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Abstract— The extensible markup language XML has be-
come indispensable in many areas, but a significant disad-
vantage is its size: tagging a set of data increases the space
needed to store it, the bandwidth needed to transmit it, and
the time needed to parse it. We present a new compression
technique based on the document type, expressed as a
Relax NG schema. Assuming the sender and receiver agree
in advance on the document type, conforming documents
can be transmitted extremely compactly. On several data
sets with high tag density this technique compresses better
than other known XML-aware compressors, including those
that consider the document type.

Index terms—XML, data compression, tree compres-
sion, Relax NG, compact binary formats

I. MOTIVATION

In recent years, the extensible markup language
XML [2] has become indispensable for web services, doc-
ument markup, conduits between databases, application
data formats, and in many other areas. Unfortunately, a
significant disadvantage in some domains is that XML is
extremely verbose. Although disk capacity is less often
a concern these days, transmitting XML-tagged data still
requires significantly more bandwidth and longer parse
times (compared to a custom binary format, for example).

Compression of XML has been studied from a variety
of perspectives. Some researchers aim to achieve minimal
size [3], [4], [5], others focus on efficient streaming
[6], [7], [8] – a balance between bandwidth and en-
code/decode times – and still others answer XML queries
directly from compressed representations [9]. Represen-
tations that support queries are necessarily larger than
those that do not; Ferragina et al. [10] report increases
of 25 to 96% compared to opaque representations. This
is not all that bad if querying is a requirement, but we
assume it is not and aim for the smallest possible size.
Following Levene and Wood [11], we study how a schema
(document type) can be used to reach that goal.

Traditionally, one writes a document type definition
(DTD) to constrain the sequencing of tags and attributes
in an XML document. For most commonly-used XML
formats, a DTD already exists. The DTD language is

This paper is based on “Type-Based Compression of XML Data,” by
C. League and K. Eng, which appeared in the Proceedings of the IEEE
Data Compression Conference (DCC), Snowbird, Utah, March 2007 [1].

start = stm

stm = element seq { stm+ }
| element assign { var, exp }
| element print { exp* }

exp = element num
{ attribute val {text}, empty }

| element id
{ var, empty }

| element binop
{ attribute id {text}?,
op, exp, exp }

| element exp
{ attribute ref {text} }

var = attribute var {text}

op = attribute op
{ "add" | "sub" | "mul" | "div" }

Figure 1. Relax NG schema in compact syntax. It defines the grammar
for a simple sequential language – after Wang et al. [15] – expressed in
XML.

simple, but not terribly expressive, so a few competitors
have arisen. We focus in particular on Relax NG by Clark
and Murata [12]. It is expressive, but unlike XML Schema
[13] it has a clean formal model [14] that is the foundation
of our compression technique.

Figure 1 contains a simple Relax NG schema written
using the compact syntax. (There is an equivalent XML
syntax that would make this example about 4 times
longer.) This schema specifies the grammar for a small
sequential language with variables, assignment, numbers,
and arithmetic expressions. Note the use of regular ex-
pression operators (+*?|) and the id/ref attributes for
reusing common sub-expressions.

Our original motivation for studying XML compression
was to investigate the use of XML to represent abstract
syntax trees and intermediate languages in compilers.
The language in figure 1 is based on an example given
by Wang et al. [15]. They developed an abstract syntax
description language (ASDL) for specifying the grammars
of languages, generating type definitions in multiple lan-
guages, and automatically marshaling data structures to an
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<seq>
<assign var=’x’>
<num val=’7’/>

</assign>
<print>
<binop op=’add’>
<binop id=’r1’ op=’mul’>
<id var=’x’/>
<id var=’x’/>

</binop>
<binop op=’sub’>
<exp ref=’r1’/>
<num val=’5’/>

</binop>
</binop>

</print>
</seq>
Figure 2. XML code representing a program in the sequential language
of figure 1. When run, the program would output 93 (= 49 + 49 – 5).

opaque but portable binary format. We hypothesize that
XML and all its related libraries, languages, and tools
could replace ASDL and prove useful elsewhere in the
implementation of programming languages. Brabrand et
al. [16] support this vision; they provide a tool for man-
aging dual syntax for languages – one in XML, and one
‘human-readable’, much like the distinction Relax NG
itself employs between its XML and compact syntax.

