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Abstract— In this paper, we study the dynamic version of
the distributed all-pairs shortest pathsproblem. Most of the
solutions given in the literature for this problem, either (i)
work under the assumption that before dealing with an edge
operation, the algorithm for the previous operation has to be
terminated, that is, they are not able to update shortest paths
concurrently, or (ii) concurrently update shortest paths, but
their convergence can be very slow (possibly infinite). In
this paper we propose a partially dynamic algorithm that
overcomes most of these limitations. In particular, it is able
to concurrently update shortest paths and in many cases its
convergence is quite fast. These properties are highlighted by
an experimental study whose aim is to show the effectiveness
of the proposed algorithms also in the practical case.

Index Terms— Distributed networks, dynamic algorithms,
shortest paths, routing, experimental evaluation, network
simulation environment

I. I NTRODUCTION

We consider thedistributed all-pairs shortest paths
problem in a network whose topology dynamically
changes over the time, in the sense that communication
links can change status during the lifetime of the network.
This problem arises naturally in practical applications. For
instance, theOSPFprotocol, widely used in the Internet
(e.g., see [2]), basically updates shortest paths after a
network change by distributing the network topology to
all processors and using centralized Dijkstra’s algorithm
for shortest paths on every node.

If the topology of a network is represented as a
weighted graph, where nodes represent processors, edges
represent links between processors, and edge weights
represent costs of communication among processors, then
the typical update operations on a dynamic network can
be modelled as insertions and deletions of edges and edge
weight changes. When arbitrary sequences of the above
operations are allowed, we refer to thefully dynamic
problem; if only insert and weight decrease(deleteand
weight increase) operations are allowed, then we refer
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to the incremental (decremental) problem. Incremental
and decremental problems are usually calledpartially
dynamic.

In many crucial routing applications the worst case
complexity of the adopted protocols is never better than
recomputing the shortest paths from scratch after each
change to the network. Therefore, it is important to find
efficient dynamic distributed algorithms for shortest paths,
since the recomputation from scratch could result very
expensive in practice. The efficiency of a distributed
algorithm is evaluated in terms ofmessageand space
complexity (e.g., see [3]). Themessage complexityis the
total number of messages sent over the edges. Thespace
complexityis the space usage per node.

In this paper we consider a dynamic network in which
a change can occur while another change is under pro-
cessing. A processorv could be affected by both these
changes. As a consequence,v could be involved in the
concurrentexecutions related to both the changes.

Previous works.Given a weighted graphG with n nodes
and m edges, many solutions have been proposed in
the literature to find and update shortest paths in the
sequential case on graphs with non-negative real edge
weights. The state of the art is that no efficient fully
dynamic solution is known for general graphs that is
faster than recomputing single-source shortest paths from
scratch after each update. Actually, onlyoutput bounded
fully dynamic solutions are known on general graphs [4],
[5]. In the case of all-pairs shortest paths an efficient fully
dynamic solution has been proposed in [6] that works in
O(n2 log3 n) amortized time per update.

A number of solutions have been proposed in the
literature also for the dynamic distributed shortest paths
problem (see [7]–[12]). Some of these solutions rely
on the classical Bellman-Ford method, whose distributed
version has been originally introduced in the Arpanet [13].
This algorithm, and a number of its variations, has been
shown to converge to the correct distances if the edge
weights stabilize and all cycles have positive lengths
(e.g., see [14]). However, the convergence can be very
slow in the case ofweight increaseoperations (possibly
infinite), due to the well-knownlooping and count-to-
infinity phenomena (see, e.g., [15]). This is a major
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drawback of the Bellman-Ford algorithm and its variations
that is avoided in many protocols by broadcasting the
whole topology of the network to all nodes [2], [16].
Furthermore, if the network is asynchronous and static,
the message complexity of the Bellman-Ford method can
be exponential in the size of the network (see, [17]).
In [9] Humblet proposes a variation of the Bellman-
Ford algorithm, that has the same message and space
complexity, and, under certain conditions, avoids the
looping phenomenon thus converging in a finite number
of steps.

In [10], an efficient incremental solution has been pro-
posed for the distributed all-pairs shortest paths problem,
requiringO(n log(nW )) amortized number of messages,
and the difficulty of dealing with edge deletions has
been addressed. Here,W is the largest positiveinteger
edge weight. In [7], a general technique is proposed that
allows to update the all-pairs shortest paths in a distributed
network inΘ(n) amortized number of messages, by using
O(n2) space per node. In [12], algorithms are given for
both finding and updating shortest paths distributively.
In particular, the authors propose a distributed algorithm
for finding single source shortest paths (all pairs shortest
paths) of a network with positive real edge weights
requiring Θ(n2) (O(n3)) messages andO(n) space per
node. Furthermore, they propose a distributed incremental
algorithm requiringO(n2) messages for updating all-pairs
shortest paths. Finally, they give fully dynamic algorithms
for single-source (all-pairs) shortest paths that work in
O(n2) (O(n3)) messages, and show that, in the worst
case, updating shortest paths is as difficult as computing
shortest paths.

