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Abstract—In this paper, we study the dynamic version of to the incremental (decrementgl problem. Incremental

the distributed all-pairs shortest pathgroblem. Most of the and decremental problems are usually calfgttially
solutions given in the literature for this problem, either (i) dynamic

work under the assumption that before dealing with an edge . . o
operation, the algorithm for the previous operation has to be In many crucial routing applications the worst case
terminated, that is, they are not able to update shortest paths complexity of the adopted protocols is never better than

concurrently, or (i) concurrently update shortest paths, but  recomputing the shortest paths from scratch after each
their convergence can be very slow (possibly infinite). In - hange 1o the network. Therefore, it is important to find

this paper we propose a partially dynamic algorithm that . e -
overcomes most of these limitations. In particular, it is able ~ €icient dynamic distributed algorithms for shortest paths,

to concurrently update shortest paths and in many cases its Since the recomputation from scratch could result very
convergence is quite fast. These properties are highlighted by expensive in practice. The efficiency of a distributed
an experimental study whose aim is to show the effectiveness algorithm is evaluated in terms ohessageand space
of the proposed algorithms also in the practical case. complexity (e.g., see [3]). Thmessage complexity the
Index Terms—Distributed networks, dynamic algorithms,  total number of messages sent over the edges.sphee

shortest paths, routing, experimental evaluation, network  complexityis the space usage per node.
simulation environment . . . . .
In this paper we consider a dynamic network in which

a change can occur while another change is under pro-

cessing. A processar could be affected by both these
We consider thedistributed all-pairs shortest paths changes. As a consequeneecould be involved in the

problem in a network whose topology dynamically concurrentexecutions related to both the changes.

changes over the time, in the sense that communicatiolg . ks. Gi iahted & with d
links can change status during the lifetime of the network. revious works.>iven a weightead grapty with n nodes -
nd m edges, many solutions have been proposed in

This problem arises naturally in practical applications. Foﬁ] i find and und h hs in th
instance, theOSPF protocol, widely used in the Internet the |tef[§t|ure to find an h up .?;e S ortestt.pat S Iln he
(e.g., see [2]), basically updates shortest paths after Fguential case on graphs with non-negative real edge

network change by distributing the network topology towelght_s. The _state_z of the art is that no efficient fully
dynamic solution is known for general graphs that is

all processors and using centralized Dijkstra’s algorithmf tor th . inal hortest paths f
for shortest paths on every node. aster than recomputing single-source shortest paths from
scratch after each update. Actually, omytput bounded

If the topology of a network is represented as a q . luti K | hs [4
weighted graph, where nodes represent processors, ed g%y ynamic solutions are known on general grapns [41,
. In the case of all-pairs shortest paths an efficient fully

represent links between processors, and edge weig _ _ . ;
represent costs of communication among processors, th ”";‘m'cjo'““‘)” h_as be_en proposed in [6] that works in
the typical update operations on a dynamic network ca? (""" 108" 1) amort|zeq time per update. .

be modelled as insertions and deletions of edges and ed\t};eA number of solutions have been proposed in the
weight changes. When arbitrary sequences of the abovéerature also for the dynamic distributed shortest paths
operations are allowed, we refer to tiielly dynamic Problem (see [7]-[12]). Some of these solutions rely
problem if only insert and weight decreasédeleteand ~ ON the classical Bellman-Ford method, whose distributed
weight increasg operations are allowed, then we refer version has been originally introduced in the Arpanet [13].
This algorithm, and a number of its variations, has been

This paper is based on “Partially Dynamic Concurrent Update of Dis-shown to converge to the correct distances if the edge
tributed Shortest Paths” by Gianlorenzo D’Angelo, Serafino Cicerone

Gabriele Di Stefano, Daniele Frigioni, which appeared in the Proceedwe'ghts stabilize and all CyCIeS have positive Iengths
ings of the IEEE International Conference on Computing: Theory and€.g., see [14]). However, the convergence can be very

Applications, March 2007, Kolkata, Indig®) 2007 IEEE [1]. _slow in the case ofveight increaseoperations (possibly
Work partially supported by the Future and Emerging Technologies

Unit of EC (IST priority, 6th FP), under contract no. FP6-021235-2 INfinite), due to the well-knowrlooping and count-to- -
(project ARRIVAL). infinity phenomena (see, e.g., [15]). This is a major

I. INTRODUCTION
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drawback of the Bellman-Ford algorithm and its variations
that is avoided in many protocols by broadcasting the
whole topology of the network to all nodes [2], [16].
Furthermore, if the network is asynchronous and static,
the message complexity of the Bellman-Ford method can
be exponential in the size of the network (see, [17]).
In [9] Humblet proposes a variation of the Bellman-
Ford algorithm, that has the same message and space

« algorithms which are not able tmncurrentlyupdate
shortest paths when multiple edge changes occur in
the network, as those in [7], [8], [10], [12]. In partic-
ular, algorithms that work under the assumption that
before dealing with an edge operation, the algorithm
for the previous operation has to be terminated. This
is a limitation in real networks, where changes can
occur in an unpredictable way;

complexity, and, under certain conditions, avoids the . algorithms which are able te@oncurrently update

looping phenomenon thus converging in a finite number

of steps.

