such as

branch prediction, can be turned off as it is less effective

in shallow pipelines [47]. Efthymiou et al. questions the

energy saving accomplished using the branch predictors

and hence they exploit the slack times in the applications

with soft real time deadlines. Two techniques are

presented to control the pipeline depth, using an

asynchronous design style [47] because of its capability

to adapt to changing energy/performance requirements at

run time. One technique uses token passing as a method

to control the pipeline occupancy, and thus indirectly, the

pipeline depth. The other enables the selective and

dynamic merging of adjacent pipeline stages by making

the pipeline latches between them „permanently‟

transparent.

C. Low power Buses

As the technology paradigm shifts towards globally

asynchronous locally synchronous (GALS) and network-

on-chip (NoC), interconnect mechanism increasingly

contribute to power efficiency. Such interconnect

mechanism (e.g. buses) can become a major bottleneck if

not designed to be energy efficient. Generally, a

significant portion of power in a chip is consumed by its

bus system. For example, the bus wires dissipate about

15% to 30% [54] of the total power in DEC Alpha 21064

and Intel 80386 [55]. The delay and power dissipation of

global buses [56] is increasing with technology scaling.

This is bound to increase as the resistance of the wire

increases with reduced size of the wire. With increasing

bandwidth and communication efficiency, network

fabrics [57] are becoming more attractive as the principle

interconnect. Such fabrics are incorporated with high

speed router and data links with bandwidth of several

Gb/s [57]. Interconnect power optimization can be

achieved at all the levels of design as shown [58] in Fig.

6.

The architecture level and circuit level techniques will

be illustrated. These two categories can be sub divided

into [54]

 Designing bus drivers/receivers to reduce the

bus swing [59, 60]

 Encoding techniques to reduce the bus switching

activity [61, 62], and

 Bus structure redesign to take advantage of local

communications [63]

Network Level System Level

Architecture Level Circuit Level

Energy Efficient &

Reliable SoC

Communication

Architecture

Figure 6. Interconnect optimizations at different levels

(Adapted from [58])

(1) Reducing bus swing

The power consumption related to interconnect is

given by [6]:

 (3)

Where is the signal activity (the probability that the

signal will change per clock cycle), is the clock

frequency, is the interconnect wire capacitance and

 the signal voltage swing. It is apparent from the

equation that the interconnect power can be reduced by

decreasing the voltage swing on the wires. In [64] Kursun

et al. propose a low power bi-directional CMOS voltage

interface circuit which acts as the level converter between

the driver and receiver, reducing the voltage level at the

transmitter and amplifying it back at the receiver. A

simple schematic representing this scheme [65] is shown

in Fig. 7.

The driver converts a full-swing input into a reduced-

swing interconnect signal, which is converted back to a

full-swing output by the receiver. A detailed analysis of

the low swing architectures has been undertaken by

Zhang et al. [65], where methodologies have been

introduced which involve reduced driver supply voltage,

dynamically enabled drivers, level converters with low

threshold voltage etc.

(2) Encoding techniques

Signal transitions in terms of logic level bit values, is

another source of power consumption in CMOS circuits

[66]. Short length interconnect wires present a parasitic

capacitance similar to gate or drain capacitance which is

negligible. However, for wires that are connecting more

distant blocks the interconnect capacitance is of

substantial measure [6]. A remedy for this is to reduce the

switching activity on the wires effectively reducing the

capacitance.

Driver Receiver
CL

IN OUT

Figure 7. Programmable interconnect architecture (Adapted

from [65])

932 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

Bus encoding schemes have been investigated as a

means to downsize the total number of transitions on

interconnects. Several encoding approaches have been

proposed [67] according to the type of bus to which the

encoding schemes are applied (address/data/control bus),

the class of architectures considered (general-purpose,

special-purpose), the complexity of the encoder, which

determines whether it is applicable on-chip and/or off-

chip, etc. Stan et al. [61] propose a bus invert method to

reduce the power consumption by half. This method uses

the hamming distance between the present data value on

the bus and the next data value.

In case of off-chip communication such as external

memory access Gray code encoding achieves the

minimum switching activity as it takes the advantage of

the spatial locality of the addresses generated by the

microprocessor [68]. However Benini et al. have devised

a better address encoding scheme T0 code[69] which

outperforms the Gray code in the case of streams of

consecutive addresses of limited and unlimited lengths.

In [70] a review of some of the encoding techniques

has been undertaken. The encoding function can be

optimized for specific access patterns such as sequential

access (Gray [71, 72], T0 [68], Pyramid [73]) or random

data (Bus Invert [61]), for special data types such as

floating point numbers in DSP applications [74]. The

encoding may be fully customized to the target data

(Working Zone [75], Beach [76]). The key idea behind all

of these techniques is to reduce the Hamming distance

between consecutive address and data transfers.

(3) Bus structures

As previously discussed, the primary bottleneck is the

capacitance during the switching activity. There has been

research being done on redesigning the complete bus

structure to reduce this capacitance. Shin et al. [77]

developed a design methodology where it is assumed that

capacitance components of buses are available from the

layout of the processor core and the address streams from

typical runs of the application code. Based on this

information the optimal bus order is derived and this

order is used to modify the processor layout. In [78] the

split shared bus architecture is described. As shown in

Fig. 8 the long bus is divided into two smaller buses and

the dual port bus driver passes the data between the two

buses. The power consumption is reduced in a sense that

the effective capacitance for complete bus is divided into

smaller portions and only active portions contribute to the

power. As the effective length is shortened the parasitic

components are also reduced. Similar idea is elaborated

in [54] under the name of bus segmentation.

Network on Chip is considered to be one of the

potential forerunners in coming years due to the

performance demands with multiple processing blocks

operating within same chip. This opens up flurry of

opportunities for designing efficient network and routing

architectures. Apart from the above mentioned methods

there are different Network topologies and routing

architectures/algorithms [79] which are exploited for

energy/performance. Network topologies determine the

number of hops and wire length [80] required for data

M1

E
N

B

Bus1 Bus2

en1

BUF1

BUF2

M3

E
N

B

M2

E
N

B

M4

E
N

B

M5

E
N

B

M6

E
N

B

en2

Figure 8. Split shared bus architecture (Adapted from

[78])

transfer. In [80] Hangsheng et al. discuss the energy

performance of the four main topologies: 2-D meshes,

high-dimensional meshes, hierarchical meshes and

express cubes. In [81] new micro architectures are

introduced for routers in Network on Chip such as the

segmented crossbar, cut-through crossbar and

writethrough buffer.