In [8] a solution for the fully dynamic distributed all-
pairs shortest paths problem is presented whose message
complexity is evaluated in terms ofoutput complexity(see
[4], [5]). Output complexity allows to evaluate the cost
of dynamic algorithms in terms of theintrinsic cost of
the problem on hand, i.e., in terms of the number of
updates to the output information of the problem that
are needed after any input change. The algorithm in [8]
is able to update only the distances and the shortest
paths that actually change after an edge modificationσ.
It requires in the worst caseO(maxdeg· ∆σ) messages
per edge update operation. The space complexity isO(n)
per node. Here,maxdegis the maximum degree of the
nodes in the network and∆σ is the number of pairs
of nodes affected byσ. On one hand, if∆σ = o(n2),
then these bounds compare favorably with respect to those
in [12]. On the other hand, the algorithm is not robust,
in fact for weight increaseoperations it works in three
phases and requires that a phase is terminated before the
execution of the subsequent one, while in the case of
weight decreaseoperations it works under the assumption
that before dealing with an edge operation, the algorithm
for the previous operation has to be terminated.

Summarizing, we can conclude that most of the algo-
rithms of the literature for the dynamic distributed shortest
paths problem fall in one of the following categories:

• algorithms which are not able toconcurrentlyupdate
shortest paths when multiple edge changes occur in
the network, as those in [7], [8], [10], [12]. In partic-
ular, algorithms that work under the assumption that
before dealing with an edge operation, the algorithm
for the previous operation has to be terminated. This
is a limitation in real networks, where changes can
occur in an unpredictable way;

• algorithms which are able toconcurrently update
shortest paths as those in [9], [13], but(i) either
they suffer of the looping and count-to-infinity phe-
nomena, or(ii) their convergence can be very slow
in the case ofweight increaseoperations (possibly
infinite).

Results of the paper.In this paper we providepartially
dynamicsolutions that do not belong to any of the pre-
vious categories. In particular, our algorithms are able to
concurrently update shortest paths, they avoid the looping
and count-to-infinity phenomena and their convergence is
fast in the case ofweight increaseoperations. The details
of this contribution can be summarized as follows:

1) We propose a new decremental algorithm that is
robust since it works in one phase (thus avoid-
ing the main drawback of [8]). Furthermore, it
is able to concurrently update shortest paths in
the case of multipleweight increase/delete oper-
ations. The algorithm requiresO(maxdeg· ∆2)
messages andO(maxdeg·n) space per node. Here,
∆ is the number of nodes affected by a set of
weight increase/deleteoperations.

2) We propose an extension of the incremental algo-
rithm in [8] for weight decrease/insert operations
that works also in theconcurrent case, within
the same bounds of [8], that isO(maxdeg· ∆)
messages per operation andO(n) space per node.
Here,∆ is the number of nodes affected by a set
of weight decrease/insert operations. This is only
a factor maxdegfar from the optimal incremental
solution.

3) We propose an experimental study whose aim is
to highlight the merits of the proposed algorithms
also from a practical point of view. In detail, we
experimentally show that our incremental algorithm
sends a number of messages that is 10%–15% less
than Bellman-Ford.
In the decremental case, we compare our algorithm
with two variants of the Bellman-Ford method:
BF.1, that stores in each node the estimated dis-
tances of its neighbors, and BF.2 that does not store
such information. Our decremental algorithm sends
a number of messages that is 10–50 times less than
BF.2, while using the same space occupancy per
node. BF.1 outperforms most of the times our decre-
mental algorithm in terms of number of messages;
however, BF.1 requires a space occupancy per node
which is 20–85 times our space occupancy. More-
over, we experimentally show that our decremental
solution does not suffers of the looping and count-
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to-infinity phenomena in some classical cases where
BF.1 and BF.2 do.

Structure of the paper. The paper is organized as
follows. In Section II we introduce the notation and
the computation model used throughout the paper. In
Sections III and IV we describe the algorithms for weight
increase and weight decrease operations, respectively, and
show their complexity in terms of number of messages.
In Section V we describe the experiments performed to
check the effectiveness of our algorithms in the practical
case. Finally, in Section VI we provide some concluding
remarks and future research directions.