In [10], an efficient incremental solution has been pro-
posed for the distributed all-pairs shortest paths problem,
requiring O(nlog(nW)) amortized number of messages,

shortest paths as those in [9], [13], b{i} either
they suffer of the looping and count-to-infinity phe-
nomena, ofii) their convergence can be very slow
in the case ofweight increaseoperations (possibly
infinite).

been addressed. Her®/ is the largest positivénteger

dynamicsolutions that do not belong to any of the pre-

edge weight. In [7], a general technique is proposed thajious categories. In particular, our algorithms are able to
allows to update the all-pairs shortest paths in a distributegoncurrenﬂy update shortest paths, they avoid the looping
network in©(n) amortized number of messages, by usingang count-to-infinity phenomena and their convergence is
O(n?) space per node. In [12], algorithms are given forfast in the case afveight increasmperations. The details
both finding and updating shortest paths distributively.of this contribution can be summarized as follows:

In particular, the authors propose a distributed algorithm
for finding single source shortest paths (all pairs shortest
paths) of a network with positive real edge weights
requiring ©(n?) (O(n?)) messages an@(n) space per
node. Furthermore, they propose a distributed incremental
algorithm requiring?(n?) messages for updating all-pairs
shortest paths. Finally, they give fully dynamic algorithms
for single-source (all-pairs) shortest paths that work in
O(n?) (O(n?)) messages, and show that, in the worst
case, updating shortest paths is as difficult as computing 2)

shortest paths.

In [8] a solution for the fully dynamic distributed all-
pairs shortest paths problem is presented whose message
complexity is evaluated in terms ofitput complexitysee
[4], [5]). Output complexity allows to evaluate the cost

of dynamic algorithms in terms of thmtrinsic cost of

the problem on hand, i.e., in terms of the number of
updates to the output information of the problem that
are needed after any input change. The algorithm in [8] 3)
is able to update only the distances and the shortest
paths that actually change after an edge modification

It requires in the worst cas@(maxdeg A,) messages

per edge update operation. The space complexify(is)

per node. Heremaxdegis the maximum degree of the
nodes in the network and\, is the number of pairs

of nodes affected by. On one hand, ifA, = o(n?),

then these bounds compare favorably with respect to those
in [12]. On the other hand, the algorithm is not robust,
in fact for weight increaseoperations it works in three
phases and requires that a phase is terminated before the
execution of the subsequent one, while in the case of
weight decreaseperations it works under the assumption
that before dealing with an edge operation, the algorithm

for the previous operation has to be terminated.

Summarizing, we can conclude that most of the algo-
rithms of the literature for the dynamic distributed shortest

paths problem fall in one of the following categories:
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1) We propose a new decremental algorithm that is

robust since it works in one phase (thus avoid-
ing the main drawback of [8]). Furthermore, it
is able to concurrently update shortest paths in
the case of multipleweight increasklelete oper-
ations. The algorithm require®(maxdeg- A?%)
messages an@(maxdegn) space per node. Here,
A is the number of nodes affected by a set of
weight increaskleleteoperations.

We propose an extension of the incremental algo-
rithm in [8] for weight decreadisert operations
that works also in theconcurrent case, within
the same bounds of [8], that i©®(maxdeg A)
messages per operation atdn) space per node.
Here, A is the number of nodes affected by a set
of weight decreadmsert operations. This is only

a factor maxdegfar from the optimal incremental
solution.

We propose an experimental study whose aim is
to highlight the merits of the proposed algorithms
also from a practical point of view. In detail, we
experimentally show that our incremental algorithm
sends a humber of messages that is 10%—-15% less
than Bellman-Ford.

In the decremental case, we compare our algorithm
with two variants of the Bellman-Ford method:
BF.1, that stores in each node the estimated dis-
tances of its neighbors, and BF.2 that does not store
such information. Our decremental algorithm sends
a number of messages that is 10-50 times less than
BF.2, while using the same space occupancy per
node. BF.1 outperforms most of the times our decre-
mental algorithm in terms of number of messages;
however, BF.1 requires a space occupancy per node
which is 20-85 times our space occupancy. More-
over, we experimentally show that our decremental
solution does not suffers of the looping and count-
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to-infinity phenomena in some classical cases wherstored in a buffer ing. Wheng readsm from its buffer
BF.1 and BF.2 do. and processes it, the event “receptionngf occurs.

Structure of the paper. The paper is organized as An executionis an alternate sequence (possibly infinite)
follows. In Section Il we introduce the notation and of network states and events. A non negative real number

the computation model used throughout the paper. I assoc_|rar:edt.to e.achleg/elnt, thee tat wh|gh_ thattevent
Sections Il and IV we describe the algorithms for Weightoccurs. € ime 1S giobal parameter and Is not acces-

increase and weight decrease operations, respectively, aﬁ{lj’le to the processors of the hetwork. _The times mu_st be
non decreasing and must increase without bound if the

show their complexity in terms of number of messages. RN X
In Section V we describe the experiments performed téaxecutlon is infinite. Events are ordered according to the

check the effectiveness of our algorithms in the practicaEqmes at Wtr."Ch the?/ oceur. tﬁeve(;al ev;ants can tht?]ppen at
case. Finally, in Section VI we provide some concluding € same time as long as they do not occur at the same

remarks and future research directions processor. This implies that the times related to a single
' processor are strictly increasing.