Figure 2 contains a small program in the sequential
language, valid with respect to the Relax NG schema in
figure 1. In conventional notation, it might be written as
x := 7; print [x*x + (x*x - 5)], but the common
sub-expression x*x is explicitly shared via the id/ref
mechanism. (One of the limitations of ASDL is that it
could represent trees only, not graphs; however, managing
sharing is essential for the efficient implementation of
sophisticated intermediate languages [17].) These figures
will serve as a running example in the remainder of the
paper.

The main contribution of this paper is to describe and
analyze a new technique for compressing XML docu-
ments that are known to conform to a given Relax NG
schema. As a simple example of what can be done
with such knowledge, the schema of figure 1 requires
that a conforming document begins with either <seq>,
<assign>, or <print>; so we need at most two bits to
tell us which it is. Similarly, the <binop> tag has an
optional id attribute and a required op attribute. Here,
we need just one bit to indicate the presence or absence
of the id and two more bits to specify the arithmetic
operator. (The data values are separated from the tree
structure and compressed separately.) For this system to
work, the sender and receiver must agree in advance on
precisely the same schema. In that sense, the schema is
like a shared key for encryption and decryption.

We are not the first to propose compressing XML
relative to the document type – an analysis of related
work appears in section II – but ours is one of the few

successful implementations, and the first such effort in the
context of Relax NG. In section IV we report results that,
on several data sets, improve significantly on other known
techniques. The algorithm itself is detailed in section
III and we close in section V by discussing limitations,
consequences, and directions for future research.

II. RELATED WORK

There are a few common themes among XML com-
pression techniques. One is separating the tree structure
from the text or data. Another is finding ways to regroup
the data elements for better performance.

There are also a few distinguishing features. Algorithms
differ in whether they preserve the ‘ignorable’ white space
outside of text nodes. (Those that discard it are not loss-
less in the traditional sense, but are perfectly acceptable
given the content model of XML.) Also, algorithms differ
in the extent to which they use the schema or DTD. Some
ignore it entirely, others optionally use it to optimize their
operations, and some (like us) regard it as essential.

A. General XML Compression

Liefke and Suciu [3] implemented XMill, one of the
earliest XML-aware compressors. Its primary innova-
tion was to group related data items into containers
that are compressed separately. To cite their example,
“all <name> data items form one container, while all
<phone> data items form a second container.” This way,
a general-purpose compressor such as deflate [18] will
find redundancy more easily. Moreover, custom semantic
compressors may be applied to separate containers: date
attributes, for example, could be converted from character
data into a more compact representation. One of the main
disadvantages of this approach is that it requires custom
tuning for each data set to do really well.

Girardot and Sundaresan [6] describe Millau, a modest
extension of WAP binary XML format, that uses byte
codes to represent XML tag names, attribute names, and
some attribute values. Text nodes are compressed with
a deflate/zlib algorithm and the types of certain attribute
values (integers, dates, etc.) are inferred and represented
more compactly than as character data. Millau does not
require a DTD, but if present it can be used to build and
optimize the token dictionaries in advance.

Cheney’s xmlppm [4] is an adaptation of the general-
purpose prediction by partial match compression [19] to
XML documents. The element names along the path from
root to leaf serve as a context for compressing the text
nodes. They provide benefits similar to those of XMill’s
containers. Adiego et al. [5] augment this technique with
a heuristic to combine certain context models; this yields
better results on some large data sets. In our experiments,
the performance of xmlppm was nearly always competi-
tive.; it was one of the main contenders.