II. PRELIMINARIES

We consider a network made of processors linked
through communication channels. Each processor can
send messages only to its neighbors. Messages are de-
livered to their destination within a finite delay but they
might be delivered out of order. We consider an asyn-
chronous system, that is, a sender of a message does not
wait for the receiver to be ready to receive the message.
There is no shared memory, that is, each processor has
its own storage system and the other processors cannot
access it.

We represent the network by an undirected weighted
graphG = (V, E, w), whereV is a finite set ofn nodes,
one for each processor;E is a finite set ofm edges,
one for each communication channel; andw is a weight
function w : E → R+. An edgee ∈ E that links the pair
of nodesu, v ∈ V is represented withu → v. If v ∈ V ,
N(v) denotes the set of neighbors ofv and deg(v) the
degree ofv.

We define theweight of a pathP as the sum of the
weights of the edges inP . Thedistancebetween nodesu
andv is the weight of a shortest path fromu to v, and is
denoted asd(u, v). Given u, v ∈ V , the via from u to v
is the set of neighbors ofu that belong to a shortest path
from u to v. Formally,

via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z) + d(z, v)}

Complexity measures. Given a weighted undirected
graphG, a set ofk weight changesσ1, σ2, ..., σk and a
sources, we denote asδσi,s the set of nodes that change
the distance tos as a consequence ofσi. If v ∈ ∪

s∈V
δσi,s

we say thatv is affectedby σi. The total number of times
that nodes ofG are affected by thek weight changes is at

most∆ =
k∑

i=1

∑
s∈V

|δσi,s|. We give the complexity bounds

of our algorithms as a function of∆.

Asynchronous model.Given an asynchronous system,
the model summarized below is based on that proposed
in [3]. The state of a processorv is the content of the
data structure at nodev. The network stateis the set
of states of all the processors in the network plus the
network topology. Aneventis the reception of a message
by a processor or a change to the network state. When
a processorp sends a messagem to a processorq, m is

stored in a buffer inq. Whenq readsm from its buffer
and processes it, the event “reception ofm” occurs.

An executionis an alternate sequence (possibly infinite)
of network states and events. A non negative real number
is associated to each event, thetime at which that event
occurs. The time is aglobal parameter and is not acces-
sible to the processors of the network. The times must be
non decreasing and must increase without bound if the
execution is infinite. Events are ordered according to the
times at which they occur. Several events can happen at
the same time as long as they do not occur at the same
processor. This implies that the times related to a single
processor are strictly increasing.

Concurrent executions. In this paper we consider a
dynamic network in which a change can occur while
another change is under processing. A processorv could
be affected by both these changes. As a consequence,v
could be involved in the executions related to both the
changes. Hence, according to the asynchronous model
we need to define the notion ofconcurrent executions
as follows.

Let us consider an algorithmA that maintains shortest
paths onG after a weight change operation. Given two
operationsσi andσj we denote as:

• ti and tj the times at whichσi and σj occur
respectively.

• Ai (Aj) the execution ofA related toσi (σj).
• tAi

the time whenAi terminates.

If ti ≤ tj and tAi
≥ tj , thenAi andAj areconcurrent,

otherwise they aresequential.

III. D ECREMENTAL ALGORITHM

In this Section we describe our new decremental so-
lution for the concurrent update of distributed all-pairs
shortest paths in the case of multiple operations. We con-
sider the algorithm to handleweight increaseoperations,
since the extension todeleteoperations is straightforward
(deleting an edge(x, y) is equivalent to increasew(x, y)
to +∞).

Given the input graphG = (V, E, w), we suppose
that k weight increaseoperationsσ1, σ2, ..., σk are per-
formed on edges(xi, yi) ∈ E, i ∈ {1, 2, ..., k}, at times
t1, t2, ..., tk, respectively. The operationσi increases the
weight w(xi, yi) by a quantityεi > 0, i ∈ {1, 2, ..., k}.
Without loss of generality, we assume thatt1 ≤ t2 ≤
... ≤ tk. We denote asG′ the graph aftertk, asd′() and
via′() the distance and the via overG′, respectively.

Data structures. A node knows the identity of each node
of the graph, the identity of all its neighbors and the
weight of the edges incident to it. The information on the
shortest paths inG are stored in a data structure called
routing tableRT distributed over all nodes. Each nodev
maintains its own routing tableRTv[·]; this table has one
entryRTv[s] for eachs ∈ V . The entryRTv[s] consists of
two fields:

• RTv[s].d that stores the estimated distance between
nodesv ands in G.
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• RTv[s].via = {vi ∈ N(v) | RTv[s].d = w(v, vi) +
RTvi [s].d} that stores the estimatedvia from v to s.