Il. PRELIMINARIES Concurrent executions. In this paper we consider a
Gdynamic network in which a change can occur while

We consider a network made of processors linke . .
. another change is under processing. A processosuld
through communication channels. Each processor cz;lr)l

send messades onlv 1o its neighbors. Messages are et affected by both these changes. As a consequence,
g y 9 y g could be involved in the executions related to both the

livered to their destination within a finite delay but they :
. . : changes. Hence, according to the asynchronous model
might be delivered out of order. We consider an asyn- . X )
. we need to define the notion abncurrentexecutions
chronous system, that is, a sender of a message does no
: . . as follows.
wait for the receiver to be ready to receive the message.

There is no shared memory, that is, each processor has
its own storage system and the other processors cann

Let us consider an algorithm that maintains shortest
ths onG after a weight change operation. Given two
operationss; ando; we denote as:

access it.
We represent the network by an undirected weighted * fi @nd t; the times at whicho; and o; occur
graphG = (V, E,w), whereV is a finite set ofn nodes, respectively. _
one for each processof is a finite set ofm edges,  * “Ai (A;) the execution ofA related too; (o).
one for each communication channel; ands a weight * ta, the time whenA; terminates.

functionw : E — R*. An edgee € E that links the pair If t; <t; andt 4, > t;, thenA; and.A; areconcurrent
of nodesu, v € V is represented withh — v. If v € V,  otherwise they arsequential
N(v) denotes the set of neighbors ofand deg(v) the
degree ofuv. [1l. DECREMENTAL ALGORITHM

We define theweight of a path > as the sum of the |, this Section we describe our new decremental so-
weights of the edges if?. Thedistancebetween nodes |ion for the concurrent update of distributed all-pairs
andw is the weight of a shortest path fromto v, and s ghortest paths in the case of multiple operations. We con-
denoted asi(u,v). Givenu,v € V, thevia from u 10 v gjger the algorithm to handleeight increaseperations,
is the set of neighbors af that belong to a shortest path gjnce the extension teleteoperations is straightforward
from u to v. Formally, (deleting an edgéz, ) is equivalent to increase(z,y)

via(u,v) = {z € N(u) | d(u,v) = w(u,z) +d(z,v)} to +00).

Given the input graphG = (V,E,w), we suppose

Complexity measures. Given a weighted undirected that k£ weight increaseoperationsoy, o3, ..., 0% are per-
graph @G, a set ofk weight changesr;,0,,...,0, and a formed on edgesz;,y;) € E, i € {1,2,...,k}, at times
sources, we denote a8, s the set of nodes that change t1, %2, ..., tx, respectively. The operatiom; increases the
the distance ta as a consequence of. If v € U 4y, . weight w(z;, y;) by a quantitye; > 0, i € {1,2,...,k}.
we say thaw is affectedby o;. The total number of times Without loss of generality, we assume that < t, <
that nodes of7 are affected by thé weight changes is at - < t&- We denote a&" the graph after,, asd’() and
vid'() the distance and the via ovéF, respectively.
Zleev Data structures. A node knows the identity of each node
of our algorithms as a function af. of the graph, the identity of all its neighbors and the
Asynchronous model. Given an asynchronous system, Weight of the edges incident to it. The information on the
the model summarized below is based on that proposeghortest paths i are stored in a data structure called
in [3] The state of a processow is the content of the routing tableRT distributed over all nodes. Each node
data structure at node. The network stateis the set Maintains its own routing tableT,[-]; this table has one
of states of all the processors in the network plus théntryRT,[s] for eachs € V. The entryRT,[s] consists of
network topology. Areventis the reception of a message two fields:
by a processor or a change to the network state. When « RT,[s].d that stores the estimated distance between
a processop sends a message to a processoy, m is nodesv ands in G.

k
MoSstA = >~ >~ |d,,,s|. We give the complexity bounds
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« RT, [s}.via _ {Uz' c N(U) | RT, [s].d _ w(U,Uz') I Event: nodev receives the messaget-disfu, s) by u

RT,,[s].d} that stores the estimatada from v to s.  Procedure DisT

For sake of simplicity, we writed[v, s] and vialv, 5] 1. if (via[v, s] = {u}) or (v is performing phas@UILD-TABLE
instead ofRT,[s].d andRT,[s].via, respectively. or phaseMPROVE-TABLE of procedurel NCREASE
The values stored in the routing table of each node with respect to source)

: . ) 2. th d-+oo 10 1
change over the time during the execution of the update; eégsﬁzdﬁ,ﬁ] ?Ouu

algorithms. Hence, we denote 35[1.), s] anc.i via[v, 8] Figure 2. Procedur®isT performed by a node when it receives a
the value of the data structures at timyave simply write  get_distmessage
d[v, s] andvialv, s] when time is clear by the context.
Algorithm. Before the decremental algorithm starts, we
assume that,;[v, s] and via¢[v,s] are correct, for each  Now we provide an informal description of the al-
v,s € V and for eacht < t;. gorithm. The purpose of this description is to give an
The decremental algorithm starts at eath ¢ € jntuition of both the behavior and correctness of the algo-
{1,2,...,k}. For instance, theveight increaseoperation rithm (the formal correctness proof is given in [18]). The
o; represents an event that is detected only by nades description is focused on the execution of the algorithm

andy;; as a consequence: by a generic nodes with respect to a source, and
« x; sends the messagecreasér;, s, d, [z;,5]) t0y;,  uses the scenario for nodedepicted in Figure 3 as a
for eachs € V; representative case.
o y; sends the messagecreaséy;, s, ds, [y, s]) 10 z;,
for eachs € V. via(v, s)