Toman [20] describes a compressor that dynamically
infers a custom grammar for each document, rather than
using a given DTD. There is a surface similarity with
our technique in that a finite state automaton models the
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element structure, and is used to predict future transitions.
His system was tested on three classes of data, but it never
beat xmlppm on either the compression ratio or the run
time.

Skibiński et al. [7], [21] implemented the XML Word
Replacing Transform, which we test in section IV. The
words found in XML documents – including of course
the element and attribute names themselves – can be
extremely repetitive. xml-wrt replaces the most frequent
words with well-encoded references to a dynamically-
constructed dictionary. It also encodes any numeric data
on a separate stream, using base 256. The tool is con-
sistently competitive with xmlppm, but performs dramat-
ically better on certain large data sets.

Chernik et al. [22] focus similarly on syllables, as
a midpoint between character-based and word-based
compression that is particularly effective for text in
morphologically-rich languages such as German and
Czech [23]. Their adaptation of syllable-based compres-
sion to XML approaches the effectiveness of XMill on
text documents, and – interestingly – exceeds it slightly
on Shakespeare.

B. Schema-based compression

We began this work with the idea that making effective
use of the document type could significantly reduce the
size of compressed representations. Others have explored
this area in various ways, though not all have been
successful.

Levene and Wood [11] proposed a DTD-based en-
coding in much the same spirit as our work; however,
it is a theoretical result. There is no implementation
or experimental data. Instead, they prove optimality, but
under the assumption that the DTD is non-recursive,
which is not generally true for our target application area
(representing intermediate languages).

Sundaresan and Moussa [8] built on the work of Gi-
rardot (Millau), proposing differential DTD compression.
Again, this sounds similar in spirit to our idea: do not
transmit information that is already known from the DTD.
Unfortunately, their paper is short on implementation
details, and they report poor run-time performance (of
that particular technique) on all but the simplest sorts of
schemata. Specifically, it was unable to compress Hamlet1

in a reasonable amount of time; they were forced to abort
the computation and omit that test case from the results.
(Hamlet is one of our benchmarks in section IV.)

Based on the effectiveness of xmlppm, we expected
Cheney’s DTD-conscious compress technique [24] to
fare especially well, but as he reports, “for large data
sets, dtdppm does not compress significantly better than
xmlppm.” In fact, in our tests, dtdppm never beat xmlppm
by more than a few percent, and usually did worse.

More recent efforts are beginning to realize the poten-
tial of schema-based compression, and surpass xmlppm

1from the Shakespeare XML corpus: http://www.ibiblio.org/
bosak/xml/eg/shaks200.zip

and xml-wrt on some data sets. Subramanian and
Shankar [25] analyze DTDs to generate finite state au-
tomata and invoke arithmetic encoding at choice points.
This technique is similar to ours, modulo the different
schema languages, and their performance profile comes
closest to ours. We will have more to say about their
tool, xaust, in section IV.

Harrusi et al. [26] describe a staged approach, where
a DTD (which they call a dictionary) is converted to a
context-free grammar for a specialized parser. Although
we do not have access to their implementation, a recent
update [27] shows performance similar to xmlppm on
standard benchmarks. The exception is the XOO7 bench-
mark [28], on which Harrusi et al. perform extremely
well. We did not test against XOO7.

To summarize, XML-aware compression continues to
be a vital research area, but empirical results for schema-
based compression have so far been mixed.

III. THE TECHNIQUE

Our technique has been implemented in Java, as a tool
called rngzip that supports much of the same command-
line functionality as gzip. See figure 4 for its help text;
we describe the encoding and compression options later
in this section.

We benefited greatly by using the Bali system by
Kawaguchi,2 a Relax NG validator and validatelet com-
piler. It builds a deterministic tree automaton [29], [14]
from the specified schema. If also given an XML doc-
ument, it checks whether the XML is accepted by the
automaton. Alternatively, it can output a hard-coded val-
idator for that particular schema in Java, C++, or C#.