III. ADDITIONAL APPROACHES

Although the focus of the paper is processor and chip

level technologies for achieving low power but it is

necessary to briefly introduce well known methodologies

which can be applied into other stages of design. With

new design ideas optimization part into compiler is being

equally weighed as having power efficient hardware.

Chakrapani et al. [82] identify two classes A and B of the

compiler optimizations for energy reduction. Class A [82]

consists of energy saving due to performance

improvement such as reductions in the number of loads

and stores, procedure cloning, loop unrolling, procedure

inlining, and loop transformations. Class B [82] uses

techniques like instruction scheduling; register pipelining,

innovations in code selection to replace high power

dissipating instructions with other instructions.

One further method centers on the application of

compression algorithms to instruction code, cache blocks.

Different code compression schemes for embedded

systems are discussed in [83]. Arithmetic circuits are

generously used in Arithmetic Logic Unit (ALU),

Floating Point Unit (FPU) designs as well as DSP. Piguet

[6] discusses various power efficient CMOS circuit

design issues for basic arithmetic operators such as adder

and their use in multiplier, square etc.

In the following some novel low power architectures

are introduced.

IV. LOW POWER ARCHITECTURES

In this chapter an overview of asynchronous,

Reconfigurable Instruction Set Processors (RISP),

Application Specific Instruction Set Processors (ASIP),

extensible and No Instruction Set Computer (NISC)

architectures is provided.

A. Asynchronous Processors

Asynchronous processor is a major development in

low power architectures. The absence of a clock

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 933

© 2009 ACADEMY PUBLISHER

addresses the fact that the clock is a major power

consumer in a synchronous processor. A clockless design

does not only save clock power consumption but also

protects from clock skew problem (which is more evident

as the size of IC grows), reduces noise, and ease the

component modularity and reuse. However the absence

of clock also implicates careful design of handshake

protocols; their failure could result in hazards [84] and

race conditions [85]. Additionally, asynchronous circuits

require more area for implementation as compared to

their synchronous counterparts; thus resulting in higher

production costs.

An early example of an asynchronous processor is the

AMULET, which is a pioneer Asynchronous ARM

architecture debuted in 1993 [86]. Internally the

processor is constructed from several function units

which operate independently and concurrently,

exchanging information through a handshake protocol.

This basic theme remains common with other

asynchronous counterparts like SNAP [87], Bit SNAP

[88], ARM996HS [89], HT80C51, and SUN Sproull

Pipeline Processor architecture [90] etc.

Asynchronous circuits may have several advantages

but the absence of suitable commercial grade synthesis

tools have limited their wide spread usage to date. The

TiDE - Timeless Design Environment [89] and BALSA

[91] are addressing some of these issues. Also prototype

development platforms for asynchronous design are still

in the research phase e.g. [92, 93].

GALS (Globally Asynchronous and Locally

Synchronous) is an approach aimed to combine the

advantages of synchronous and asynchronous design

methodologies while avoiding their disadvantages. GALS

can be classified into three main implementation

techniques, namely pausible clock generators, FIFO

buffers, and boundary synchronization [94].

 Pausible-clock generators: The pausible-clock

design style relies on locally generated, data

driven clocks that can be stretched or paused

either to prevent metastability or to let a

transmitter or receiver stall because of a full or

empty channel [95, 96].

 FIFO buffers: using asynchronous FIFO buffers

between locally synchronous blocks to hide the

synchronization problem. This technique can be

seen in various NoC designs as [97, 98].

 Boundary synchronization: performing boundary

synchronization on the signals crossing the

borders of the locally synchronous island

without stopping the complete locally

synchronous block during data transfer [94].

GALS has been actively researched for more than 20

years. But despite several successful implementations,

GALS has had little impact on commercial products [94].

In [94] the authors have analyzed the actual challenges

and problems for wider adoption of the currently

proposed GALS methods. Their analysis shows that

significant improvement can be achieved in terms of

system integration and EMI reduction; but with marginal

improvements in power savings. Additionally,

introduction of a GALS approach leads to relatively small

area increases, and in some cases even causes certain

performance losses. GSLA or Globally Synchronous

Locally Asynchronous is a relatively new scheme with

the same targets in mind; however this also suffers with

large area overheads; examples of GSLA can be found in

[99-101].

B. Reconfigurable Instruction Set Processors (RISP)

The idea of reconfigurable computing dates back to

1960 when Gerald Estrin at UCLA; presented [102] a

model of a fixed machine with some variable (or

configurable) structure [103] (see Fig. 9(a)). Work in this

area has progressed substantially, but it is only in recent

years that reconfigurable architectures are considered as

potential runners for the low power race. RISPs are rather

different to mainstream processors; they consist of fixed,

simple functional units and a reconfigurable logic fabric

(see Fig. 9(b)), that enables the software to modify the

datapath as per requirement. The underlying idea of an

RISP is to avoid higher non-recurring engineering (NRE)

costs as in the case of application specific IP and at the

same time providing the flexibility of custom datapath

design based on application at runtime [104]; thus

providing a highly power efficient and fast processor.

Depending on the size of their configurable logic blocks

(CLBs), RISPs can be classified as fine grained and

coarse grained; while fine grained RISP give higher

flexibility by handling data at bit (or several bits) level;

however this complicates the handling algorithms and

may result in higher power consumption, more area

requirement and increased delay due to greater

interconnects. Coarse grained RISP on the other hand are

not very flexible as it consists of larger CLBs and can

handle several bits simultaneously but may result in

power losses on bit level computations [105]. The CLBs

in coarse grained processors are sometimes alternatively

referred to as rDPUs (reconfigurable DataPath Units)

[106] to contrast from CLBs in a fine grained system.

There are various issues in the design of such

processors, i.e. the design of fixed part or the core, the

design of reconfigurable logic, its granularity, the highly

flexible or dynamic datapath, and last but not least, the

interface between the fixed and reconfigurable part [104].

Examples of RISP can be found in [107, 108], while in

[109] a software development toolchain, based on

opensource gcc complier, is proposed to target RISPs.

A specialized form of RISP is the Warp processor; that

uses dynamic software optimization for better

speed/energy performance. When a program first runs on

the fixed processor, the system monitors the program to

detect its most frequently-executed parts. The processor

then automatically tries to move those parts to the

reconfigurable logic or FPGA, all in runtime, thus

eliminating tool flow restrictions and extra designer effort

associated with traditional compile-time optimizations

[110]. This approach gives an edge on the established

approaches like the Binary-translation Optimized

Architecture (BOA) [111] and the Dynamic Optimization

System (Dynamo) [112]; by performing binary level

hardware/software partitioning at runtime [113]. Warp

934 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

processors are currently capable of achieving speedups

averaging 6.0 and energy savings up to 60% [114, 115].