When, at a certain time, nodev receives the message
increaséu, s, d;[u, s]), ¢ < t, by a generic node:, v
executes procedurtNCREASE (see Figure 1), which is
designed to upda®T,[s], if necessary. To this aim, may
need to know the estimated distances of its neighbors from
s, that is, d¢[v;, s] for eachv; € N(v). Hence,v sends vs
messageget-distv, s); whenwv; receives such message, " v2,5)
it performs procedur®IST (see Figure 2).

v3

Event: nodew receives the messagecreaséu, s, d[u, s]) by u

Procedure INCREASE

1. if u € vialv, s] then

2. begin Figure 3. A representative scenario
3 vialv, s] := vialv, s] \ {u} ‘ Line 3: phaseREDUCEVIA
4. if viafv, s| = 0 then In such a figure nodes are coloradthite, gray andblack
5. begin \ Lines 5-11: phas@uILD-TABLE \ These colors are assigned according to the following
6. for each v; € N(v) do sendget-distv, s) to v; definitions.
7 dfv, s] := Hl]{]l% ){w(v,vi) + d[v;, s]}
i e N . . . .
8 vialv, 5] e {or € N()|w(v, v) + o, 8] = do, s]} o a nodew is white with respect tos if v does not

o for each v; € N(v) do change both its distance and its viagoFormally:

Lines 9-10: phaSG?ROPAGATEl‘ . T

10. sendincreasév, s, d[v, s]) t0 v; d(v, 5) - d'(v, 5) _and via(v, ) =via (v,5).
11. end « anodev is graywith respect ta if v does not change
ig lend its distance froms, but it changes its via te. For-

.else . o ; il
14, if v, 5] > w(v,u) + dlu, 5] then maI_Iy. d(v,s)_ =d (v, 5), ?.ndVIa(v,s? ?_f via' (v, s).
15.  begin ‘ Lines 15-20: phaseMPROVE-TABLE Notice th_at’ in this _Casel'la(v7 s) Q'Vla (U’ 8)' .
16.  dlv,s[ = w(o,u) ¥ d[u, 9] ca nodew is black with respect tos if v changes_: its
17.  vialv, s] := {u} distance froms. Formally:d(v, s) # d'(v, s). Notice
18.  for eachv; € N(v) do| Lines 18-19: phaseROPAGATE 2 ‘ that, in this cased(v, s) < d'(v, s).
%g' endsendncreas“é”’s’d[“’s]) to v The following properties trivially hold:
21. else P1: If vis gray or blackwith respect tos, then there

22.  if d[v, s] = w(v,u) + d[u, s] then

existsu € via(v, s) which is black with respect

23. vialv, s] := viafv, s] U {u} ‘ Line 23: phaseXTEND-VIA ‘ to s. If v is black with respect tos, then all
Figure 1. ThelNCREASE algorithm nodes invia(v, s) areblack with respect tos.
P2: If v is white or gray with respect tos, then,
Notice that, in our model, multiplencreasemessages each nodez such thatv € via(z, s) is white
received by a node are stored and processed in an ar- with respect tos.
bitrary order, while each messagget-distis processed Nodev in Figure 3 isblackwith respect ta since, accord-
immediately. ing to property P1, all nodes mia(v, s) = {u1, us, us}
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are black As a consequencey surely receives mes-
sagesincreas€u;, s,d[u;,s]), 1 < i < 3, in some
order. This implies that performs three times procedure
INCREASE The first two executions simply perform phase
REDUCEVIA, while the third one performreEDUCEVIA
andBUILD-TABLE.

Let us suppose that the third execution is relatedsto
During the execution oBUILD-TABLE, hodev sends the
message@et-distv, s) to each node; € N(v)\{us}. We
assume that this message is receivedvpyt time ¢, ;.

In this phase, let us assume that the following conditions

hold for nodesv; andwvs, respectively:
(@) Viaglyl[vl,:s] = {v}
(b) at time t;3, node vs is performing either
BUILD-TABLE Or IMPROVE-TABLE phases of pro-
cedurelNCREASE with respect to source

According to these conditions and to test at line 1 of

procedureDIST, nodesvs andv; send-+oo to v.
By using the collected informationy performs the
instructionsd|v, s] := In]%[r(l ){w(v,vi) + d[v;, s]} and
v; € v

vialv, s] := {v; € N(v) | w(v,v;) + d[v;, s] = dv, s]}.
Let us assume that nowiay, [v,s] = {v2}. Notice that,
sincev has received partial information, the content of
RT,[s] at timet, could be not correct. Now, two relevant
observations have to be remarked:

(i) since nodes; andwvs sent+oo to v, thenv does
not consider such nodes as possible new elements
via; this is done to prevent the looping and count-
to-infinity phenomena.
in the subsequent Items 1 and 2 we show that nod
vy andwvs will eventually sendd[vq, s] andd|vs, ]
to v.

The BUILD-TABLE phase ofv is completed by the
PROPAGATE phase. In this phase broadcast taV(v)
the messagécreasgv, s, d;, [v, s]); it may seem useless
to send the message to nodgs 1 < i < 3, (the old via
of v) and to nodev, (the new via ofv). The former will
be explained later (last paragraph of Iltem 1), while th
latter is due to the fact that € via(vs, s), and hences,
has to perform th&kEDUCEVIA phase.

Let us now analyze what happens to the nadess, vy
andvs.