We borrow the schema-parsing and automaton-building
code from Bali. A diagram of the automaton induced
from our sequential language schema is found in figure 3.
The octagon-shaped states (1, 3, 8) are final/accept states.
The transitions are labeled with XML tags or attribute
predicates. The meanings of these predicates are described
by example in the following table:

@id contains an id attribute
!@id does not contain an id attribute
!@~id no attributes except possibly id
!@~(op|id) no attributes except possibly op or id
!@* no attributes at all

When the label of a transition is followed by a number, we
jump to that state as a subroutine to validate the children
of the current XML node (or the value of the current
attribute).

Let’s study how the program <print><num
val="42"/></print> is validated by this automaton.
Starting from state zero, there is a transition for <print>,
so we push the target state 3 onto a stack and jump to
state 2 as indicated by the transition. State 2 requires
that the <print> just seen has no attributes. State 1 has
a transition matching <num> so we push the target state
1 onto the stack and jump to 19. It requires that <num>

2http://www.kohsuke.org/relaxng/bali/doc/
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0

a ‹seq› 7

b ‹assign› 5

c ‹print› 2

3

7
!@*

6

a ‹seq› 7

b ‹assign› 5

c ‹print› 2

8d

a ‹seq› 7

b ‹assign› 5

c ‹print› 2

1e

a ‹id› 17

b ‹binop› 15

c ‹num› 19
d ‹exp› 12

2

!@*

17 16
!@~var

3
@var 9

19 18
!@~val

3
@val 9

12 11
!@~ref

3
@ref 9

b ‹binop› 15

5 4 10
!@~var @var 9

3
b ‹binop› 15

a ‹id› 17

c ‹num› 19

d ‹exp› 12

15 14 13 21
!@~(op|id) b @id 9 @op 20

a ‹id› 17

c ‹num› 19

d ‹exp› 12

9

text

20 3
b ‘sub’

a ‘add’

c ‘mul’

d ‘div’

a !@id

Figure 3. The tree automaton induced from the Relax NG schema in figure 1, and annotated with letters (a, b, c, . . . ) at the choice points.

has no attributes except val, and that val contains text.
We pop back up to state 1. The close tag </print> is
accepted in this final state, and we pop back up to 3. The
end of the document is accepted in this final state, and
(since the stack is now empty) the document is declared
valid.

Given this automaton, a receiver can reconstruct an
entire XML document by transmitting very little informa-
tion. Whenever there is a choice point in the automaton,
we just transmit which transition was taken. Whenever
we encounter the text transition, we transmit the matching
text. Our program assigns unique labels to each outgoing
transition from a choice point, shown in figure 3 as a, b,
c, etc. The choice points in this automaton are states 0,
1, 6, 8, 10, 14, 20, and 21. Note that final states induce
an additional choice: the automaton can either follow an
outgoing transition, or stay and accept. This is why states
1 and 8 have a label inside the state.

So, in the case of the simple print statement above,
we would just need to transmit c, c, "42", e. Sim-
ilarly, if we transmit b, "x", c, "8", the receiver
ought to be able to reconstruct <assign var="x"><num

val="8"/></assign>. Of course, it is even better than
it looks: we are not transmitting the ASCII character b;
since there are just 3 choices from state 0, we need only 2
bits to indicate which one, and 2 more bits for transition
c from state 10. This is why it is critical that sender
and receiver agree on precisely the same schema, and
moreover that their implementations label transitions in
the same order. (We had to impose a specific ordering of
transitions on Bali, since it used a map based on object
hash codes, which could vary between runs.)

Any white space outside of text nodes will be lost
with this technique, but this is considered ignorable by
the XML document model anyway, and it is trivial for
the receiver to reformat the output if desired. In many
cases, the decompressor will simply provide SAX events
to some application, so the white space will not be missed;
this is significantly more efficient than decompressing to
a temporary file and then re-parsing it.