The only difference between a traditional RISP and a

Warp is that the reconfigurable part is located off-the-

chip i.e. a separate Warp oriented FPGA or W-FPGA

[110].

Other examples of RISP architectures are RICA [116],

Matrix [117], and Montium [118]. Among these, RICA

(Reconfigurable Instruction Cell Array) [116] is a novel

cell [119, 120] based architecture; comprising of array of

dynamically reconfigurable instruction cells (ICs),

programmable with a high level language. All this is

attained with an innovative design of the silicon fabric in

a similar way to reconfigurable arrays but with a closer

equivalence to software, thus achieving the high

performance as coarse-grain FPGA architectures, while

maintaining the flexibility, low cost, and programmability

as of general purpose processors.

C. Application Specific Instruction Set Processors

(ASIPs) and Extensible Processors

For more than a decade ASIPs have been researched as

a compromise between General Purpose Processors and

ASICs; providing reasonable performance, and power

savings. The ASIP generally comprise of some basic

instructions and the use of a code profiler to facilitate

instruction extension, and logic parameterization. The

instruction extension gives the flexibility of designing

custom instructions based on application, thus resulting in

a very efficient code execution. The ASIP Profiler may

also provide flexibility of inclusion or exclusion of

certain registers or logic blocks, or selection between big-

endian or little endian [9].

Designing an optimal extended instruction set (IS) is

the most challenging aspect, and has a direct impact on

the performance of the ASIP. For larger software, it is

very difficult to manually extend the IS, and this is

further complicated by various design constraints, such as

the format of the extended instructions (e.g., the number

of input and output operands), clock period, available

chip area, etc [121]. Fig. 10 shows a typical design flow

for extensible processor generation. Cong et al. present a

set of algorithms, including pattern generation, pattern

selection, and application mapping, to efficiently utilize

the instruction set extensibility of the target configurable

processor [121]. There have been several successful

commercial implementations of ASIPs like Tensilica‟s

Extensa Processors [122], Improv Systems Jazz DSP,

Altera‟s NIOS and Xilinx Microblaze processors.

D. No Instruction Set Computer (NISC)

A very different type of architecture that has no

instructions at all, is presented in [123, 124] where

authors suggest to build a custom datapath based on

application code without any fixed instruction set. In this

approach the datapath of the architecture is fully allocated

before scheduling and binding. It compiles a C program

directly to the datapath, the compilation results in Control

Words (CWs) instead of instructions, and that‟s basically

a data path specified as a net-list of resource instances

and their connections.

Fig. 11 elaborates the difference between typical RISC

and NISC architectures. In [124] an algorithm is

presented that maps an application on a given datapath by

performing scheduling and binding simultaneously. In

[125] two algorithms are presented, the first algorithm

starts with an architecture that supports maximum

parallelism for implementation of the input C code and

iteratively refines it until an efficient resource utilization

Application Software

Profiling

Identify and Define

Extensible instructions,

parameter settings etc.

Retargetable Tool

Generation

Compiler, Linker,

Debugger, Simulator etc.

OK

Generate Extensible

Processor

Yes

No

Figure 10. A typical extensible processor design flow (Adapted

from [9])

I/O

ALU

Memory

Control

Unit

Fixed Part Variable Part

(a) First Proposed Design by G. Estrin in 1960 (Adapted

from [102]

SRAM

Processor Core

Reconfigurable

Logic

I-Cache

D-Cache

(b) A Modern Reconfigurable Processor (Adapted from

[104])

Figure 9. Reconfigurable Processor, from earlier concept to

reality

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 935

© 2009 ACADEMY PUBLISHER

is obtained while maintaining the performance constraint.

The other algorithm is used to choose the priority of

application basic blocks for optimization.

V. SUMMARY & CONCLUSION

 As more and more portable devices become part of

everyday life, power efficiency poses a challenge for the

hardware and software designers. Power optimization for

low power devices and processor cores has dominated

research and will continue to be the focus for embedded

systems in future. Solutions have been proposed in terms

of new power saving architectures as well as power

optimization techniques in different processor

subsystems. This paper has reviewed such techniques as

well as the architectures. Although not all the techniques

can be applied simultaneously possible scenarios are

outlined.

The use of DVFS to dynamically reduce the clock

speed as well as supply voltage of CMOS circuits is

discussed for systems where task based scheduling is

possible. Caches can be helpful in systems where

frequent external memory access is anticipated. They

prove advantageous in reducing the off chip memory

accesses which increases delay as well as bus power.

Filter caches or buffers which can be seen as low level

cache for level 1 and level 2 caches are powerful in

boosting the performance and reducing the power

consumption. Cache partitioning and turning off unused

cache lines to optimize the power have also been

reviewed. Adding pipeline stages is a commonly used

method to improve the processor throughput so that

processor speed can be utilized to its fullest. Power can

be saved in pipelines by reducing the number of registers,

branch speculation and run time adaptations of the

pipeline stages which is helpful in soft real time systems.

The processor‟s throughput and power are highly

dependent on the underlying bus architectures as well.

Buses have empowered the communication in NoC and

will continue to do so. Various bus architectures,

encoding techniques and also network topologies

supported by power efficient routers are being developed,

however we feel that there is still much more to be

explored in the upcoming field of power efficient NoCs.

Novel architecture concepts such as Asynchronous

processors, RISP, ASIP and NISC have been reviewed.

These architectures present unconventional approaches,

viz. clockless operation, application based

reconfiguration, or absence of Instruction Set. A possible

route forward could be to investigate the combination of

these architectures supplemented with above mentioned

techniques.

It can be inferred that independent techniques targeting

a system component such as memory, supply voltage,

instruction scheduling, cache etc remain more popular

due to less development time and cost involved in design

and test.

ACKNOWLEDGMENT

This research is in part supported by the UK

Engineering and Physical Sciences Research Council

(EPSRC) under Grants EP/C005686/1, EP/C014790/1

and EP/C54630X/1.

REFERENCES

[1] E. Mocii and M. Pedram, "Best practices in low

power design. 1. Power reduction techniques

[Tutorial 1]," in IEEE/ACM International

Conference on Computer Aided Design, 2004.

ICCAD-2004. , 2004, pp. xi- xi.

[2] S. Manne, A. Klauser, and D. Grunwald, "Pipeline

gating: speculation control for energy reduction,"

SIGARCH Comput. Archit. News, vol. 26, pp. 132-

141, 1998.