1. nodev; receives messagacreasgv, s, dz, [v, s|) at
time t3 > t9, and it executedNCREASE Since
viay,  [v1,s] = viag[vi,s] = {v}, v performs
the BUILD-TABLE phase. At the end of this phase,
attimety > t3, v; updateT,, [s]. Now, two major
cases may occur:

o visinviag, [vy, s];

 visnotinviag, [v1,s]. This means that, now

uses a hew via te.

In both cases, at the end of theiLD-TABLE phase,
v, broadcast the messagereasgv, s, d;, [v1, s])
to N(vy), and hence ta also (with reference to
Item (ii) above).
In the first casey performs tests at lines 1, 14 and
22 of INCREASE All such tests return false, and

(ii)
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hence, node terminated NCREASEwithout modi-
fying its routing tables and without propagating the
decremental algorithm.

In the second case, one of the tests performed by
v at lines 14 and 22 may return true. If test at
line 14 returns true, then has to perform the
IMPROVE-TABLE phase to rebuilRT,[s]. If test

at line 22 returns true, then has to perform the
EXTEND-VIA phase to add; to via[v, s].

Notice that the behavior ofv after receiving
messagencreas€uv, s, dy, [v1, s]) is essentially the
same of nodesy;, 1 < i < 3, after receiving
messagencreasév, s, dz, [v, s)).

node v3, once terminated the execution of phase
BUILD-TABLE or phaseIMPROVE-TABLE of pro-
cedure INCREASE with respect to source (see
item (b) above), executes phaB@OPAGATEL or
phase PROPAGATE2. This implies that nodev
restartsINCREASEnow using the current estimated
distance fromws to s (with reference to Item (i)
above).

since nodesv, and vs are white, once received
messagencreasév, s, dz, [v, s]) they perform tests
at lines 1, 14 and 22 of procedurneiCREASE

All such tests return false, and hence according to
property P2, nodes, andwvs terminatel NCREASE
without modifying their routing tables and without

of  propagating the decremental algorithm.

The correctness of the decremental algorithm is given
in [18]. The complexity bounds of the algorithm in the
absence of looping are stated in the next theorem.

Theorem 1:The concurrent update of all-pairs shortest
paths over a grap&y with n nodes and positive real edges
weights, after a set afeight increas@perations, requires
(0] (maxdeg AQ) messages an@ (maxdeg n) space per
node.

Proof: Only blacknodes send messages with respect
to a sources. Given a sources and aweight increase
operations;, a black nodev with respect tos can update
the value ofd[v, s] at most|d,, | times. Each time that
updatesd[v, s], it sendsdeg(v) messages, then at most
it sendsmaxdeg- |0, s messages. Since there are at
most |d,, s| nodes that aréblack with respect tos as
a consequence aof;, the number of messages related
to sources sent as a consequence of operatipnis
maxdeg |0, ;|°. The sum of this value over all sources
s € V andweight increaseperationsr;, i € {1,2, ..., k}
is:

-

> (maxdeg |(S%S|2) < maxdeg A2
seV

1=1

Thus, the message complexity @5(maxdeg A?).

Each node stores only its routing table. Given a node
and a source the setvialv, s] contains at mostleg(v)
elements. Hence, each noderequires O (n - deg(v))
space and the space complexityl¥maxdeg n). [ ]
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IV. INCREMENTAL ALGORITHM Whenz; receivesnit(y;, s, dy, [v:, s]) by v, z; executes

In this Section we describe a new incremental algorithnProcedurdNIT (see Figure 4). This procedure is responsi-
for the concurrent update of distributed all-pairs shortesPl€ for checking if it is necessary to start the incremental
paths in the case of multiple operations. This algorithm is/gorithm. In the affirmative case, updateT,, [s] at a
an extension of the incremental solution proposed in [Fertain timet and, in order to propagate the incremental
that has been shown to work only in the sequential cas@/9orithm, sends the messadecreaser;, s, d [z, 5], ;)
Our solution works correctly also in the concurrent casd® its neighbors (line 6). The first three arguments of
and differs from that in [8] in how the algorithm starts and theé message have the same meaning asimp while
in the message delivering policy. In particular, we forcethe fourth argument is one of the endpoints of the edge
the messages between two neighbors to be delivered indanged by;.

FIFO order. We consider onlyeight decreaseperations, ~ The behavior ofy; (when y; receives the message
since the extension tmsert operations is straightforward Nit(zi, s, dy,[x;, s])) is symmetric. At most one between
(inserting edger — y with weight w is equivalent to  Zi and y; will propagate the incremental algorithm.
decreasev(z,y) from +oo to w). In fact, if we assume, without loss of generality, that

Given the input grapl& = (V, E,w), we suppose that d¢[s,#:] < dy[s,u:], then the test performed hy; at
k weight decreaseperationsry, oo, ..., o), are performed Line 1 of proceduréniT is false. Thusg; does not update
on edgesz; — y; € E, i € {1,2,..,k}, at times BT@ [s_] and does not propagate tdecreasemessage to
t1,ts, ..., 11, respectively. The operatiom; decreases the its neighbors.
weight w(z;, y;) by a quantitye; > 0, i € {1,2,..., k}. Conversely, under the same assumptigpnsmay im-
Without loss of generality, we assume that< ¢, <  Prove its distance frons. In this casey; updatesT,, [s] at
... < tx. We denote a&’ the graph after,, asd’() and @ certain timeg and, in order to propagate the incremental
via'() the distance and the via i@, respectively. algorithm, sends the messadecreasey, s, d(yi, s, i)
Data structures. As in the case of the decremental '€ It Neighbors. When a node receives the message
algorithm: decreaséu, s, d;[u, s], y;), t > t, fro_m a nodeuw, it