For sake of simplicity, we writed[v, s] and via[v, s]
instead ofRTv[s].d andRTv[s].via, respectively.

The values stored in the routing table of each node
change over the time during the execution of the update
algorithms. Hence, we denote asdt[v, s] and viat[v, s]
the value of the data structures at timet; we simply write
d[v, s] andvia[v, s] when time is clear by the context.

Algorithm. Before the decremental algorithm starts, we
assume thatdt[v, s] and viat[v, s] are correct, for each
v, s ∈ V and for eacht < t1.

The decremental algorithm starts at eachti, i ∈
{1, 2, ..., k}. For instance, theweight increaseoperation
σi represents an event that is detected only by nodesxi

andyi; as a consequence:
• xi sends the messageincrease(xi, s, dti [xi, s]) to yi,

for eachs ∈ V ;
• yi sends the messageincrease(yi, s, dti [yi, s]) to xi,

for eachs ∈ V .
When, at a certain timet, nodev receives the message
increase(u, s, dt̃[u, s]), t̃ < t, by a generic nodeu, v
executes procedureINCREASE (see Figure 1), which is
designed to updateRTv[s], if necessary. To this aim,v may
need to know the estimated distances of its neighbors from
s, that is,dt[vi, s] for eachvi ∈ N(v). Hence,v sends
messagesget-dist(v, s); when vi receives such message,
it performs procedureDIST (see Figure 2).

Event: nodev receives the messageincrease(u, s, d[u, s]) by u

Procedure INCREASE

1. if u ∈ via[v, s] then
2. begin

3. via[v, s] := via[v, s] \ {u} Line 3: phaseREDUCE-VIA

4. if via[v, s] ≡ ∅ then

5. begin Lines 5-11: phaseBUILD -TABLE

6. for each vi ∈ N(v) do sendget-dist(v, s) to vi

7. d[v, s] := min
vi∈N(v)

{w(v, vi) + d[vi, s]}
8. via[v, s] := {vi ∈ N(v)|w(v, vi) + d[vi, s] = d[v, s]}
9. for each vi ∈ N(v) do Lines 9-10: phasePROPAGATE 1

10. sendincrease(v, s, d[v, s]) to vi

11. end
12. end
13. else
14. if d[v, s] > w(v, u) + d[u, s] then

15. begin Lines 15-20: phaseIMPROVE-TABLE

16. d[v, s] := w(v, u) + d[u, s]
17. via[v, s] := {u}
18. for each vi ∈ N(v) do Lines 18-19: phasePROPAGATE 2

19. sendincrease(v, s, d[v, s]) to vi

20. end
21. else
22. if d[v, s] = w(v, u) + d[u, s] then

23. via[v, s] := via[v, s] ∪ {u} Line 23: phaseEXTEND-VIA

Figure 1. TheINCREASE algorithm

Notice that, in our model, multipleincreasemessages
received by a node are stored and processed in an ar-
bitrary order, while each messageget-dist is processed
immediately.

Event: nodev receives the messageget-dist(u, s) by u

Procedure DIST

1. if (via[v, s] ≡ {u}) or (v is performing phaseBUILD -TABLE

or phaseIMPROVE-TABLE of procedureINCREASE

with respect to sources)
2. then send+∞ to u
3. elsesendd[v, s] to u

Figure 2. ProcedureDIST performed by a nodev when it receives a
get-distmessage

Now we provide an informal description of the al-
gorithm. The purpose of this description is to give an
intuition of both the behavior and correctness of the algo-
rithm (the formal correctness proof is given in [18]). The
description is focused on the execution of the algorithm
by a generic nodev with respect to a sources, and
uses the scenario for nodev depicted in Figure 3 as a
representative case.

v2

v3

v

u3
u1

v4

v5

v1

u4

u2

via(v2, s)

via(v, s)

via(v1, s)

Figure 3. A representative scenario

In such a figure nodes are coloredwhite, gray andblack.
These colors are assigned according to the following
definitions.

• a nodev is white with respect tos if v does not
change both its distance and its via tos. Formally:
d(v, s) = d′(v, s) andvia(v, s) ≡ via′(v, s).

• a nodev is graywith respect tos if v does not change
its distance froms, but it changes its via tos. For-
mally: d(v, s) = d′(v, s), andvia(v, s) 6≡ via′(v, s).
Notice that, in this case,via(v, s) ) via′(v, s).

• a nodev is black with respect tos if v changes its
distance froms. Formally:d(v, s) 6= d′(v, s). Notice
that, in this case,d(v, s) < d′(v, s).