[3] F. Richard, S. Perissakis, N. Cardwell, C.

Kozyrakis, B. McGaughy, D. Patterson, T.

Anderson, and K. Yelick, "The energy efficiency of

IRAM architectures," in Proceedings of the 24th

annual international symposium on Computer

architecture Denver, Colorado, United States:

ACM, 1997.

[4] R. Gonzalez and M. Horowitz, "Energy dissipation

in general purpose microprocessors," IEEE Journal

of Solid-State Circuits, vol. 31, pp. 1277-1284, Sep

1996.

[5] E. Acar, R. Arunachalam, and S. R. Nassif,

"Predicting Short Circuit Power From Timing

Models," Design Automation Conference, 2003.

Proceedings of the ASP-DAC 2003. Asia and South

Pacific, vol. 21-24 pp. 277 - 282, 2003.

[6] C. Piguet, Low-Power CMOS Circuits: Technology,

Logic Design and CAD Tools. Boca Raton, FL:

CRC Press, Taylor & Francis Group, 2006.

[7] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.

B. Srivastava, "Power Optimization of Variable-

Voltage Core-Based Systems," IEEE Transactions

on Computer-Aided Design of Integrated Circuits

and Systems, vol. 18, pp. 1702-1714, December

1999.

PC

Code

Memory

IR

Decoder Datapath

Data

Memory

CW

PC

Code

Memory

Datapath

Data

Memory

CW

RISC NISC

Figure 11. A Comparison between RISC and NISC (Adapted

from [123])

936 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

[8] A. P. Chandrakasan, S. Sheng, and R. W.

Broderson, "Low-power CMOS digital design,"

IEEE Journal of Solid-State Circuits, vol. 27, pp.

473–484, 1992.

[9] J. Henkel and S. Parameswaran, Designing

Embedded Processors: A Low Power Perspective:

Springer Netherlands, 2007.

[10] G. C. Buttazzo, "Rate monotonic vs. EDF: judgment

day," Real-Time Syst., vol. 29, pp. 5-26, 2005.

[11] P. Pillai and K. G. Shin, "Real-time dynamic

voltage scaling for low-power embedded operating

systems," in Proceedings of the eighteenth ACM

symposium on Operating systems principles Banff,

Alberta, Canada: ACM, 2001.

[12] M. Weiser, B. Welch, A. Demers, and S. Shenker,

"Scheduling for reduced CPU energy," Proceedings

of USENIX Symposium on Operating Systems

Design and Implementation, pp. 13–23, 1994.

[13] J. P. Lehoczky and S. Ramos-Thuel, "An optimal

algorithm for scheduling soft-aperiodic tasks in

fixed-priority preemptive systems," in Real-Time

Systems Symposium, 1992, 1992, pp. 110-123.

[14] J.-W. Dai, "The Scheduling to Achieve Optimized

Performance of Randomly Addressed Polling

Protocol," Wireless Personal Communications, vol.

15, pp. 161-179, 2000.

[15] K. Jeffay, D. F. Stanat, and C. U. Martel, "On non-

preemptive scheduling of period and sporadic

tasks," in Proceedings of Twelfth Real-Time Systems

Symposium, 1991. , 1991, pp. 129-139.

[16] K. Choi, W. Lee, R. Soma, and M. Pedram,

"Dynamic voltage and frequency scaling under a

precise energy model considering variable and fixed

components of the system power dissipation," in

Proceedings of the 2004 IEEE/ACM International

conference on Computer-aided design: IEEE

Computer Society, 2004.

[17] H. Jung and M. Pedram, "Improving the Efficiency

of Power Management Techniques by Using

Bayesian Classification," in 9th International

Symposium on Quality Electronic Design, 2008.

ISQED 2008. San Jose, CA, , 2008.

[18] H. Sasaki, Y. Ikeda, M. Kondo, and H. Nakamura,

"An intra-task dvfs technique based on statistical

analysis of hardware events," in Proceedings of the

4th international conference on Computing frontiers

Ischia, Italy: ACM, 2007.

[19] S. Yang, W. Wolf, N. Vijaykrishnan, D. N.

Serpanos, and Y. Xie, "Power Attack Resistant

Cryptosystem Design: A Dynamic Voltage and

Frequency Switching Approach," in Proceedings of

the conference on Design, Automation and Test in

Europe - Volume 3: IEEE Computer Society, 2005.

[20] F. Emnett and M. Biegel, "Power Reduction

Through RTL Clock Gating," in SNUG(Synopsis

User Group) Conference San Jose, 2000.

[21] M. Dale, "The Power of RTL Clock-gating," in Chip

Design Magazine. vol. 2008 [cited 2008 February]:

available from

http://www.chipdesignmag.com/display.php?articleI

d=915.

[22] N. Banerjee, K. Roy, H. Mahmoodi, and S. Bhunia,

"Low power synthesis of dynamic logic circuits

using fine-grained clock gating," in Proceedings of

the conference on Design, automation and test in

Europe: Proceedings Munich, Germany: European

Design and Automation Association, 2006.

[23] S. V. Kosonocky, A. J. Bhavnagarwala, K. Chin, G.

D. Gristede, A.-M. Haen, W. Hwang, M. B.

Ketchen, S. Kim, D. R. Knebel, K. W. Warren, and

V. Zyuban, "Low-power circuits and technology for

wireless digital systems," IBM Journal of Research

and Development, vol. 47, pp. 283-298, 2003.

[24] R. Puri, L. Stok, and S. Bhattacharya, "Keeping hot

chips cool," in Proceedings of the 42nd annual

conference on Design automation Anaheim,

California, USA: ACM, 2005.

[25] A. Calimera, A. Pullini, A. V. Sathanur, L. Benini,

A. Macii, E. Macii, and M. Poncino, "Design of a

family of sleep transistor cells for a clustered power-

gating flow in 65nm technology," in Proceedings of

the 17th great lakes symposium on Great lakes

symposium on VLSI Stresa-Lago Maggiore, Italy:

ACM, 2007.

[26] H.-O. Kim, Y. Shin, H. Kim, and I. Eo, "Physical

design methodology of power gating circuits for

standard-cell-based design," in Proceedings of the

43rd annual conference on Design automation San

Francisco, CA, USA: ACM, 2006.

[27] K. Ghose and M. B. Kamble, "Reducing power in

superscalar processor caches using subbanking,

multiple line buffers and bit-line segmentation," in

Proceedings of the 1999 international symposium

on Low power electronics and design San Diego,

California, United States: ACM, 1999.