, , performs procedur®ECREASE(see Figure 5).
« a node knows the identity of each node of the graph, Notice that, in our model, multiple messageit and

the identity of all its neighbors and the weight of the decreaseeceived by a node are stored and processed in
edges incident to it; a certain order

« the information on the estimated shortest paths are
stored in a routing tablRT distributed over all nodes; Event nodewv receives the messagtecreaséu, s, d[u, s], ).
the entryRT,[s] locally at v consists of the fields
RT,[s].d andRT,[s].via. .
Here, differently from the decremental case, the field;: it vialv,y] = u then

Procedure DECREASE

. . begin
RT,[s].via represents just one neighbor @f Formally: 3. if d[v,s] > w(v,u) + d[u, s] then
begin
RT,[s].via € {v; € N(v)| RT,[s].d = w(v, v;)+RTy, [s].d} d[v, 5] := w(v, u) + d[u, s]

vialv, s] == u

Again we used;[v, s] and via;[v, s] to denote the esti- for each v; € N(v) \ {u} do
senddecreasév, s,d[v, s|, y)

mated distance and via fromto v at timet. end

Algorithm. Before the incremental algorithm starts, we 10. end
assume that;[v, s] and via;[v, s] are correct, for each
v,s € V and for eacht < ;. The algorithm starts at each

ti, i € {1,2,..,k}. For instance, theweight decrease  procedureDECREASE differs from the classical dis-
operations; represents an event that is detected only byributed Bellman-Ford algorithm (e.g., see [14]) in the

©oNo G~

Figure 5. TheDeECREASEalgorithm

nodesz; andy;, at timet;; as a consequence: way in which messages are propagated. In the Bellman-
« y; sends the messagdeit(y;, s, ds, [vi, s]) 10 x;, for  Ford algorithms messages containing the estimated dis-
eachs e V; tances are sent to all the nodes in the graph. In the
« z; sends the messageit(z;, s, dy, [x;, s]) to y;, for  algorithm described in this section these messages are
eachs e V. sent only to the nodes that change the shortest path with
. — respect to at least one source as a consequence of the
Event: nodew receives the messageit(u, s, d[u, s]). operationss;.
Procedure INIT The correctness proof of the incremental algorithm is
1. if d[v, 5] > w(o, u) + dfu, 5| then given in [13]. The complexity bounds of the algorithm
2. begin are stated in the next theorem.
3. dv, 5] = w(v, u) +dlu, 5] Theorem 2:The concurrent update of all-pairs shortest
‘51: ;’olragg’cﬂ :6“ N()\ {u} do paths over a graplt: with » nodes and positive real
6. senddecreasév, s, d[v, 5], v) edges weights, after a set wkight decreaseperations,
7. end Figure 4. The initialization algorithm re%u"eso (maXdeg A) messages and (n) Space per
node.
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Proof: Given a sources and aweight decrease BF.1 In this version, described in [14], each node

operationo;, a nodev can updaterT,[s] at most|d,, | updates its estimated distance to a nagéy
times. Each time that updatesRT,[s], it sendsdeg(v) simply executing the iteration
messages. Hence, sends at mostaxdeg |d,, s| mes-
sages. Since there afé,, ;| nodes that change their d[v, s] ;== min {w(v,u)+ d[u, s|}
distance froms as a consequence of, the number of ueN ()
messages related to the sourceent as a consequence using the last estimated distancefu, s re-
of operations; is maxdeg |0, s|. The sum of this value ceived from the neighbors: € N(v) and
over all sourcess € V' and weight decreaseperations the latest status of its links. Eventually, node
oi i €{1,2,....k}is: v transmits the new estimated distance to its
& neighbors. It require®(n - maxdeg space per
Z Z (maxdeg |6,, ,|) = maxdeg A node to store the Iast. estimated distange vector
Pl {d[u, s] | s € V} received from each neighbor
. u € N(v).
Thus, the message complexity {3 (maxdeg A). The BF.2 The only difference with the previous version
space complexity i®)(n) per node because a node stores is that the nodey does not explicitly store the
only RT, []. u estimated distanced|u, s] which are asked to
the neighbors when needed. This result®im)
V. EXPERIMENTS space per node.

BF.3 This version is described in [20]. It assumes that
each nodev initially overestimates the distance
with the remaining nodes in the network. Then,
for each newdu, s] received from a neighbor

In this section we describe the experiments we per-
formed to check the effectiveness of our algorithms also
in the practical case.

Experimental environment. All the experiments have u € N(v), it first checks whether its estimated
been carried out on a workstation equipped with a 2,66 distance tos can be improved, and, in the affir-
GHz processor (Intel Core2 Duo E6700 Box) and a 2Gb mative case, it sends the new estimated distance
RAM (PC6400 PRO Series, 800 MHz). The experiments to each neighbor but. It requiresO(n) space
consist of simulations within the OMNeT++ environ- per node.

ment [19].

