
A Replica Management Protocol in a Binary
Balanced Tree Structure-Based P2P Network

Hidehisa Takamizawa, Kazuhiro Saji
Department of Computer Science, Graduate School of Engineering, Gunma University, Kiryu 376-8515, Japan

Email: takami@dml.cs.gunma-u.ac.jp

Masayoshi Aritsugi
Computer Science and Electrical Engineering, Graduate School of Science and Technology, Kumamoto University,

Kumamoto 860-8555, Japan
Email: aritsugi@cs.kumamoto-u.ac.jp

Abstract— The purpose of our work is to realize a load
balancing of nodes in a P2P network. A replica management
protocol, which exploits replicas for balancing loads of each
node managing popular data, by adapting replica partition
trees to a balanced tree overlay network called BATON,
for BAlanced Tree Overlay Network, is proposed for this.
BATON has a load balancing mechanism where each node
adjusts the number of data managed by it. However, if there
are some popular data that are accessed by a large number
of nodes in a network, the mechanism of BATON could fail.
We propose a replica management protocol for balancing
loads of both data transmission and replica management of
each node. Some results of simulation in which our proposal
was compared with a method without replica and another
method of simple replica management are showed and the
effective and weak points of our proposal are discussed.

Index Terms— P2P network, binary balanced tree structure,
replica management, load balancing

I. INTRODUCTION

P2P (Peer-to-Peer) networks have been applied to wide
areas recently. It is required to realize load balancing of
nodes in a P2P network. Since a peer can participate in
or leave from a P2P network autonomously, the load of
each peer must be balanced. In other words, it is supposed
that there is no peer that has excessively larger load
than others in a P2P network. In this paper, a replica
management protocol in a binary balanced tree structure-
based P2P is proposed for realizing load balancing of
peers, or nodes, managing popular data that are accessed
by a large number of nodes in a network.

BATON (BAlanced Tree Overlay Network) [2] is the
first attempt to exploit a balanced binary tree as the P2P
overlay network. Since BATON is based on the balanced
binary tree structure, it can support efficient range queries
easier than related conventional DHT (Distributed Hash

This paper is based on “A P2P Protocol with Load Balancing using
Replicas: A Proposal (in Japanese),” by Kazuhiro Saji and Masayoshi
Aritsugi, which appeared in DBSJ Letters, vol. 5, no. 2, pp. 9–12,
September 2006 [1].

Manuscript received September 17, 2008; revised January 26, 2009;
accepted February 24, 2009.

Correspondence to Masayoshi Aritsugi, Graduate School of Science
and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto
860-8555, Japan.

Table)-based systems [3]–[7]. Moreover, each node can
autonomously adjust the number of data it manages for
balancing the number of accesses. However, if there
are some data that are requested very frequently in the
network, the nodes that manage such data must handle
high loads. Note that such loads cannot be balanced by
the function of BATON. One way to solve the problem
is to create replica of such popular data and to balance
the loads with them. If, however, the number of replica
grows, it becomes naturally hard to manage them.

It is important to reduce the loads of nodes with
popular data. Traffics in P2P networks are divided into
two categories: one is download data, whose size is almost
over 20 Kbytes, and the other is non-download data,
e.g., messages for queries and network maintenance [8].
According to the results of [9], which measured traffics in
eDonkey, the average sizes of non-download and down-
load data are 16.7Kbytes and 2.48Mbytes, respectively,
and there is a strong distinction between them. If there is
a node that has a popular data or has a data that would
be modified frequently, its load must become higher than
those of the other nodes. We thus think that it is necessary
to balance the loads of such nodes in a P2P network.

There have been studies on load balancing of nodes
managing popular data by means of replicas [10]–[12]. In
[10], the performance improvement of lookup with repli-
cas was discussed and O(1) lookup in an environment
where queries are distributed in Zipf was proposed. In
[11], creation ways of replicas according to data access
rates and reallocation ways of them were discussed.
However, they did not consider such environments where
data are modified frequently, and thus consistency of data
was not supported strictly.

In [12], a system called SCOPE (Scalable COnsistency
maintenance in structured PEer-to-peer systems) was pro-
posed for load balancing with replicas in DHT-based P2P
networks. SCOPE uses RPTs (Replica Partition Trees)
for strictly managing replica locations and thus support
consistency of data in the network. Since SCOPE assumes
P2P networks with DHTs, it must be difficult to support
efficient range queries [2]. In addition, the numbers of
messages were only considered as loads in [12]. As noted

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 631

© 2009 ACADEMY PUBLISHER

in [8], [9], the costs for data sending should be also
considered as loads. Here we thus discuss how to use and
manage replicas with RPTs in BATON for load balancing
based on the total data transmission costs.