Now we step back to review other implementation de-
tails. Logically, the compressor outputs 3 distinct streams.
The first is simply for configuration information: the
URI of the schema, a checksum of the automaton, and
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Usage: rngzip [options] [file ...]
Options:
-c --stdout write to standard output; do not touch files
-D --debug trace compressor; replaces normal output
-E --tree-encoder=CODER use method CODER for encoding the XML tree
-f --force force overwrite of output file

--ignore-checksum decompress even if schema changed (not recommended)
-k --keep do not remove input files
-p --pretty-print[=TAB] line-break and indent decompressed output [2]
-q --quiet suppress all warnings
-s --schema=FILE|URL use this schema (required to compress)
-S --suffix=.SUF use suffix .SUF on compressed files [.rnz]
-t --timings output timings (implies -v)
-T --tree-compressor=CM compress the encoded XML tree using CM
-v --verbose report statistics about processed files
-Z --data-compressor=CM compress the data stream using CM

Modes: compress is the default; this requires -s
-d --decompress decompress instead of compress
-i --identify print information about compressed files
-h --help provide this help
-V --version display version number, copyright, and license

--exact-version output complete darcs patch context

Coders: fixed huffman *byte
Compressors: none gz lzma bz2 *ppm

Figure 4. rngzip command line options.

an inventory of the other streams and how they are
compressed. The second stream is for the bits that encode
the tree structure, and the third is for the data values.

Physically, these streams are merged into one by dump-
ing each buffer as it becomes full, with a short header
encoding the stream ID and the buffer size. We call this a
multiplexed stream and aimed initially to optimize it for
efficient streaming, so that the memory requirements of
both sender and receiver could be sub-linear in the total
size of the document. Unfortunately, a particular property
of Relax NG may conflict with the goal of streaming; see
section V.

Our stream architecture permits three main points of
customization, represented by the command-line options
-E, -T, and -Z in figure 4.
-E fixed|huffman|byte – specifies how to encode

the path taken at each choice point. Above, we referred to
a choice point requiring two bits to distinguish between
paths labeled a, b, or c. If we use dlog2 ne bits for every
choice, and pack bits for consecutive choices together
without regard for byte boundaries, that is the fixed
encoding. We also provide an adaptive Huffman encoding
[30] that eventually encodes more frequent transitions
with proportionally shorter bit strings. Finally, we provide
a byte-encoding; this is the same as fixed except that each
choice occupies a full byte. It is meant to help a general-
purpose compressor to find patterns in the bit stream.
-T none|gz|lzma|bz2|ppm – specifies what kind of

compression to apply to the stream representing the tree
structure. gz refers to the GZIPOutputStream that is part

of the Java API; lzma is the Lempel-Ziv Markov chain
Algorithm by Igor Pavlov;3 bz2 is the bzip2 algorithm by
Julian Seward (Java implementation by Keiron Liddle);4

ppm is Prediction by Partial Match [19] implemented by
Bob Carpenter.5

-Z none|gz|lzma|bz2|ppm – specifies what kind of
compression to apply to the stream containing the data
(text) elements. For many data sets, this is the most signif-
icant setting. An earlier version of our implementation [1]
supported gz only, and our performance on text-oriented
documents such as Hamlet degraded to that of gzip.

The ppm setting, when specified for the data compressor
(-Z), seeds the model with a checksum of the element
names from the root to the text node or attribute value.
This is an attempt to emulate the advantages of xmlppm
within our tool. We ran all our benchmarks using every
combination of these options, and selected one setting that
represented the best compromise across all the tests. The
outcome is explained in the next section.