The following properties trivially hold:

P1: If v is gray or blackwith respect tos, then there
existsu ∈ via(v, s) which is black with respect
to s. If v is black with respect tos, then all
nodes invia(v, s) areblack with respect tos.

P2: If v is white or gray with respect tos, then,
each nodez such thatv ∈ via(z, s) is white
with respect tos.

Nodev in Figure 3 isblackwith respect tos since, accord-
ing to property P1, all nodes invia(v, s) ≡ {u1, u2, u3}
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are black. As a consequence,v surely receives mes-
sages increase(ui, s, d[ui, s]), 1 ≤ i ≤ 3, in some
order. This implies thatv performs three times procedure
INCREASE. The first two executions simply perform phase
REDUCE-VIA , while the third one performsREDUCE-VIA

and BUILD -TABLE.
Let us suppose that the third execution is related tou3.

During the execution ofBUILD -TABLE, nodev sends the
messageget-dist(v, s) to each nodevi ∈ N(v)\{u3}. We
assume that this message is received byvi at time t̃1,i.
In this phase, let us assume that the following conditions
hold for nodesv1 andv3, respectively:

(a) viat̃1,1
[v1, s] ≡ {v}

(b) at time t̃1,3, node v3 is performing either
BUILD -TABLE or IMPROVE-TABLE phases of pro-
cedureINCREASE with respect to sources

According to these conditions and to test at line 1 of
procedureDIST, nodesv3 andv1 send+∞ to v.

By using the collected information,v performs the
instructionsd[v, s] := min

vi∈N(v)
{w(v, vi) + d[vi, s]} and

via[v, s] := {vi ∈ N(v) | w(v, vi) + d[vi, s] = d[v, s]}.
Let us assume that nowviat̃2

[v, s] = {v2}. Notice that,
since v has received partial information, the content of
RTv[s] at time t̃2 could be not correct. Now, two relevant
observations have to be remarked:

(i) since nodesv1 and v3 sent+∞ to v, thenv does
not consider such nodes as possible new elements of
via; this is done to prevent the looping and count-
to-infinity phenomena.

(ii) in the subsequent Items 1 and 2 we show that nodes
v1 andv3 will eventually sendd[v1, s] andd[v3, s]
to v.

The BUILD -TABLE phase ofv is completed by the
PROPAGATE 1 phase. In this phasev broadcast toN(v)
the messageincrease(v, s, dt̃2

[v, s]); it may seem useless
to send the message to nodesui, 1 ≤ i ≤ 3, (the old via
of v) and to nodev2 (the new via ofv). The former will
be explained later (last paragraph of Item 1), while the
latter is due to the fact thatv ∈ via(v2, s), and hencev2

has to perform theREDUCE-VIA phase.
Let us now analyze what happens to the nodesv1, v3, v4

andv5.
1. nodev1 receives messageincrease(v, s, dt̃2

[v, s]) at
time t̃3 > t̃2, and it executesINCREASE. Since
viat̃1,1

[v1, s] ≡ viat̃3
[v1, s] ≡ {v}, v1 performs

the BUILD -TABLE phase. At the end of this phase,
at timet̃4 > t̃3, v1 updatesRTv1 [s]. Now, two major
cases may occur:
• v is in viat̃4

[v1, s];
• v is not inviat̃4

[v1, s]. This means thatv1 now
uses a new via tos.

In both cases, at the end of theBUILD -TABLE phase,
v1 broadcast the messageincrease(v1, s, dt̃4

[v1, s])
to N(v1), and hence tov also (with reference to
Item (ii) above).
In the first case,v performs tests at lines 1, 14 and
22 of INCREASE. All such tests return false, and

hence, nodev terminatesINCREASEwithout modi-
fying its routing tables and without propagating the
decremental algorithm.
In the second case, one of the tests performed by
v at lines 14 and 22 may return true. If test at
line 14 returns true, thenv has to perform the
IMPROVE-TABLE phase to rebuildRTv[s]. If test
at line 22 returns true, thenv has to perform the
EXTEND-VIA phase to addv1 to via[v, s].
Notice that the behavior ofv after receiving
messageincrease(v1, s, dt̃4

[v1, s]) is essentially the
same of nodesui, 1 ≤ i ≤ 3, after receiving
messageincrease(v, s, dt̃2

[v, s]).
2. node v3, once terminated the execution of phase

BUILD -TABLE or phaseIMPROVE-TABLE of pro-
cedure INCREASE with respect to sources (see
item (b) above), executes phasePROPAGATE 1 or
phase PROPAGATE 2. This implies that nodev
restartsINCREASEnow using the current estimated
distance fromv3 to s (with reference to Item (ii)
above).