In this paper, a protocol that adapts RPTs [12] to
BATON [2] is proposed in order to realize load balancing
by using replicas in a P2P network. Our proposal can
reduce the loads of nodes managing popular data that are
accessed frequently by a large number of nodes. Since
our proposal is based on BATON, or a binary balanced
tree structure, our proposal can easily support efficient
range queries. By exploiting RPTs, replicas are managed
in a distributed manner, and thus the management loads of
replicas are also balanced in our proposal. The paper re-
ports some simulation results and discusses availabilities
of our proposal.

The remainder of this paper is organized as follows.
Section II mentions related work and compares with
our work. Section III describes briefly BATON [2] and
RPTs [12]. Section IV proposes a replica management
protocol that adapts RPT to BATON. Section V reports
some simulation results for evaluating our proposal, and
Section VI concludes this paper.

II. RELATED WORK

In this paper, a replica management protocol is pro-
posed for performance in a P2P network by means
of managing replica locations in a distributed manner.
Gnutella and Winny use replicas for retrieval performance
in unstructured P2P networks, but they do not manage
replica locations and thus consistency among original data
and replicas is not supported. In [13], although they did
not manage replica locations, they proposed a replica
update propagation algorithm based on rumor spreading
to reduce traffics for replica updates. However, the replica
updates are processed in a probabilistic manner, and thus
they did not support strictly consistency among data,
either.

Ref. [14] proposed an update propagation strategy in
which an n-ary tree is used for replica location man-
agement. They achieved both load balancing and delay
reduction in P2P networks. However, skews of update
loads of nodes would happen in their strategy if an internal
node of the tree has many replicas of data.

There have been many studies on replicas for perfor-
mance in structured P2P networks [10]–[12]. Ref. [10]
supported O(1) lookup of queries in Zipf distributions
with replicas in structured P2P networks, and also sup-
ported replica updates when updating their original data.
Ref. [11] proposed data replication and reallocation algo-
rithms adapting to data access rates. However, they did
not consider such environments where data are modified
frequently, and thus consistency of data was not supported
strictly. Ref. [12] proposed a system for load balancing
with replicas in DHT-based P2P networks. The system
considered strict replica management by using replica-
partition-trees (RPTs). However, the system assumes to

Figure 1. BATON tree structure and routing table [2].

be built on DHT-based P2P networks, and thus it must be
difficult to support efficient range queries [2].

In this paper, a replica management protocol based on
RPTs [12] and BATON [2] is proposed. Our proposal
realizes load balancing by using replicas in a P2P network
where there are data accessed so frequently that it is
impossible to support load balancing without replicas.
Since replicas are not exploited in BATON [2], the load
balancing function of our proposal cannot be realized by
BATON itself. We adapt RPTs in SCOPE [12], which is
supposed to be exploited to DHT-based P2P networks, to
BATON, which is a binary balanced tree structure-based
P2P network, in this paper.

III. PRELIMINARIES

In this section, we describe only necessary parts of
BATON [2] and RPTs [12] for the discussions of this
paper. Please refer [2] and [12] for the full descriptions
of them.

A. BATON

1) Structure: Figure 1 shows an example of BATON
trees and routing table of node m.

A node in BATON tree corresponds to a node in a P2P
network. As shown in the figure, each node has its level
and number for indicating its locations in the tree. It
holds links to its parent node, child nodes, and left and
right adjacent nodes, and also has its right and left routing
tables. Each routing table of a level L node can have at
most L node ids. Because the height of a balanced binary
tree in which the number of nodes is N is no greater
than 1.44 log N [15], the number of entries in a routing
table of a node is O(log N). The j-th entry of right (left)
routing table of node whose number is C has the link to
node whose number is C+2j−1 (respectively C−2j−1),
if the node exists.

Each node is assigned the range of data ids, as shown
in Figure 2, and data covered by the range is stored and
managed at the node. The range is from the maximum id
of its left adjacent node to the minimum id of its right
adjacent node. When load balancing is necessary, the data
migration between two adjacent nodes occurs and as a
result the ranges change. Note that the original BATON
does not consider replica at all. We call a node storing
the original data a primary node in this paper.

632 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

�

�� �� �� ��

	
 ��

 �

� � � ��

� ��� ��� � ��� ����� � ����� �! �� � #"�� #$��%� �#��� ��"�� � &#��� &���� � ����� �#�'� � ��$�� $� ��

� ��� ��� � �� !� �!$�� � ��"�� &#�'� � �#��� �����

� �'�!� ����� � ���#� �����

� "!��� �#�'�

� �!$�� !"��(� #$�� "!��� � &���� ����� � ����� ��$��)� $� !� �������

Figure 2. Example of range value [2]

Algorithm: Search exact(node n, query q, value v)
If ((LowerBound(n) ≤ v) and (v ≤UpperBound(n)))

q is executed at x;
Else

If (UpperBound(n) < v)
m=the farthest node satisfying

condition(LowerBound(m) ≤ v);
If (there exists such an m)