IV. EXPERIMENTS

We tested rngzip against several other compressors –
generic, XML-aware, and schema-based – on a variety
of data sets; the results are in figure 5. The competition
included:

3http://www.7-zip.org/sdk.html
4http://jakarta.apache.org/commons/sandbox/compress/
5http://www.colloquial.com/ArithmeticCoding/
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coq
105k
r=2.5

gene
218k
8.7

movies
15k
4.4

pubmed
5.1k
1.0

hamlet
282k
0.6

sigmod
480k
1.6

uwm
2.3M
2.5

xmark
112M

0.4

0.0

0.2

0.4

0.6

0.8

1.0

bzip2
lzma
xmill
xmlppm
xml-wrt
xaust
dtdppm
rngzip*

Figure 5. Effectiveness of several compressors over various data sets. The y-axis depicts compressed size, relative to gzip at 1.0. These are averages
over many document instances, so error bars show one standard deviation above and below the mean. Beneath the data set labels are the average
uncompressed sizes, the number of documents in the set (n), and the ratio of tags to text in the original (r, excluding ignorable spaces between tags).

• three generic compressors: gzip 1.3.5 by Jean-loup
Gailly, bzip2 1.0.3 by Julian Seward, and lzma 4.32
by Igor Pavlov;

• three XML-aware implementations: XMill 0.8 [3],
xmlppm 0.98 [4], and xml-wrt 3.0 [21];

• two schema-based systems: xaust [25] and dtdppm
0.5 [24].

We ran all of them without any options, except for
xml-wrt, where we used -l11 (PAQ compression). We
did not specify any custom containers for XMill; they
would need to be tuned separately for each schema.

Additionally, we tested 60 different combinations of
options for rngzip, but for the sake of fairness, we
chose just one setting (specified later) to use for all
the results reported here. On some benchmarks, custom
settings could have improved our performance by a few
percent.

We reused some of the data sets from our previous work
[1] in order to illustrate the improvement, but we now
report on a single representative instance of each schema,
so as not to muddy the results with averages and error
bars. We also added two new data sets: Coq, because it is
closest to our target application area; and XMark because
it facilitates comparisons with several other systems that
we could not test directly. Here are details about each
benchmark:

• coq is an explicit representation of a proof about set
membership6 from the Coq proof assistant. Asperti
et al. [31] advocate using XML for managing math-
ematical knowledge generally, and the XML export
of Coq proofs is a result of their project. Since Coq
is based on the calculus of inductive constructions
[32] (a kind of typed lambda calculus), this example
is precisely in our target area of using XML for

6http://coq.inria.fr/V8.1/stdlib/Coq.Lists.ListSet.
html#set_mem_ind2

sophisticated language representations. Incidentally,
it is a recursive DTD, not covered by Levene and
Wood’s theoretical result [11].

• gene contains genome data from the National Center
for Biotechnology Information,7 which offers a wide
variety of biomedical and bibliographic data in a
highly regimented XML format. We typed ‘blood’
into the search field and arbitrarily chose one of the
roughly three thousand results to save as an XML
file.

• movies contains data on movies and actors from
IMDB, converted to XML by the World-Wide Web
Wrapper Factory [33]. Unlike the NCBI examples, it
is relatively straightforward markup that lists about
a hundred actors and ten films.

• pubmed is another sample from NCBI, this time
representing bibliographic data. We typed ‘database’
into the search field, and arbitrarily chose one of the
roughly eighty thousand records.

• hamlet is, of course, from the previously-mentioned
Shakespeare corpus.

• sigmod contains bibliographic data from ACM SIG-
MOD.8

• uwm contains course catalog data from University of
Wisconsin, Milwaukee, obtained from the University
of Washington repository.9

• xmark is a unit-size (about 100M) synthetic auction
database produced by the xmlgen tool [34]. As one
of the most widely-used XML benchmarks, it is
helpful for comparing with published results about
other systems.

7http://www.ncbi.nlm.nih.gov/
8http://www.acm.org/sigs/sigmod/record/xml/
9http://www.cs.washington.edu/research/xmldatasets/

www/repository.html
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Document Type Definitions were available for all of these
data sets, and the documents validated with at most
some minor tweaks. We converted the DTD format to
Relax NG using trang.10 We attempted to use some
native Relax NG formats, but none of them worked out.
For example, OpenLaszlo is a language for rich client-
side applets, whose syntax is specified with Relax NG.
Unfortunately, none of the validators we used (including,
most importantly, Bali) could validate simple examples
against the published schema. We hope to resolve these
issues and test with native Relax NG formats in future
work.