3. since nodesv4 and v5 are white, once received
messageincrease(v, s, dt̃2

[v, s]) they perform tests
at lines 1, 14 and 22 of procedureINCREASE.
All such tests return false, and hence according to
property P2, nodesv4 andv5 terminateINCREASE

without modifying their routing tables and without
propagating the decremental algorithm.

The correctness of the decremental algorithm is given
in [18]. The complexity bounds of the algorithm in the
absence of looping are stated in the next theorem.

Theorem 1:The concurrent update of all-pairs shortest
paths over a graphG with n nodes and positive real edges
weights, after a set ofweight increaseoperations, requires
O

(
maxdeg·∆2

)
messages andO (maxdeg· n) space per

node.
Proof: Only blacknodes send messages with respect

to a sources. Given a sources and aweight increase
operationσi, a black nodev with respect tos can update
the value ofd[v, s] at most|δσi,s| times. Each time thatv
updatesd[v, s], it sendsdeg(v) messages, then at most
it sends maxdeg· |δσi,s| messages. Since there are at
most |δσi,s| nodes that areblack with respect tos as
a consequence ofσi, the number of messages related
to sources sent as a consequence of operationσi is
maxdeg· |δσi,s|2. The sum of this value over all sources
s ∈ V andweight increaseoperationsσi, i ∈ {1, 2, ..., k}
is:

k∑

i=1

∑

s∈V

(
maxdeg· |δσi,s|2

)
≤ maxdeg·∆2

Thus, the message complexity isO
(
maxdeg·∆2

)
.

Each node stores only its routing table. Given a nodev
and a sources the setvia[v, s] contains at mostdeg(v)
elements. Hence, each nodev requires O (n · deg(v))
space and the space complexity isO (maxdeg· n).
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IV. I NCREMENTAL ALGORITHM

In this Section we describe a new incremental algorithm
for the concurrent update of distributed all-pairs shortest
paths in the case of multiple operations. This algorithm is
an extension of the incremental solution proposed in [8]
that has been shown to work only in the sequential case.
Our solution works correctly also in the concurrent case
and differs from that in [8] in how the algorithm starts and
in the message delivering policy. In particular, we force
the messages between two neighbors to be delivered in a
FIFO order. We consider onlyweight decreaseoperations,
since the extension toinsert operations is straightforward
(inserting edgex → y with weight w is equivalent to
decreasew(x, y) from +∞ to w).

Given the input graphG = (V, E, w), we suppose that
k weight decreaseoperationsσ1, σ2, ..., σk are performed
on edgesxi → yi ∈ E, i ∈ {1, 2, ..., k}, at times
t1, t2, ..., tk, respectively. The operationσi decreases the
weight w(xi, yi) by a quantityεi > 0, i ∈ {1, 2, ..., k}.
Without loss of generality, we assume thatt1 ≤ t2 ≤
... ≤ tk. We denote asG′ the graph aftertk, asd′() and
via′() the distance and the via inG′, respectively.

Data structures. As in the case of the decremental
algorithm:

• a node knows the identity of each node of the graph,
the identity of all its neighbors and the weight of the
edges incident to it;

• the information on the estimated shortest paths are
stored in a routing tableRT distributed over all nodes;
the entryRTv[s] locally at v consists of the fields
RTv[s].d andRTv[s].via.

Here, differently from the decremental case, the field
RTv[s].via represents just one neighbor ofv. Formally:

RTv[s].via ∈ {vi ∈ N(v)| RTv[s].d = w(v, vi)+RTvi
[s].d}

Again we usedt[v, s] and viat[v, s] to denote the esti-
mated distance and via froms to v at time t.

Algorithm. Before the incremental algorithm starts, we
assume thatdt[v, s] and viat[v, s] are correct, for each
v, s ∈ V and for eacht < t1. The algorithm starts at each
ti, i ∈ {1, 2, ..., k}. For instance, theweight decrease
operationσi represents an event that is detected only by
nodesxi andyi, at timeti; as a consequence:

• yi sends the messageinit(yi, s, dti
[yi, s]) to xi, for

eachs ∈ V ;
• xi sends the messageinit(xi, s, dti [xi, s]) to yi, for

eachs ∈ V .

Event: nodev receives the messageinit(u, s, d[u, s]).