Forward q to m;
Else

If (RightChild(n) 6= null)
Forward q to RightChild(n);

Else
Forward q to RightAdjacentNode(n)

End If
End If

Else
//A similar process is followed towards the left

End If
End If

2) Operations to BATON:

a) Exact Match Query: When node n issues or
receives exact match query for data v, the node routes
the query according to the algorithm Search exact, where
UpperBound(n) and LowerBound(n) stands for the
maximum and minimum ids that node n stores, respec-
tively. The routing process continues to reach the primary
node of data v, and then the node sends the data to the
node that initiated the query, if the data exists. If there
are N nodes in the network, then the necessary steps of
search exact are O(log N).

b) Range Query: When a node issues a range query,
then one of data in the range is searched first. After getting
the data, then the rest of the range will be obtained by
navigating left and right adjacent nodes. When the whole
data of the range are stored in X nodes, it costs O(log N+
X) steps to process the range query.

c) Node Failure: When a node finds a fail node x,
the parent node y of x should make the failure correct, i.e.,
node y performs the processes that are necessary when
node x leaves in order to balance the whole tree and to
make the tree consistency.

� �� �

������� �������

� ��� �
� ��������� ���������

� �� �
����� �

� ������������� ����� � �� �
� � � �

� � � ���	��� ������� � �� �
� ��� �

� � ������� � � ����� � �� �
��� � �

� ��� ����� ���������

� �� �
����� �

� ����������� ������� � �� �
� ��� �

� � ������� ���������

� �� �
����� �

� �� �
��� ���

� �� �
� � � �

� �� �
� ��� �

� �� �
��� � �

� �� �
� �����

� �� �
� � �	�

� �� �
�������

��� ���

���
������

���
������

���
������

���
������

Figure 3. RPT structure [12]

B. RPTs

1) Structure: In [12], a replica partition tree (RPT) was
proposed for managing replicas in a distributed manner.
The structure can balance loads of replica management
including location management and replica update prop-
agation among nodes in a network. Figure 3 shows an
example of replica partition trees.

One RPT is created for one data for managing replicas
of the data. Original data whose id is x is managed by
node x, i.e., node x is the primary node of data x, and the
node becomes the root node of the RPT of data x. Figure 3
shows an RPT with 4-bit identifier space in which replicas
of data 1001 are allocated in node 0000, 0011, and 1111.
The nodes 0000, 0011, and 1111 are called subscribers.
Each node in an RPT has a 2-bit value called a partition
vector to one data for expressing whether there is a replica
in its child nodes, that is, if there is a replica in left/right
child nodes then left/right bit of its partition vector is set
to 1, as shown in Figure 3.

Data identifier space in an RPT is divided into parti-
tions, and a node in the RPT is assigned to one partition.
The identifiers of each level i in Figure 3 are calculated
as follows:
Level i: The nodes of this level inherit the 4 − i least
significant bits of 1001.
For example, nodes 0001 and 1001 are of Level 1, and
nodes 0001，0011，0101，0111，1001，1011，1101，and
1111 are of Level 3 in the figure.

As shown in Figure 3, each node has its range to man-
age whether there is a replica in the range. For example,
nodes 1001 of Level 0 and 0001 of Level 2 manage replica
existence information in the whole identifier space and in
[0000, 0011], respectively.

2) Operations to RPTs:
a) Subscribe/Unsubscribe: Operation subscribe is

issued when a subscriber informs the replica location to
the primary node. For example, when node 0010 has a
replica of data 1001 and becomes a subscriber in Figure 3,
the node issues operation subscribe to node 0011. The
node 0011 then sets the left of its partition vector 1. This
operation continues until a node that has a value 1 in its
partition vector or it reaches the root node, or the primary
node.

When the replica is deleted, operation unsubscribe is
issued. For example, when node 0010 deletes the replica
of data 1001, the node issues operation unsubscribe to

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 633

© 2009 ACADEMY PUBLISHER

� �� �

� ������� ��	 ��
�� ��� �
����� � �����
�����

� ��� 	 � � �����
�����

�
�� � �

� �� �

� �� �� �� �

� �� �

� �� �

� �� �

�������

�������

�������

�

� � � �

�

�

� �� �
���������������

���������������

���������������

���������������

����� ���������

���������������

���������!���"�#�������������"�

Figure 4. Our proposal’s structure

node 0011. The node 0011 then sets the left of its partition
vector 0. This operation continues until a node that has
two 1 values in its partition vector or it reaches the root
node, or the primary node.

b) Search: The primary node checks whether there
is a replica or not by touching its partition vector. If there
is a replica, then it forwards the operation search to its
child node. The operation finally reaches the node that
has a replica, and the subscriber then replies to the node
that initiated the operation.

c) Update: Operation update is performed when a
primary node updates the data or the node receives update
request to the data. The operation is forwarded to all the
subscribers for update propagation. Note that the primary
node can manage all replica locations only by maintaining
the partition vector, and the replica management loads can
thus be balanced by RPTs.