[28] K. Ghose and M. B. Kamble, "Energy Efficient

Cache Organizations for Superscalar Processors," in

Power-Driven Microarchitecture Workshop In

Conjunction With ISCA98 in Barcelona, 1998.

[29] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E.

M. Cooper, D. W. Dobberpuhl, P. M. Donahue, J.

Eno, G. W. Hoeppner, D. Kruckemyer, T. H. Lee, P.

C. M. Lin, L. Madden, D. Murray, M. H. Pearce, S.

Santhanam, K. J. Snyder, R. Stephany, and S. C.

Thierauf, "A 160-MHz, 32-b, 0.5-W CMOS RISC

microprocessor," Digital Tech. J., vol. 9, pp. 49-62,

1997.

[30] N. Bellas, I. Hajj, and C. Polychronopoulos, "Using

dynamic cache management techniques to reduce

energy in a high-performance processor," in

Proceedings of the 1999 international symposium

on Low power electronics and design San Diego,

California, United States: ACM, 1999.

[31] W. Tang, R. Gupta, and A. Nicolau, "Power Savings

in Embedded Processors through Decode Filer

Cache," in Proceedings of the conference on

Design, automation and test in Europe: IEEE

Computer Society, 2002.

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 937

© 2009 ACADEMY PUBLISHER

http://www.chipdesignmag.com/display.php?articleId=915
http://www.chipdesignmag.com/display.php?articleId=915

[32] J. Kin, M. Gupta, and W. H. Mangione-Smith, "The

filter cache: an energy efficient memory structure,"

in Proceedings of the 30th annual ACM/IEEE

international symposium on Microarchitecture

Research Triangle Park, North Carolina, United

States: IEEE Computer Society, 1997.

[33] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and

T. Mudge, "Drowsy caches: simple techniques for

reducing leakage power," in Proceedings of the 29th

annual international symposium on Computer

architecture Anchorage, Alaska: IEEE Computer

Society, 2002.

[34] S. Kaxiras, Z. Hu, and M. Martonosi, "Cache decay:

exploiting generational behavior to reduce cache

leakage power," in Proceedings of the 28th annual

international symposium on Computer architecture

G\&\#246;teborg, Sweden: ACM, 2001.

[35] J. Abella, A. Gonzalez, X. Vera, and M. F. P.

O'Boyle, "IATAC: a smart predictor to turn-off L2

cache lines," ACM Trans. Archit. Code Optim., vol.

2, pp. 55-77, 2005.

[36] Z. Hu, S. Kaxiras, and M. Martonosi, "Let caches

decay: reducing leakage energy via exploitation of

cache generational behavior," ACM Trans. Comput.

Syst., vol. 20, pp. 161-190, 2002.

[37] M. J. Geiger, S. A. McKee, and G. S. Tyson,

"Drowsy region-based caches: minimizing both

dynamic and static power dissipation," in

Proceedings of the 2nd conference on Computing

frontiers Ischia, Italy: ACM, 2005.

[38] S. Kim, N. Vijaykrishnan, M. Kandemir, A.

Sivasubramaniam, and M. J. Irwin, "Partitioned

instruction cache architecture for energy efficiency,"

Trans. on Embedded Computing Sys., vol. 2, pp.

163-185, 2003.

[39] O. Golubeva, M. Loghi, E. Macii, and M. Poncino,

"Locality-driven architectural cache sub-banking for

leakage energy reduction," in Proceedings of the

2007 international symposium on Low power

electronics and design Portland, OR, USA: ACM,

2007.

[40] C.-L. Su and A. M. Despain, "Cache design trade-

offs for power and performance optimization: a case

study," in Proceedings of the 1995 international

symposium on Low power design Dana Point,

California, United States: ACM, 1995.

[41] Y. Zhang and J. Yang, "Low cost instruction cache

designs for tag comparison elimination," in

Proceedings of the 2003 international symposium

on Low power electronics and design Seoul, Korea:

ACM, 2003.

[42] C. Zhang, F. Vahid, J. Yang, and W. Najjar, "A

way-halting cache for low-energy high-performance

systems," ACM Trans. Archit. Code Optim., vol. 2,

pp. 34-54, 2005.

[43] K. Inoue, T. Ishihara, and K. Murakami, "Way-

predicting set-associative cache for high

performance and low energy consumption," in

Proceedings of the 1999 international symposium

on Low power electronics and design San Diego,

California, United States: ACM, 1999.

[44] R. Panwar and D. Rennels, "Reducing the frequency

of tag compares for low power I-cache design," in

Proceedings of the 1995 international symposium

on Low power design Dana Point, California, United

States: ACM, 1995.

[45] T. Ishihara and F. Fallah, "A non-uniform cache

architecture for low power system design," in

Proceedings of the 2005 international symposium

on Low power electronics and design San Diego,

CA, USA: ACM, 2005.

[46] X. Zhou and P. Petrov, "Low-power cache

organization through selective tag translation for

embedded processors with virtual memory support,"

in Proceedings of the 16th ACM Great Lakes

symposium on VLSI Philadelphia, PA, USA: ACM,

2006.

[47] A. Efthymiou and J. D. Garside, "Adaptive Pipeline

Depth Control for Processor Power-Management,"

in IEEE International Conference on Computer

Design (ICCD'02), 2002, p. 454.

[48] H. Ali and B. M. Al-Hashimi, "Architecture Level

Power-Performance Tradeoffs for Pipelined

Designs," in IEEE International Symposium on

Circuits and Systems, 2007. ISCAS 2007. New

Orleans, LA, 2007, pp. 1791-1794.

[49] H. Shimada, H. Ando, and T. Shimada, "Pipeline

stage unification: a low-energy consumption

technique for future mobile processors," in

Proceedings of the 2003 international symposium

on Low power electronics and design Seoul, Korea:

ACM, 2003.

[50] S.-J. Ruan, K.-L. Tsai, E. Naroska, and F. Lai,

"Bipartitioning and encoding in low-power

pipelined circuits," ACM Trans. Des. Autom.

Electron. Syst., vol. 10, pp. 24-32, 2005.

[51] G. D. Micheli, Synthesis and optimization of digital

circuits. New York, NY.: McGraw-Hill, 1994.

[52] R. I. Bahar and S. Manne, "Power and energy

reduction via pipeline balancing," SIGARCH

Comput. Archit. News, vol. 29, pp. 218-229, 2001.

[53] A. Hartstein and T. R. Puzak, "The optimum

pipeline depth considering both power and

performance," ACM Trans. Archit. Code Optim.,

vol. 1, pp. 369-388, 2004.