OMNeT++ is an object-oriented modular discrete evenfX€CUted tests.We compared the experimental perfor-
mances of DECR against those of BF.1 and BF.2, as

network simulator, useful to model protocols, telecommu- I | £ dif
nication networks, multiprocessors and other distributedllows. We randomly generated a set of different tests,

systems. It also provides facilities to evaluate performanc/Nere a test consists of a dynamic graph characterized by

aspects of complex software systems where the discref@€ following parameters:

event approach is suitable. An OMNeT++ model con- « n, the number of nodes of the graph;

sists of hierarchically nested modules, that communicate « dens, the density of the graph. It is computed as the
through message passing. Modules and messages can ratio betweenn and the number of the edges of the
have their own parameters, stored in arbitrarily complex  n-complete graph;

data structures, that can be used to customize specifice k, the number of edge update operations.

behaviors or topologies. For n we used three values: 100, 300, and 500. For
In our model, we defined a basic modut®de to  each possible value of, we chosen different values
represent a node in the network. A nadeas a communi-  of deps ranging from (logn + 3)/n — a value that
cationgatewith each node inV(v). Each node can send gyarantees a connected graph with a probability of 95% —
messages to a destination node througthannelwhich {5 0.3. The number: ranges fron0.02m to 0.16m. Edge
is @ module that connects gates of different nodes (bOtWeights are non-negative real numbers randomly chosen
gate and channel are OMNeT++ predefined modules)n [1 200]. Edge delays are expressed in milliseconds,
In our model, a channel connects exactly two gates angdnd are randomly chosen jh00, 1000]. For INCR, edge
represents an edge between two nodes. We associate tyRjghts are decreased by a percentage randomly chosen in
parameters per channelwaeightand adelay. The former e rangg[10%, 90%)], while for DECR, edge weights are
represents the cost of the edge in the graph, and the lattg{creased by a percentage randomly chosen in the range
simulates a finite but not null transmission time. [10%, 400%]. For each test configuration — represented
Implemented algorithms. We implemented the algo- by the triple (n, dens, k) — we performed at least four
rithms described in Sections 11l and 1V, that in the remain-different experiments. All the obtained data has to be
der we denote as DECR and INCR. In order to comparétended as average values together with the standard
their performances with respect to known algorithms indeviations.
literature, we also implemented three different versions of Due to memory and execution time limits, we were not
the Bellman-Ford algorithm. They are denoted as BF.lable to run experiments for values oflarger than 500
BF.2 and BF.3 and briefly described as follows. and values of: larger than 5000 (with a few exceptions).
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Furthermore, we built a test configuration which showsexchange percentage gain (gain®s:
that a weight increase let BF.1 and BF.2 to fall into a loop, m(BF.1) — m(DECR)
while DECR is able to prevent this phenomenon. m(DECR)

Eigure 8 shows the gain% for the set of experiments
represented in Figure 7.

- 100.

Decremental algorithm: results. The performances of
DECR have been compared to those of BF.1 and BF.
(BF.3 cannot be used when edge weights increase).

In Figure 6 we report the number of messages used by
the three algorithms when = 100 and dens = 0.0964.
BF.2 is worse than the others: it requires from 10 to
15 times the number of messages needed to both BF.1
and DECR. Considering the experiments over all the testso
configurations, this ratio ranges from 10 to 50. Hence, in

what follows, we report a more detailed comparison of
only BF.1 and DECR. or il

Message exchange percentage gain (n=100; dens=0.0964)
100 T T T T T T T

Message exchange comparison (n=100; dens=0.0964) -50 B
le+07 IDECR T T T T T T "
9e+06 - BE1 ------- -
8406 |- BE2 ——— L -100 1 1 1 1 1 1 1
e M 0 20 40 60 80 100 120 140 160
7e+06 - I - Number of increases
6e+06 - *omm i . in
50406 I S ! 4| Figure 8. Message exchange percentage gain in the decremental case
4e+06 | e .
36406 | ;K/,, 1 i Regardmg aII_ the remaining experiments, the results are
26406 | T 4 i summarized in Table I.
¥

1e+06 [ % ; P TABLE I.

-t —=T - - SUMMARY OF RESULTS

0 20 40 60 80 100 120 140 160

Number of i n | dens || gain% | std.dev. gain%

umber ot increases 100 | 0.096 || -8.28 16.74

. 100 | 0.122 || -27.92 32.99
Figure 6. Number of messages needed by DECR, BF.1 and BF.2 100 T 0148 T 28 81 1411
100 | 0.174 || -33.36 11.34

. . . 100 0.2 || -4354 13.20
Flg_ure 7 showg, Fhe same results of Figure _6, but BF.Z is 300 0037 11135 =g
omitted. Here, it is evident that the two algorithms require 300 | 0.078 || 48.72 1416
approximately the same number of messages: in general, 300 | 0.118 || -49.01 7.89
BF.1 requires less messages, but the there are instances 300 | 0.159 || -64.90 3.60

in which DECR performs better.

Each row represents a set of experiments characterized

Message exchange comparison (n=100; dens=0.0964) by a test configuration. The first two values represent the
800000 Tecr ' ' ' ' L— number of nodes and the density of the networks. For
700000 |- BF.L -~ = each test configuration, at least 20 experiments have been

i performed by taking different values d@f in the range
0.02m to 0.16m. The remaining two columns report the
average values gain% and their standard deviations. No-

600000

500000 [

400000 - ] tice that the values of gain% are negative, meaning that, in
300000 |- ] average, BF.1 performs better than DECR. However, the
200000 i extra number of messages used by DECR can be seen as
100000 L | the price to avoid space consumption, looping and count-
; to-infinity phenomena.
0 T 0 40 0 8 100 120 140 160 This is explained in Figure 9 that shows a classical

Number of increases topology where BF.1 and BF.2 count to infinity and create
a loop in which nodes: choosesb as via tos and
viceversa. In particular, when the weight of the edge’)
changesyp updates its distance to Now, we concentrate
A different view of the messages sent by the two algo-on the operations performed by nodesand b. When
rithms is given in Figure 8. Given a set of experiments,nodea (b, resp.) performs the updating step, it finds out
let m(A) be the average number of messages sent bthat its new via tos is b (a, resp.). Subsequent updating
a generic algorithmA. Then, we define thenessage steps (but the last one) do not change the vias tof

Figure 7. Number of messages needed by DECR and BF.1
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messages required to update the routing table with respect
to s.