IV. PROPOSAL

A. Structure

A replica management protocol is proposed by adapting
RPTs to BATON in order to realize load balancing of both
data transmission and replica management of each node
in a P2P network. Figure 4 shows an example of our
proposal where the RPT for data 1001 shown in Figure 3
is adapted to a BATON with seven nodes.

In our proposal, each partition vector is assigned to the
corresponding node in BATON according to the identifier
of the node that manages the vector, and has its level,
which is expressed at the right to the identifier of each
partition vector in Figure 4. As shown in the figure, there
can exist nodes which have more than one partition vector
like node d. Note that when traversing partition vectors
located in such a node there is no need to communication
between nodes. Note also that in our proposal we do not
create or delete such partition vectors that have only 0
values for reducing storage cost for partition vectors.

B. Operations to Our Proposal

1) Subscribe/Unsubscribe: For simplicity, we adopt
owner replication [16] where we create a replica in a node
when it retrieved and received the data.

When creating a replica in a node, the node, or the
subscriber, randomly selects a data identifier from the id
range that the subscriber manages, and checks whether
T = o+r

m + β is under a threshold value, where m is the
number of ids that the subscriber manages, o and r are the
total size and the numbers of data mapped to the selected
id, and β is a constant. If T is over, the subscriber selects
another data identifier. By keeping the value low, we can
map replicas to ids uniformly distributed in the id range
of the subscriber. Then, we process operation subscribe
as described in III-B.2.a for registering the location in the
RPT.

Because our proposal is based on BATON, each node
has its data identifier range and the range would change
dynamically if load balancing of the original BATON
occurs. In our proposal, if migration of data mapped with
a replica occurs due to the load balancing, the replica and
its partition vector migrate as well. For example, when
a replica is stored in node e in Figure 4, the replica is
mapped to data id 5 (= 0101(2)), 6 (= 0110(2))， or 7
(= 0111(2)). If load balancing occurs and the ranges of
nodes e and b become [6, 7) and [3, 6), respectively, then
the management of the data of id 6 also changes from
node e to node b. In our proposal, the management of
replica(s) mapped to id 6 changes in the same way.

2) Exact Match Query: Exact match query is first
processed in almost the same way as described in III-
A.2.a except for when a replica of the requested data is
found before the process reaches the primary node. In
such a case, the replica is returned to the requesting node
in our proposal.

When an exact match query reaches to the primary
node, our system checks whether the node is overloaded
or not. If the node is not overloaded or there is no replica
of the requested data in the network, then the primary
node returns the original data to the requesting node, as
described in III-A.2.a. On the other hand, if the node is
overloaded and there is a replica, the primary node sends
a request of returning the replica to a subscriber. The
request sending between nodes in an RPT is processed in
Algorithm Search exact through O(log N) nodes. Thus,
the average number of hops for finding a subscriber
is O(log2 N). For load balancing of nodes managing
frequently accessed data, an overloaded primary node
sends a certain part of received requests to subscribers
in our proposal.

If a partition vector having more than one 1 value is
found in traversing an RPT, then we should select one
out of them. Our proposal attempts to reduce the number
of nodes traversed in the base structure, BATON. For
example, when traversing the RPT shown in Figure 3 to
find a replica of 1001, the partition vector of node 1001
has two 1 values. In this case, node 1001 of Level 1 is
selected because they are identical and thus no real hop
between nodes occurs.

However, this way may use one replica many times and,
as a result, fail to load balancing. To avoid such situations,
our proposal deletes a replica used a certain times.

634 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

3) Range Query: As exact match query, range query
in our proposal is processed in almost the same way
as described in III-A.2.b. Balancing of loads caused by
popular data is realized by the same way as in exact match
query, i.e., if primary nodes managing data in the range
have high loads then replicas are used as in IV-B.2.

4) Update: As described in III-B.2.c, this operation is
performed when a primary node updates the data or the
node receives update request to the data. Update in our
proposal can be processed in the same way as in III-B.2.c.

A large number of replicas of popular data would be
created in owner replication, and if popular data would
be updated frequently, the cost for update propagation
cannot be ignored. Note that it is not necessary to update
all the replicas in our proposal, since replicas are used
for performance. In other words, we may have to delete a
part of replicas when keeping all of the replicas up-to-date
degrades the system’s performance.

However, no peer manages with RPTs the numbers
of replicas in the network. Thus, in our proposal, when
processing update propagation, operation update can be
changed to operation delete in a certain amount of prob-
ability.