[54] W. B. Jone, J. S. Wang, H. I. Lu, I. P. Hsu, and J. Y.

Chen, "Design theory and implementation for low-

power segmented bus systems," ACM Trans. Des.

Autom. Electron. Syst., vol. 8, pp. 38-54, 2003.

[55] C. Dake Liu Svensson, "Power consumption

estimation in CMOS VLSI chips," IEEE Journal of

Solid-State Circuits, vol. 29, pp. 663-670, Jun 1994.

[56] S. R. Sridhara and N. R. Shanbhag, "A low-power

bus design using joint repeater insertion and

coding," in Proceedings of the 2005 international

symposium on Low power electronics and design

San Diego, CA, USA: ACM, 2005.

[57] M. Ni and S. O. Memik, "Self-heating-aware

optimal wire sizing under Elmore delay model," in

938 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

Proceedings of the conference on Design,

automation and test in Europe Nice, France: EDA

Consortium, 2007.

[58] V. Raghunathan, M. B. Srivastava, and R. K. Gupta,

"A survey of techniques for energy efficient on-chip

communication," in Proceedings of the 40th

conference on Design automation Anaheim, CA,

USA: ACM, 2003.

[59] G. C. Cardarilli, M. Salmeri, A. Salsano, and O.

Simonelli, "Bus architecture for low-power VLSI

digital circuits," in IEEE International Symposium

on Circuits and Systems. vol. 4, 1996.

[60] R. Golshan and B.Haroun, "A novel reduced swing

CMOS bus interface circuit for high speed low

power VLSI systems," in IEEE International

Symposium on Circuits and Systems. ISCAS '94., .

vol. 4 London, UK, 1994 pp. 351-354.

[61] M. R. Stan and W. P. Burleson, "Bus-invert coding

for low-power I/O," IEEE Trans. Very Large Scale

Integr. Syst., vol. 3, pp. 49-58, 1995.

[62] M. R. Stan and W. P. Burleson, "Coding a

terminated bus for low power," in Proceedings of

the Fifth Great Lakes Symposium on VLSI

(GLSVLSI'95): IEEE Computer Society, 1995.

[63] R. Mehra, L. M. Guerra, and J. M. Rabaey, "A

partitioning scheme for optimizing interconnect

power," IEEE Journal of Solid-State Circuits., vol.

32, pp. 433-443, Mar 1997.

[64] V. Kursun, R. M. Secareanu, and E. G. Friedman,

"Low Power CMOS Bi-Directional Voltage

Converter," in Conference Proceedings of the IEEE

EDS/CAS Activities in Western New York 2001, pp.

6-7.

[65] H. Zhang and J. Rabaey, "Low-swing interconnect

interface circuits," in Proceedings of the 1998

international symposium on Low power electronics

and design Monterey, California, United States:

ACM, 1998.

[66] P. R. Panda and N. D. Dutt, "Reducing Address Bus

Transitions for Low Power Memory Mapping," in

Proceedings of the 1996 European conference on

Design and Test: IEEE Computer Society, 1996.

[67] G. Ascia, V. Catania, M. Palesi, and A. Parlato, "An

evolutionary approach for reducing the energy in

address buses," in Proceedings of the 1st

international symposium on Information and

communication technologies Dublin, Ireland:

Trinity College Dublin, 2003.

[68] L. Benini, G. D. Micheli, E. Macii, D. Sciuto, and

C. Silvano, "Address bus encoding techniques for

system-level power optimization," in Proceedings of

the conference on Design, automation and test in

Europe Le Palais des Congrés de Paris, France:

IEEE Computer Society, 1998.

[69] L. Benini, G. d. Micheli, E. Macii, D. Sciuto, and C.

Silvano, "Asymptotic Zero-Transition Activity

Encoding for Address Busses in Low-Power

Microprocessor-Based Systems," in Proceedings of

the 7th Great Lakes Symposium on VLSI: IEEE

Computer Society, 1997.

[70] M. Pedram, "Power optimization and management

in embedded systems," in Proceedings of the 2001

conference on Asia South Pacific design automation

Yokohama, Japan: ACM, 2001.

[71] C.-L. Su, C.-Y. Tsui, and A. M. Despain, "Saving

Power in the Control Path of Embedded

Processors," IEEE Des. Test, vol. 11, pp. 24-30,

1994.

[72] H. Mehta, R. M. Owens, and M. J. Irwin, "Some

Issues in Gray Code Addressing," in Proceedings of

the 6th Great Lakes Symposium on VLSI: IEEE

Computer Society, 1996.

[73] W.-C. Cheng and M. Pedram, "Power-optimal

encoding for DRAM address bus (poster session),"

in Proceedings of the 2000 international symposium

on Low power electronics and design Rapallo, Italy:

ACM, 2000.

[74] P. A. Kyeounsoo Kim Beerel, "A low-power

matrix transposer using MSB-controlled inversion

coding," in The First IEEE Asia Pacific Conference

on ASICs, 1999. AP-ASIC '99. Seoul, South Korea,

1999, pp. 194-197.

[75] E. Musoll, T. Lang, and J. Cortadella, "Exploiting

the locality of memory references to reduce the

address bus energy," in Proceedings of the 1997

international symposium on Low power electronics

and design Monterey, California, United States:

ACM, 1997.

[76] L. Benini, G. D. Micheli, E. Macii, M. Poncino, and

S. Quer, "System-level power optimization of

special purpose applications: the beach solution," in

Proceedings of the 1997 international symposium

on Low power electronics and design Monterey,

California, United States: ACM, 1997.

[77] Y. Shin and T. Sakurai, "Coupling-driven bus

design for low-power application-specific systems,"

in Proceedings of the 38th conference on Design

automation Las Vegas, Nevada, United States:

ACM, 2001.

[78] C.-T. Hsieh and M. Pedram, "Architectural power

optimization by bus splitting," in Proceedings of the

conference on Design, automation and test in

Europe Paris, France: ACM, 2000.

[79] J. Hu and R. Marculescu, "Exploiting the Routing

Flexibility for Energy/Performance Aware Mapping

of Regular NoC Architectures," in Proceedings of

the conference on Design, Automation and Test in

Europe - Volume 1: IEEE Computer Society, 2003.

[80] W. Hangsheng, P. Li-Shiuan, and M. Sharad, "A

Technology-Aware and Energy-Oriented Topology

Exploration for On-Chip Networks," in Proceedings

of the conference on Design, Automation and Test in

Europe - Volume 2: IEEE Computer Society, 2005.