To conclude our discussion on the performances of
the three implemented algorithms, we show the results
about the space occupancy. BF.1 requires to store, for
each destination, the estimated distance given by each of
its neighbors, BF.2 only its estimated distance, whereas
Figure 9. A graphG before and after a weight increase on edgev). ~ DECR is something in between: the estimated distance
and the setvia. Since it is not common to have more
than one via to a destination, the size to store the routing
r;[able for DECR is very close to the size required by BF.2.

both ¢ and b, but only the estimated distances. For eac

updating step the estimated distances increase by 1 (i.e., TABLE IIl.
the Welght Of the edgea,b)) The COUnting StOpS after SPACE REQUIREMENTS IN THE DECREMENTAL CASE
a number of updating that depends on the new weight of n | dens || DECR | BF.1 (max) | BF.1 (avg) | BF.2
the edge(u, v). If the new weight is>o - that is, the link 100 | 0.096 206 1900 476 | 200
breaks - then the algorithm counts to infinit 100 1 0122 203 2300 001 | 200
(u, v) 9 Y. 100 | 0.148 || 201 2500 726 | 200
Conversely, DECR requires few steps to update both the 100 | 0.174 201 3100 862 | 200
estimated distance and via ¢dor each node irG. When égg g-ggg ég% 3288 1?7)? 288
s andv detec;t the weight change, they perform Procedure 300 T 0.078 557 15300 3298 600
INCREASEWiIth respect source. In particular,s does not 300 | 0.118 608 18000 5357 | 600
performsBuUILD-TABLE phase, while» does. When gets 300 | 0.159 604 21300 8634 | 600
the estimated distances #drom its neighbors (Line 6 of 300 | 0.200 610 25800 8979 | 600
P durelNCREASBE), it receives+oo from botha and 200 | 0.023 | 1006 13500 3905 | 1000
rocedu * o0 a 500 | 0.067 || 1010 29000 8470 | 1000
b. This is due to the fact that, when(b, resp.) performs 500 | 0.111 || 1009 41500 13935 | 1000
Procedure®isT, the test at Line 1 returns true. Atthe end | 500 | 0.155 || 1010 56000 19565 | 1000
of these executions; correctly updates its routing table 200 | 0-200 ]| 1009 68000 24950 | 1000

and sends messagggreaseto each neighbor. Hence,

a, andb perform ProceduréNCREASE but onlya andb  Table Il summarizes the data relative to the space used
perform theBUILD-TABLE phase. In this phase, andb by the three algorithms, assuming that the cost to store
sendoo (as their estimated distance # to each other either a destination or an estimated distance is unitary.
in response to thget-distmessage (see Line 6). This is The third column gives the space used by DECR. In
due to the fact that, during the executions of Procedur@articular, it reports the space consumption of the node
DisT, both @ and b are performing theBUILD-TABLE  with the maximum size ofvia. BF.1 requires much
phase and then, the test at Line 1 returns true. Hencenore space (that is given by times the degree of each
both e andb correctly update their routing tables in one node): the fourth column reports the space consumption of
step. Subsequent messages sent &gdb do not produce the node with maximum degree while the average space

further local data modification. consumption per node is listed in the fifth column. The
The tests on the example shown in Figure 9 are reporteldst columns gives the space used by BF.2 for each node.
in Table II. This value is given by two times.
TABLE Il. Message exchange comparison (n=100; dens=0.0964)
COUNT-TO-INFINITY
450000 T T T T T T T T
w(v,s) | DECR | BF1 | BF.2 INCR
100 39 [ 702 | 3491 400000 - BF3 - X
200 39 [ 1402 | 6991 350000 |- ¥
300 39 | 2102 | 10491 1
200 39 | 2802 | 13991 300000 |-
500 39 | 3502 | 17491 250000 |
600 39 | 4202 | 20991 200000 -
700 39 | 4902 | 24491
800 39 | 5602 | 27991 150000 -
900 39 | 6302 | 31491 100000 -
1000 39 | 7002 | 34991
50000
0 I 1 1 1 1 1 1 1 1

. 0 20 40 60 80 100 120 140 160 180 200
The results show that DECR requires a constant number Number of decreases

of messages, while, as expected, BF.1 and BF.2 require
a number of messages that depends on the new weight
on the edggs, v). Notice that, the table shows thetal
number of messages required by the algorithms, whiléncremental algorithm: results. In the following, we will

in the previous discussion we have only considered theompare the performance of BF.3 with respect to INCR.

Figure 10. Number of messages needed by INCR and BF.3
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Since, the space required by the two algorithms is th@nd, in many cases, free of the looping and count-to-

same, then we just focus on the number of messages thayfinity phenomena. Another research direction is that of

send. experimentally compare our solution with other variants
In Figure 10 we report the number of messages used bgf the Bellman-Ford methods known in the literature.

the two algorithms whem = 100 and dens = 0.0964.
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