5) Node Failure: When node failure occurs, the op-
erations to original BATON and RPTs are performed. If
there is a subscriber of data managed by a failure node,
the data can be restored in our proposal. On the other
hand, as shown in Figure 4, several nodes in an RPT can
be managed by a node in BATON structure. If such a node
in BATON is in failure, the managed nodes in RPTs are
in failure at the same time, and thus several operations in
node failure to an RPT are performed simultaneously in
our proposal.

6) Join and Departure: When node join or departure
is occurred in BATON, data migration is also occurred.
In our proposal, replicas and partition vectors also move
along the data migration.

7) Data Insertion and Deletion: Operation for data
insertion is processed in the same way as in BATON. On
the other hand, if data deletion is issued, the data itself,
its replicas, and the corresponding RPT are deleted in our
proposal.

V. SIMULATION

A. Simulation Configuration

We compared our proposal with the original BATON
in which no replica was created and a simple replica
management method, in situations where there were some
popular data accessed frequently. The simple replica man-
agement method was prepared for only the comparison;
in this method the primary node of a data manages
locations of all subscribers of the data as shown in
Figure 5. When the primary node is overloaded, it sends
a request to a randomly selected subscriber. A replica is
created in the same way of our proposal, i.e., in owner
replication [16]. When updating data, the primary node
sends the updated data to subscribers directly. Since the
primary node manages the locations of all subscribers in

�

��� ��� ��� ��� ��	
�
�

Figure 5. Example of simple replica management

this method, it costs only one hop for navigating from the
primary node to a subscriber, but the primary node can be
overloaded for replica management in cases where many
subscribers exist or many replica updates occur.

We checked the number of accesses to a data, and 75%
of accesses after the fifth were forwarded to subscribers
for load balancing in the simulation. To avoid skew of
replica usage, we deleted replicas used ten times in this
simulation. We set the size of a partition vector four,
and the maximum number of replica that a node could
have ten; when the capacity became full, then replica
replacement occurred in LRU manner.

We run the simulation in P2P networks with 500 and
1000 nodes. The identifier spaces with 500 and 1000
nodes were [1, 512] and [1, 1023], respectively, and 1000
data were allocated in the spaces. Each data had an
identifier randomly chosen from the identifier space. We
set the size of a message 1. The sizes of original data
and update data were distributed randomly in [1, 20] and
[1, 50], respectively.

B. Search

For showing the effectiveness of our proposal in cases
where there are some popular data accessed frequently
by many nodes in a P2P network, we measured the
amount of data transmission and hops in exact match
queries. Assume exact match queries were issued by
Zipfian method with parameter 1.0.

Figures 6 and 7 show the amount of data sending from
each node for 5000 exact match queries in 500- and
1000-node P2P networks, respectively. In the simulation,
we created another variation of our proposal in which
one out of several 1 values in a partition vector was
selected randomly when traversing an RPT. As shown
in the figures, nodes managing popular data in no replica
method, or the original BATON, were overloaded. For
example, node 474 in 1000-node P2P network sent 12900
in total in the experiment. On the other hand, the other
three methods, which used replicas, could balance the
loads among nodes. The amount of data sent by node
474 of the simple replica management method in 1000-
node P2P network was 1290. Those of our proposal with
random traversal and our proposal were 1680 and 1956,
respectively. Our proposal could avoid creating skew of
the amount of replica sending among subscribers; the
largest amounts of replicas sent by a subscriber in our
proposal with random traversal and our proposal were
299 and 341, respectively.

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 635

© 2009 ACADEMY PUBLISHER

��� �������

��� �������

��� ������	

��� ������

��� �������

� ����� 	
���

��� �����
�
���
��� �
������� � � ���

��
� ��
� �
� �
�� �

(a) No replica

��� �������

��� �������

��� ������	

��� ������

��� �������

� ����� 	
���

��� �����
�
���
��� �
������� � � ���

��
� ��
� �
� �
�� �

(b) Simple replica management

��� �������

��� �������

��� ������	

��� ������

��� �������

� ����� 	
���

��� �����
�
���
��� �
������� � � ���

��
� ��
� �
� �
�� �

(c) Our proposal with random traversal through RPTs

��� �������

��� �������

��� ������	

��� ������

��� �������

� ����� 	
���
���� �����
�
���
��� �
������� � � ���

��
� ��
� �
� �
�� �

(d) Our proposal

Figure 6. Amount of data sent by each node (500 nodes)

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

�����	��
��	�����	�����	��
��	�����	�����	�����	�����	�
�������! ������"# $ ��%

&'
()*
+ (
, -
&+ &

(a) No replica

��� �������
��� �������
��� ������	
��� ������

��� �������
��� �������

�
������	�����
��
��������� ������ !� " � ��#

$%
& '(
) &
* +
$) $

(b) Simple replica management

��� �������
��� �������
��� ������	
��� ������

��� �������
��� �������

�
������	�����
��
��������� ������ �� ! � ��"

#$
% &'
(%
) *
#(#

(c) Our proposal with random traversal through RPTs

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

�����	��
��	�����	�����	��
��	�����	�����	�����	�����	�
������� � ������!"� # � ��$

%&
' ()
* '
+ ,
%* %

(d) Our proposal

Figure 7. Amount of data sent by each node (1000 nodes)

636 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

TABLE I.
COMPARISON OF THE NUMBERS OF HOPS

hops
nodes avg. max.