[81] H. Wang, L.-S. Peh, and S. Malik, "Power-driven

Design of Router Microarchitectures in On-chip

Networks," in Proceedings of the 36th annual

IEEE/ACM International Symposium on

Microarchitecture: IEEE Computer Society, 2003.

[82] L. N. Chakrapani, P. Korkmaz, V. J. M. III, K. V.

Palem, K. Puttaswamy, and W. F. Wong, "The

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 939

© 2009 ACADEMY PUBLISHER

emerging power crisis in embedded processors:

what can a poor compiler do?," in Proceedings of

the 2001 international conference on Compilers,

architecture, and synthesis for embedded systems

Atlanta, Georgia, USA: ACM, 2001.

[83] H. Lekatsas and W. Wolf, "Code compression for

embedded systems," in Proceedings of the 35th

annual conference on Design automation San

Francisco, California, United States: ACM, 1998.

[84] S. Furber and J. SparsØ, Principles of Asynchronous

Circuit Design – A Systems Perspective. Boston:

Kluwer Academic Publishers, 2001.

[85] K. Y. Yun and D. L. Dill, "Automatic synthesis of

3D asynchronous state machines," in Proceedings of

the 1992 IEEE/ACM international conference on

Computer-aided design Santa Clara, California,

United States: IEEE Computer Society Press, 1992.

[86] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and

J. V. Woods, "AMULET1: a micropipelined ARM,"

Compcon Spring '94, Digest of Papers, pp. 476 -

485, 28 Feb.-4 March 1994

[87] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei,

and D. Brooks, "An Ultra Low Power System

Architecture for Sensor Network Applications,"

SIGARCH Comput. Archit. News, vol. 33, pp. 208-

219, 2005.

[88] V. N. Ekanayake, I. V. Clinton Kelly, and R.

Manohar, "BitSNAP: Dynamic Significance

Compression for a Low-Energy Sensor Network

Asynchronous Processor," in Proceedings of the

11th IEEE International Symposium on

Asynchronous Circuits and Systems: IEEE

Computer Society, 2005.

[89] A. Bink and R. York, "ARM996HS: The First

Licensable, Clockless 32-Bit Processor Core," IEEE

Micro, vol. 27, pp. 58-68, 2007.

[90] C. E. Molnar, R. F. Sproull, and I. E. Sutherland,

"Counterflow Pipeline Processor Architecture," Sun

Microsystems, Inc. 1994.

[91] A. Bardsley and D. Edwards, "Compiling the

language Balsa to delay insensitive hardware," in

Proceedings of the IFIP TC10 WG10.5

international conference on Hardware description

languages and their applications Toledo, Spain:

Chapman; Hall, Ltd., 1997.

[92] D. Fang, J. Teifel, and R. Manohar, "A High-

Performance Asynchronous FPGA: Test Results," in

Proceedings of the 13th Annual IEEE Symposium

on Field-Programmable Custom Computing

Machines (FCCM'05) - Volume 00: IEEE Computer

Society, 2005.

[93] S. Hauck, S. Burns, G. Borriello, and C. Ebeling,

"An FPGA for Implementing Asynchronous

Circuits," IEEE Des. Test, vol. 11, pp. 60-69, 1994.

[94] M. Krsti, E. Grass, F. K. Gürkaynak, and P. Vivet,

"Globally Asynchronous, Locally Synchronous

Circuits: Overview and Outlook," IEEE Des. Test,

vol. 24, pp. 430-441, 2007.

[95] F. K. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber,

and W. Fichtner, "GALS at ETH Zurich: Success or

Failure," in Proceedings of the 12th IEEE

International Symposium on Asynchronous Circuits

and Systems: IEEE Computer Society, 2006.

[96] P. Teehan, M. Greenstreet, and G. Lemieux, "A

Survey and Taxonomy of GALS Design Styles,"

Design & Test of Computers, IEEE, vol. 24, pp.

418-428, 2007.

[97] E. Beigne and P. Vivet, "Design of On-chip and

Off-chip Interfaces for a GALS NoC Architecture,"

in Proceedings of the 12th IEEE International

Symposium on Asynchronous Circuits and Systems:

IEEE Computer Society, 2006.

[98] I. M. Panades and A. Greiner, "Bi-Synchronous

FIFO for Synchronous Circuit Communication Well

Suited for Network-on-Chip in GALS

Architectures," in First International Symposium on

Networks-on-Chip (NOCS'07), 2007, pp. 83-94.

[99] A. E. Sjogren and C. J. Myers, "Interfacing

synchronous and asynchronous modules within a

high-speed pipeline," Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 8, pp.

573-583, 2000.

[100] H. Zhang, V. Prabhu, V. George, M. Wan, M.

Benes, A. Abnous, and J. M. Rabaey, "A 1V

Heterogeneous Reconfigurable DSP IC for Wireless

Baseband Signal Processing," IEEE Journal of Solid

State Circuits, vol. 35, pp. 1697-2003, November

2000.

[101] Y. Li, Z.-y. Wang, and K. Dai, "A Low-Power

Application Specific Instruction Set Processor

Using Asynchronous Function Units," in

Proceedings of the 7th IEEE International

Conference on Computer and Information

Technology: IEEE Computer Society, 2007.

[102] G. Estrin, "Organization of Computer Systems:

The Fixed-plus Variable Structure Computer," in

Proceedings of the Western Joint Computer

Conference New York, 1960, pp. 33-40.

[103] G. Estrin, "Reconfigurable computer origins: the

UCLA fixed-plus-variable (F+V) structure

computer," Annals of the History of Computing,

IEEE, vol. 24, pp. 3-9, 2002.

[104] F. Barat, R. Lauwereins, and G. Deconinck,

"Reconfigurable instruction set processors from a

hardware/software perspective," Software

Engineering, IEEE Transactions on, vol. 28, pp.

847-862, 2002.

[105] T. J. Todman, G. A. Constantinides, S. J. E.

Wilton, O. Mencer, W. Luk, and P. Y. K. Cheung,

"Reconfigurable computing: architectures and

design methods," IEE Proceedings - Computers

and Digital Techniques, vol. 152, pp. 193-207,

2005.

[106] R. Hartenstein, "A decade of reconfigurable

computing: a visionary retrospective," in

Proceedings of Design, Automation and Test in

Europe, 2001. Conference and Exhibition 2001.

Munich, Germany, 2001, pp. 642-649.