To clarify the results shown in figure 5, the bars show
the compressed size of each data set relative to the size
produced by gzip (at 1.0). The original uncompressed
size of each file appears below its name in the graph.
Lower bars are better, and our technique is the last
bar in each group. We found that rngzip performed
exceptionally well – better than any other compressor
we tried – for the coq, gene, and pubmed data sets. It
was one of the best on movies (with some tweaking of
options, it can beat xaust, but as shown it loses by a
few bytes). On sigmod and xmark, we are second only to
xml-wrt. On hamlet and uwm our tool is slightly behind,
but significantly better than previously reported.

Some missing bars deserve explanations. The (beta ver-
sion) dtdppm crashed with a segmentation fault on sigmod
and on any xmark data set. The xaust implementation is
currently limited by not supporting ENTITY definitions
in the DTD. For simple cases, entities can be removed
using search-and-replace; we modified the coq and sigmod
data sets so that it could participate. However, we decided
that the gene and pubmed schemata were too complex to
fix for the benefit of xaust. Otherwise, the performance
profile of xaust is fairly similar to ours, in this sense:
it does reasonably well on more data-oriented schemata,
and is weaker on lightly-tagged text.

One factor in the effectiveness of our technique is the
ratio of tags to text in the XML source. This number is
provided across the lowest line of the bar graph (r). The
gene schema is almost ludicrously ‘taggy.’ Here is how a
time-stamp is represented:

<Date>
<Date_std>
<Date-std>
<Date-std_year>2006</Date-std_year>
<Date-std_month>4</Date-std_month>
<Date-std_day>7</Date-std_day>
<Date-std_hour>18</Date-std_hour>
<Date-std_minute>55</Date-std_minute>
<Date-std_second>0</Date-std_second>

</Date-std>
</Date_std>

</Date>

We do particularly well on this because the long tag names
are stored in the shared schema instead of the compressed
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output, and the tag structure is very regimented. On data
sets such as hamlet that consist more of lightly tagged
text, our performance is predictably worse.

This ratio, however, is not the entire story. The pubmed
set has a tag-to-text ratio in the same neighborhood as
hamlet, but rngzip performs far better on pubmed. This
difference is explained by the structure of the schema.
The tags in Shakespeare are somewhat few and repetitive
(speech speaker line line line. . . ) which is good
for text-based compressors, but there are technically many
choices on every line (another line, end of speech, end
of scene, end of act, . . . ) which is a disadvantage for
schema-based systems. Nevertheless, the schema-based
techniques measured here (rngzip, xaust, and dtdppm)
perform better than the differential DTD compression
of Sundaresan and Moussa [8], which could not even
compress Hamlet because of this property.

The performance of xml-wrt on the large xmark file is
astonishing. We verified that it decompressed properly, to
ensure there was not some mistake. Indeed, it reproduced
precisely the same file, including all the white space it
could have ignored. We suspect that what happened here
is that, although xmark is a large file, it is produced
by xmlgen, a relatively small C program (about 430K
source). Embedded in that program is a dictionary of
all the words it will ever use. As a word-based com-
pression technique, xml-wrt then builds a dictionary of
words seen in the document, so it is essentially learning
xmlgen’s dictionary. Its compressed representation of
1.8M is impressive – nobody else comes close – but we
know there is a strict upper bound on the Kolmogorov
complexity of xmark: the size of its source.

In the previous section, we detailed all the options
available for encoders and compressors. The settings we
selected for the numbers in the graph were -E byte -T
bz2 -Z ppm; it was the best average performer over all
eight benchmarks, even though it strictly won just on
xmark and coq. The byte coder and PPM data compressor
were fairly consistently the best, occasionally bested by
fixed and bz2. Performance was less sensitive to the
setting for the tree compressor. The adaptive Huffman
coder was a complex implementation, and never worth it
in the end.