No replica 500 4.50 14
1000 5.05 13

Simple repl. management 500 3.40 14
1000 4.24 13

Our proposal 500 4.52 28
(with random traversal in RPTs) 1000 5.99 33
Our proposal 500 4.37 28

1000 5.81 31

TABLE II.
COMPARISON OF REPLICA MANAGEMENT COSTS

nodes avg. std. max. # replicas
deviation ×103

simple repl. 500 7.86 29.2 370 3.93
management 1000 4.56 26.3 489 4.56
Our proposal 500 18.1 5.85 35 3.91

1000 9.40 4.00 27 4.36

Table I compares the numbers of hops in the four
methods. The numbers of hops in the simple replica
management method were slightly smaller than those
in no replica method because the usage of replica in
processing queries can reduce the costs. On the other
hand, the numbers of hops in our proposal were larger
than those in the simple replica management method. This
is mainly because it costs only one hop in the simple
replica management method to get a subscriber from the
primary node but costs O(height of RPTs) hops in our
proposal. However, as we will see the next subsection,
the simple replica management method could not balance
the costs of replica management because of the simple
structure.

C. Replica Management Costs

Figures 8 and 9 show the replica management costs
at each node in 500- and 1000-node P2P networks,
respectively. The values are the numbers of subscribers’
locations and partition vectors managed at each node
in the simple replica management method and in our
proposal, respectively, after finishing the search operations
in Section V-B. We describe some statistical information
obtained from the figures in Table II.

It should be noted that our proposal could realize
balancing of the costs among nodes, although the to-
tal cost becomes larger than that of the simple replica
management method. In contrast, as we wrote before, the
simple replica management method could not balance the
costs of replica management; some nodes in the network
had excessively larger loads than others because of its
simple structure.

D. Update

Here we compare the amount of data sent by each node
in cases where update operations occur. In this simulation,
an update operation occurred after fifty exact match

��� �������

��� �����	�

��� ������

��� �������

� �
���
���� ����� �����
��������� �������
� � � ���

� �
�� �
��
 ��
!"# $
%%
&& ��
''�
'

(a) Simple replica management

��� �������

��� �����	�

��� ������

��� �������

� �
���
���� ����� �����
��������� �������
� � � ���

� �
�� �
��
 !
"�#$
#$ �
� %�
&# �
�'

(b) Our proposal

Figure 8. Replica management costs (500 nodes)

��� �������

��� �������

��� ������	

��� ������

�������
	�����
��
�������! ������"# $ ��%

& '
() *
+,
- +*
./0 1
22
33 +*
44*
4

(a) Simple replica management

��� �������

��� �����	�

��� ������

��� �������

���
�	��
��	�����	�����	�����	�����	�����	�����	�����	�
��������� ������ !� " � ��#

$ %
&' (
)*
+ ,
-).
/ ./ *
$ 0(
1. *
)2

(b) Our proposal

Figure 9. Replica management costs (1000 nodes)

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 637

© 2009 ACADEMY PUBLISHER

��� �������
��� �������
��� ������	
��� ������

��� �������
��� �������
��� ������

� ����� 	����
���� �����
��������� ��������� � � ���

��
� ��
 �
! �
"#
� $
�
�

(a) Simple replica management

��� �������
��� �������
��� ������	
��� ������

��� �������
��� �������
��� ������

� ����� 	����
���� �����
��������� ������� � � � ���

��
� �
��
�� �
 ! �
� "
! ��
�

(b) Our proposal

Figure 10. Amount of update data sent by each node in complete update
propagation (500 nodes)

TABLE III.
COMPARISON OF AMOUNT OF UPDATE DATA SENT BY EACH NODE IN

COMPLETE UPDATE PROPAGATION

Data transmission costs
nodes avg. std. dev. max.

×102 ×103 ×103

Simple repl. 500 4.12 4.85 88.4
management 1000 3.16 6.84 169
Our proposal 500 7.89 0.747 4.65

1000 4.87 0.706 6.46

queries, and we measured the amount after 5000 exact
match queries and 100 update operations in total. Assume
update operations to a data were issued by Zipfian method
with parameter 1.0.

We run the simulation in two cases: one was to propa-
gate update information to all subscribers completely and
the other was to change a part of update operations into
delete operations during update propagation.