[107] F. Barat, M. Jayapala, T. Vander, R. Lauwereins,

G. Deconinck, and H. Corporaal, "Low Power

940 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

Coarse-Grained Reconfigurable Instruction Set

Processor," Field-Programmable Logic and

Applications; Lecture Notes in Computer Science,

vol. 2778/2003, pp. 230-239, 2003.

[108] M. J. Wirthlin, "A dynamic instruction set

computer," in Proceedings of the IEEE

Symposium on FPGA's for Custom Computing

Machines: IEEE Computer Society, 1995.

[109] A. L. Rosa, L. Lavagno, and C. Passerone, "A

software development tool chain for a

reconfigurable processor," in Proceedings of the

2001 international conference on Compilers,

architecture, and synthesis for embedded systems

Atlanta, Georgia, USA: ACM, 2001.

[110] R. Lysecky, G. Stitt, and F. Vahid, "Warp

Processors," ACM Trans. Des. Autom. Electron.

Syst., vol. 11, pp. 659-681, 2006.

[111] M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak,

and D. Appenzeller, "Dynamic and transparent

binary translation," Computer, vol. 33, pp. 54-59,

2000.

[112] V. Bala, E. Duesterwald, and S. Banerjia,

"Dynamo: a transparent dynamic optimization

system," SIGPLAN Not., vol. 35, pp. 1-12, 2000.

[113] G. Stitt, R. Lysecky, and F. Vahid, "Dynamic

hardware/software partitioning: a first approach,"

in Proceedings of the 40th conference on Design

automation Anaheim, CA, USA: ACM, 2003.

[114] R. Lysecky and F. Vahid, "A Study of the

Speedups and Competitiveness of FPGA Soft

Processor Cores using Dynamic

Hardware/Software Partitioning," in Proceedings

of the conference on Design, Automation and Test

in Europe - Volume 1: IEEE Computer Society,

2005.

[115] R. Lysecky and F. Vahid, "A Configurable Logic

Architecture for Dynamic Hardware/Software

Partitioning," in Proceedings of the conference on

Design, automation and test in Europe - Volume 1:

IEEE Computer Society, 2004.

[116] S. Khawam, I. Nousias, M. Milward, Y. Yi, M.

Muir, and T. Arslan, "The Reconfigurable

Instruction Cell Array," Very Large Scale

Integration (VLSI) Systems, IEEE Transactions

on, vol. 16, pp. 75-85, 2008.

[117] E. Mirsky and A. e. DeHon, "MATRIX: A

Reconfigurable Computing Architecture with

Configurable Instruction Distribution and

Deployable Resources," in IEEE Symposium on

FPGAs for Custom Computing Machines, 1996.

Proceedings. Napa Valley, CA, USA, 1996, pp.

157-166.

[118] P. M. Heysters, G. J. M. Smit, and E. Molenkamp,

"Montium - Balancing between Energy-

Efficiency, Flexibility and Performance," in

Proceedings of ERSA'03, Las Vegas, USA, 2003,

pp. 235-241.

[119] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R.

Johns, T. R. Maeurer, and D. Shippy,

"Introduction to the cell multiprocessor," IBM J.

Res. Dev., vol. 49, pp. 589-604, 2005.

[120] H. P. Hofstee, "Power Efficient Processor

Architecture and The Cell Processor," in

Proceedings of the 11th International Symposium

on High-Performance Computer Architecture:

IEEE Computer Society, 2005.

[121] J. Cong, Y. Fan, G. Han, and Z. Zhang,

"Application-specific instruction generation for

configurable processor architectures," in

Proceedings of the 2004 ACM/SIGDA 12th

international symposium on Field programmable

gate arrays Monterey, California, USA: ACM,

2004.

[122] G. Martin, "Recent Developments in Configurable

and Extensible Processors," in IEEE 17th

International Conference on Application-specific

Systems, Architectures and Processors (ASAP'06),

2006, pp. 39-44.

[123] D. Gajski, "NISC: The Ultimate Reconfigurable

Component," Center for Embedded Computer

Systems October 2003.

[124] M. Reshadi and D. Gajski, "A cycle-accurate

compilation algorithm for custom pipelined

datapaths," in Proceedings of the 3rd

IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis

Jersey City, NJ, USA: ACM, 2005.

[125] J. Trajkovic and D. Gajski, "Automatic Data Path

Generation from C code for Custom Processors,"

in International Federation for Information

Processing Publications-IFIP, May 2007, pp. 107-

120.

 Muhammad Yasir Qadri is currently a

PhD candidate at School of Computer

Science and Electronic Engineering,

University of Essex, UK. He received

his Bachelor of Engineering in

Electronics from Mehran University of

Engineering and Technology, Jamshoro,

Pakistan in 2002. He has more than 6 years of experience

in embedded system design. His research interests

include low power processor architectures, cache

optimization for power and reconfigurable MPSoC. He is

a student member of ACM and ACM SIGARCH.

Hemal Gujarathi got his MSc degree

in Embedded Systems at School of

Computer Science and Electronic

Engineering, University of Essex, UK

in 2008. As part of his MSc thesis he

developed power measurement

strategy for embedded systems to

understand how energy is consumed at software level. He

received his Bachelor of Engineering in Electronics &

JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009 941

© 2009 ACADEMY PUBLISHER

Telecommunications from University of Pune, India in

2001. Prior to his MSc study he worked in the fields of

embedded systems design and development for more than

4 years. He also worked at Motorola, USA developing

embedded software for their Linux based mobile phones.

His areas of interest are low power embedded systems

and application of these low power embedded systems in

the field of pervasive computing.

Prof. Klaus D. McDonald-Maier

received the Dipl. Ing. and MS degrees

in electrical engineering from the

University of Ulm, Germany, and the

École Supérieur de Chimie Physique

Électronique de Lyon, France, in 1995,

respectively. In 1999, he received the

doctorate in computer science from the Friedrich Schiller

University, Jena, Germany. Prof. McDonald-Maier

worked as a systems architect on reusable microcontroller

cores and modules at Infineon Technologies AG's Cores

and Modules Division in Munich, Germany and as a

lecturer in electronic engineering at the University of

Kent, Canterbury, United Kingdom. In 2005, he joined

the University of Essex, Colchester, United Kingdom,

where he is a Professor in the School of Computer

Science and Electronic Engineering. His current research

interests include embedded systems and system-on-chip

(SoC) design, development support and technology,

parallel and distributed architectures, the application of

soft computing techniques for real world problems, and

robot control. He is a senior member of the IEEE and a

Fellow of the IET.

942 JOURNAL OF COMPUTERS, VOL. 4, NO. 10, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