Procedure INIT

1. if d[v, s] > w(v, u) + d[u, s] then
2. begin
3. d[v, s] := w(v, u) + d[u, s]
4. via[v, s] := u
5. for each vi ∈ N(v) \ {u} do
6. senddecrease(v, s, d[v, s], v)
7. end

Figure 4. The initialization algorithm

Whenxi receivesinit(yi, s, dti [yi, s]) by yi, xi executes
procedureINIT (see Figure 4). This procedure is responsi-
ble for checking if it is necessary to start the incremental
algorithm. In the affirmative case,xi updatesRTxi [s] at a
certain timet and, in order to propagate the incremental
algorithm, sends the messagedecrease(xi, s, dt[xi, s], xi)
to its neighbors (line 6). The first three arguments of
the message have the same meaning as ininit, while
the fourth argument is one of the endpoints of the edge
changed byσi.

The behavior ofyi (when yi receives the message
init(xi, s, dti [xi, s])) is symmetric. At most one between
xi and yi will propagate the incremental algorithm.
In fact, if we assume, without loss of generality, that
dti [s, xi] ≤ dti [s, yi], then the test performed byxi at
Line 1 of procedureINIT is false. Thus,xi does not update
RTxi [s] and does not propagate thedecreasemessage to
its neighbors.

Conversely, under the same assumptions,yi may im-
prove its distance froms. In this caseyi updatesRTyi [s] at
a certain timet and, in order to propagate the incremental
algorithm, sends the messagedecrease(yi, s, dt[yi, s], yi)
to its neighbors. When a nodev receives the message
decrease(u, s, dt̃[u, s], yi), t̃ ≥ t, from a nodeu, it
performs procedureDECREASE (see Figure 5).

Notice that, in our model, multiple messagesinit and
decreasereceived by a node are stored and processed in
a certain order.

Event: nodev receives the messagedecrease(u, s, d[u, s], y).

Procedure DECREASE

1. if via[v, y] = u then
2. begin
3. if d[v, s] > w(v, u) + d[u, s] then
4. begin
5. d[v, s] := w(v, u) + d[u, s]
6. via[v, s] := u
7. for each vi ∈ N(v) \ {u} do
8. senddecrease(v, s, d[v, s], y)
9. end
10. end

Figure 5. TheDECREASEalgorithm

ProcedureDECREASE differs from the classical dis-
tributed Bellman-Ford algorithm (e.g., see [14]) in the
way in which messages are propagated. In the Bellman-
Ford algorithms messages containing the estimated dis-
tances are sent to all the nodes in the graph. In the
algorithm described in this section these messages are
sent only to the nodes that change the shortest path with
respect to at least one source as a consequence of the
operationsσi.

The correctness proof of the incremental algorithm is
given in [18]. The complexity bounds of the algorithm
are stated in the next theorem.

Theorem 2:The concurrent update of all-pairs shortest
paths over a graphG with n nodes and positive real
edges weights, after a set ofweight decreaseoperations,
requiresO (maxdeg·∆) messages andO (n) space per
node.
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Proof: Given a sources and a weight decrease
operationσi, a nodev can updateRTv[s] at most|δσi,s|
times. Each time thatv updatesRTv[s], it sendsdeg(v)
messages. Hence,v sends at mostmaxdeg· |δσi,s| mes-
sages. Since there are|δσi,s| nodes that change their
distance froms as a consequence ofσi, the number of
messages related to the sources sent as a consequence
of operationσi is maxdeg· |δσi,s|. The sum of this value
over all sourcess ∈ V and weight decreaseoperations
σi, i ∈ {1, 2, ..., k} is:

k∑

i=1

∑

s∈V

(maxdeg· |δσi,s|) = maxdeg·∆

Thus, the message complexity isO (maxdeg·∆). The
space complexity isO(n) per node because a node stores
only RTv[·].

V. EXPERIMENTS

In this section we describe the experiments we per-
formed to check the effectiveness of our algorithms also
in the practical case.

Experimental environment. All the experiments have
been carried out on a workstation equipped with a 2,66
GHz processor (Intel Core2 Duo E6700 Box) and a 2Gb
RAM (PC6400 PRO Series, 800 MHz). The experiments
consist of simulations within the OMNeT++ environ-
ment [19].

OMNeT++ is an object-oriented modular discrete event
network simulator, useful to model protocols, telecommu-
nication networks, multiprocessors and other distributed
systems. It also provides facilities to evaluate performance
aspects of complex software systems where the discrete
event approach is suitable. An OMNeT++ model con-
sists of hierarchically nested modules, that communicate
through message passing. Modules and messages can
have their own parameters, stored in arbitrarily complex
data structures, that can be used to customize specific
behaviors or topologies.

In our model, we defined a basic modulenode to
represent a node in the network. A nodev has a communi-
cationgatewith each node inN(v). Each node can send
messages to a destination node through achannelwhich
is a module that connects gates of different nodes (both
gate and channel are OMNeT++ predefined modules).
In our model, a channel connects exactly two gates and
represents an edge between two nodes. We associate two
parameters per channel: aweightand adelay. The former
represents the cost of the edge in the graph, and the latter
simulates a finite but not null transmission time.