1) Complete Update Propagation: Figures 10 and 11
show the amount of data for update operations sent
by each node in 500- and 1000-node P2P networks,
respectively, in complete update propagation cases. We
describe some statistical information obtained from the
figures in Table III.

Note that our proposal could also realize load balancing
in update operations by comparing with the simple replica
management method. However, the average costs of our

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

��� �������

�����	��
��	�����	��������
��	�����	�����	�����	�������
��������� ������ !� " � ��#

$%
& '(
) &
* '
+, $
) -
, $)
$

(a) Simple replica management

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

��� �������

�����	��
��������	�����	��
��	�����	�����	�����	�����	�
�������� ������!" # ��$

%&
' ()
* '
+ (
,-
%* .
- %*
%

(b) Our proposal

Figure 11. Amount of update data sent by each node in complete update
propagation (1000 nodes)

TABLE IV.
COMPARISON OF AMOUNT OF UPDATE DATA SENT BY EACH NODE IN

PARTIAL UPDATE PROPAGATION

Data transmission costs
nodes avg. std. dev. max.

×102 ×103 ×103

Simple repl. 500 1.23 1.24 20.9
management 1000 0.671 1.07 24.2
Our proposal 500 2.72 0.338 2.71

1000 1.45 0.278 4.37

proposal were larger than those of the simple replica
management method because of the differences of the
number of hops between a primary node and subscribers
as shown in Table I.

2) Partial Update Propagation: Figures 12 and 13
show the amount of data for update operations sent by
each node in 500- and 1000-node P2P networks, respec-
tively, in partial update propagation cases where a node
changes 10% of update operations into delete operations
in our proposal. Because the height of an RPT in the
simulation was five, the possibility that a replica was
updated was 0.95 = 0.59049. In other words, about 60%
replicas were updated and the rest were deleted. Thus,
in the simple replica management method, a primary
node sent update operations to 60% of its subscribers and
delete operations to the rest. We describe some statistical
information obtained from the figures in Table IV.

638 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

��� �������

� ���	�
��	� ���	� ���	�
��������� ��������� � � ���

��
� ��
 �
! �
"# �
 $
�
�

(a) Simple replica management

��� �������
��� �������
��� ������	
��� ������

��� �������
��� �������
��� ������

� ����� 	����
���� �����
��������� ��������� � � ���

��
� ��
 �
! �
"#
� $
�
�

(b) Our proposal

Figure 12. Amount of update data sent by each node in partial update
propagation (500 nodes)

We could reduce the costs compared with the previous
results by changing some update operations into delete
operations. However, the search costs would increase
because the total number of replicas reduces. The analysis
and optimization around update and search costs will be
included in our future work.

VI. CONCLUSION

In this paper, a protocol that adapts RPTs [12] to
an overlay network based on the balanced binary tree
structure BATON [2] was proposed in order to realize load
balancing by using replicas in a P2P network where some
popular data exist. Some simulation results show that our
proposal can realize load balancing of data transmission
costs and also of replica management costs of nodes.

As we wrote before, we need to analyze and optimize
around update and search operations. In [17], several
replica management methods were evaluated in DHT-
based networks under churn. We need to evaluate our
proposal in such environments. We adopt owner replica-
tion and LRU in replica creation and reallocation in this
work. On the other hand, [10] and [11] studied replica
allocations to improve lookup performance in DHT-based
networks. Also, [18] studied a resource replication strat-
egy for multimedia data. We think we need to extend our
proposal to have more sophisticated replica allocations
in environments with more complex data like multimedia

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

��� �������

�����	��
��	�����	�����	��
��	�����	�����	�����	�����	�
��������� ��������� � ��!

"#
$ %&
' $
(%
)* "
' +
* "'
"

(a) Simple replica management

��� �������
��� �����	�
��� ������

��� �������
��� �������
��� ������

��� �������

�����	��
��	�����	��������
��	�����	�����	�����	�������
��������� ������ !� " � ��#

$%
& '(
) &
* '
+, $
) -
, $)
$

(b) Our proposal

Figure 13. Amount of update data sent by each node in partial update
propagation (1000 nodes)

data. Jagadish et al., who are the researchers of BATON,
proposed a general P2P framework allowing us to handle
multi-dimensional data [19]. We intend to integrate the
results into our proposal.

REFERENCES

[1] K. Saji and M. Aritsugi, “A P2P protocol
with load balancing using replicas: A proposal
(in Japanese),” DBSJ Letters, vol. 5, no. 2,
September 2006, pp. 9–12. [Online]. Available:
http://www.dbsj.org/Japanese/DBSJLetters/vol5/no2/saji.pdf

[2] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “BATON: A
balanced tree structure for peer-to-peer networks,” in Proc.
31st International Conference on Very Large Data Bases
(VLDB 2005), 2005, pp. 661–672. [Online]. Avail-
able: http://www.vldb2005.org/program/paper/thu/p661-
jagadish.pdf

[3] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica, “Looking up data in P2P systems,” Commun.
ACM, vol. 46, no. 2, February 2003, pp. 43–48.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup protocol for internet applications.”
IEEE/ACM Trans. Netw., vol. 11, no. 1, 2003, pp. 17–32.