We have not mentioned run-time performance yet, and
with good reason! Such measurements seem unfair, since
our tool is a rather large Java program, and all the others
are written in C. We tested on a 1.8 GHz Intel Xeon
with 768M RAM running Linux 2.6.18 and the Sun
Java VM 1.5.0. We consider just the gene benchmark
as representative. Elapsed times for most compressors
were negligible: 0.02s for gzip, 0.10s for bzip2, etc.
Xaust took 0.43s and xml-wrt 2.15s. Remember, however,
that xml-wrt intentionally sacrifices compression speed
for decompression. The elapsed compression time for
rngzip on gene using the settings from the previous
paragraph was 0.54s.

This seems reasonable, but that is strictly the com-
pression time: it excludes the time it takes to build the
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tree automaton from the schema. (The compressor and
decompressor must both do this.) Building the automaton
for gene takes another 6.28s. However, that could be
done offline and either cached for fast loading, or we
could generate specialized code (in any given language)
to compress and decompress that particular schema more
efficiently. In fact, xaust does exactly that. It processes
the DTD offline and generates C code that then gets
linked in with the tool itself. Similarly, Bali was originally
designed to generate specialized validators in Java, C++,
or C#.

V. DISCUSSION AND FUTURE DIRECTIONS

It is clear from the previous section that rngzip is most
effective on highly tagged, nested data. The coq bench-
mark in particular is encouraging, because we aim to use
this technology for producing compact representations of
sophisticated intermediate languages [17] including ones
based, like Coq, on the Calculus of Constructions [35].

In a previous incarnation of this work, our algorithm
performed poorly on lightly tagged text, such as Hamlet
and the course catalogs. This has improved considerably
by incorporating some of the techniques of xmlppm,
although we do not consistently match its performance
on those data sets. It appears from these latest results
that a best-of-breed XML compressor might also feature
a word-replacing transform, like xml-wrt.

We previously discussed many other competing efforts
on compressing XML data, but another piece of work
deserves mention, from the domain of intermediate lan-
guage representation. Amme et al. [36] encode programs
using two innovative techniques: referential integrity and
type separation. The effect is similar to what we do with
XML, in that type-incorrect programs cannot be encoded
at all. The compressed data are well-formed by virtue of
the encoding.

In section III, we mentioned a certain property of
Relax NG that conflicts with the goal of streaming. Within
an element specification, attributes and child elements can
be intermixed; the attributes need not appear first. Here
is an example where the element <top> has some ‘big’
content; imagine megabytes of data and enormous sub-
trees.

top = element top { big, opt }
opt = attribute opt { text }

| element opt { ... }

Following that, there is a choice between an <opt>
element and an opt attribute (which applies to the parent
element, <top>). What this means for decompressing is
that we cannot output the <top> element until we know
the result of the opt choice point, but that comes after
the megabytes of data that must now be buffered. There
is probably a work-around in the form of an automaton
transformation that brings all the attribute transitions to
the front. Martens et al. [37] provide formal evidence
supporting this possibility: “[in the] tree grammars of

Murata et al. [14]. . . every element in a document can be
typed when its opening tag is met.”

In addition to text and fixed strings used in figure 1,
Relax NG can validate content using external libraries,
such as the data type component of XML Schema. Our
tool recognizes uses of such data types, but for now still
treats them as though they were plain text. We intend
in the future to use more compact encodings for content
such as dates, n-bit integers, and base-64 binary data.

Another interesting extension – required by xaust, and
related to Bali’s validatelet capability – is to generate
the code for a compressor and decompressor specialized
to a particular schema. This could be a real advantage
for applications that save their documents and data in
XML-based formats. We hope that this line of work –
on compact representations of XML – ultimately spells
the end of the era of custom binary formats for storing
or transmitting data.
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