[5] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems,” in Proc. IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware
2001), 2001, pp. 329–350.

JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009 639

© 2009 ACADEMY PUBLISHER

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proc. 2001 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications
(SIGCOMM ’01), 2001, pp. 161–172.

[7] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao,
“Distributed object location in a dynamic network,” in
Proc. 14th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’02), 2002, pp. 41–52.

[8] L. Plissonneau, J.-L. Costeux, and P. Brown, “Analysis of
peer-to-peer traffic on ADSL,” in Proc. 6th International
Workshop on Passive and Active Network Measurement
(PAM 2005), ser. Lecture Notes in Computer Science, vol.
3431. Springer, 2005, pp. 69–82.

[9] K. Tutschku, “A measurement-based traffic profile of the
eDonkey filesharing service,” in Proc. 5th International
Workshop on Passive and Active Network Measurement
(PAM 2004), ser. Lecture Notes in Computer Science, vol.
3015. Springer, 2004, pp. 12–21.

[10] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1)
lookup performance for power-law query distributions in
peer-to-peer overlays,” in Proc. 1st Symposium on Net-
worked Systems Design and Implementation (NSDI 2004),
2004, pp. 99–112.

[11] J. Kangasharju, K. W. Ross, and D. A. Turner, “Adaptive
content management in structured P2P communities,” in
InfoScale ’06: Proc. 1st International Conference on Scal-
able Information Systems. ACM, 2006, p. 24.

[12] X. Chen, S. Ren, H. Wang, and X. Zhang, “SCOPE: Scal-
able consistency maintenance in structured P2P systems,”
in Proc. 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM 2005),
2005, pp. 1502–1513.

[13] A. Datta, M. Hauswirth, and K. Aberer, “Updates in highly
unreliable, replicated peer-to-peer systems,” in Proc. 23rd
International Conference on Distributed Computing Sys-
tems (ICDCS’03), 2003, p. 76.

[14] T. Hara, M. Nakadori, W. Uchida, K. Maeda, and
S. Nishio, “Update propagation based on tree structure in
peer-to-peer networks,” in Proc. 2005 ACS/IEEE Interna-
tional Conference on Computer Systems and Applications
(AICCSA’05), 2005, pp. 40–I.

[15] D. E. Knuth, The Art of Computer Programming, Volume
III: Sorting and Searching. Addison-Wesley, 1973.

[16] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search
and replication in unstructured peer-to-peer networks,” in
Proc. 2002 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS ’02), 2002, pp. 258–259.

[17] S. Ktari, M. Zoubert, A. Hecker, and H. Labiod, “Perfor-
mance evaluation of replication strategies in DHTs under
churn,” in MUM ’07: Proc. 6th International Conference
on Mobile and Ubiquitous Multimedia. New York, NY,
USA: ACM, 2007, pp. 90–97.

[18] L. Rong, “Multimedia resource replication strategy for a
pervasive peer-to-peer environment,” Journal of Computers
(JCP), vol. 3, no. 4, 2008, pp. 9–15. [Online]. Available:
http://www.academypublisher.com/jcp/vol03/no04/jcp03040915.pdf

[19] H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and
A. Zhou, “VBI-Tree: A peer-to-peer framework for sup-
porting multi-dimensional indexing schemes,” in Proc.
22nd International Conference on Data Engineering
(ICDE’06), 2006, p. 34.

Hidehisa Takamizawa received his B.E. and M.E. Degrees in
Computer Science from Gunma University, Japan, in 2001 and
2003, respectively. He is presently with InterDesign Technolo-
gies, Inc., Japan, and a Ph.D. student at Gunma University,
Japan. His research interests include database systems and
security. He is a member of IPSJ.

Kazuhiro Saji received his B.E. and M.E. Degrees in Computer
Science from Gunma University, Japan, in 2005 and 2007,
respectively. He is presently with ACCESS CO., LTD., Japan.

Masayoshi Aritsugi received his B.E. and D.E. Degrees
in Computer Science and Communication Engineering from
Kyushu University, Japan, in 1991 and 1996, respectively. From
1996 to 2007, he was with the Department of Computer Science,
Gunma University, Japan. Since 2007, he has been a Professor
at the Graduate School of Science and Technology, Kumamoto
University, Japan. His research interests include database sys-
tems and parallel/distributed data processing. He is a member
of IPSJ, IEICE, ACM, IEEE-CS, and DBSJ.

640 JOURNAL OF COMPUTERS, VOL. 4, NO. 7, JULY 2009

© 2009 ACADEMY PUBLISHER