Implemented algorithms. We implemented the algo-
rithms described in Sections III and IV, that in the remain-
der we denote as DECR and INCR. In order to compare
their performances with respect to known algorithms in
literature, we also implemented three different versions of
the Bellman-Ford algorithm. They are denoted as BF.1,
BF.2 and BF.3 and briefly described as follows.

BF.1 In this version, described in [14], each nodev
updates its estimated distance to a nodes, by
simply executing the iteration

d[v, s] := min
u∈N(v)

{w(v, u) + d[u, s]}

using the last estimated distancesd[u, s] re-
ceived from the neighborsu ∈ N(v) and
the latest status of its links. Eventually, node
v transmits the new estimated distance to its
neighbors. It requiresO(n · maxdeg) space per
node to store the last estimated distance vector
{d[u, s] | s ∈ V } received from each neighbor
u ∈ N(v).

BF.2 The only difference with the previous version
is that the nodev does not explicitly store the
estimated distancesd[u, s] which are asked to
the neighbors when needed. This results inO(n)
space per node.

BF.3 This version is described in [20]. It assumes that
each nodev initially overestimates the distance
with the remaining nodes in the network. Then,
for each newd[u, s] received from a neighbor
u ∈ N(v), it first checks whether its estimated
distance tos can be improved, and, in the affir-
mative case, it sends the new estimated distance
to each neighbor butu. It requiresO(n) space
per node.

Executed tests.We compared the experimental perfor-
mances of DECR against those of BF.1 and BF.2, as
follows. We randomly generated a set of different tests,
where a test consists of a dynamic graph characterized by
the following parameters:

• n, the number of nodes of the graph;
• dens, the density of the graph. It is computed as the

ratio betweenm and the number of the edges of the
n-complete graph;

• k, the number of edge update operations.

For n we used three values: 100, 300, and 500. For
each possible value ofn, we chosen different values
of dens ranging from (log n + 3)/n – a value that
guarantees a connected graph with a probability of 95% –
to 0.3. The numberk ranges from0.02m to 0.16m. Edge
weights are non-negative real numbers randomly chosen
in [1, 200]. Edge delays are expressed in milliseconds,
and are randomly chosen in[100, 1000]. For INCR, edge
weights are decreased by a percentage randomly chosen in
the range[10%, 90%], while for DECR, edge weights are
increased by a percentage randomly chosen in the range
[10%, 400%]. For each test configuration – represented
by the triple (n, dens, k) – we performed at least four
different experiments. All the obtained data has to be
intended as average values together with the standard
deviations.

Due to memory and execution time limits, we were not
able to run experiments for values ofn larger than 500
and values ofk larger than 5000 (with a few exceptions).
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Furthermore, we built a test configuration which shows
that a weight increase let BF.1 and BF.2 to fall into a loop,
while DECR is able to prevent this phenomenon.

Decremental algorithm: results. The performances of
DECR have been compared to those of BF.1 and BF.2
(BF.3 cannot be used when edge weights increase).

In Figure 6 we report the number of messages used by
the three algorithms whenn = 100 anddens = 0.0964.
BF.2 is worse than the others: it requires from 10 to
15 times the number of messages needed to both BF.1
and DECR. Considering the experiments over all the test
configurations, this ratio ranges from 10 to 50. Hence, in
what follows, we report a more detailed comparison of
only BF.1 and DECR.
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Figure 6. Number of messages needed by DECR, BF.1 and BF.2

Figure 7 shows the same results of Figure 6, but BF.2 is
omitted. Here, it is evident that the two algorithms require
approximately the same number of messages: in general,
BF.1 requires less messages, but the there are instances
in which DECR performs better.
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Figure 7. Number of messages needed by DECR and BF.1

A different view of the messages sent by the two algo-
rithms is given in Figure 8. Given a set of experiments,
let m(A) be the average number of messages sent by
a generic algorithmA. Then, we define themessage

exchange percentage gain (gain%)as:

m(BF.1)−m(DECR)
m(DECR)

· 100.

Figure 8 shows the gain% for the set of experiments
represented in Figure 7.
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Figure 8. Message exchange percentage gain in the decremental case

Regarding all the remaining experiments, the results are
summarized in Table I.

TABLE I.
SUMMARY OF RESULTS

n dens gain% std.dev. gain%
100 0.096 -8.28 16.74
100 0.122 -27.92 32.99
100 0.148 -28.81 14.11
100 0.174 -33.36 11.34
100 0.2 -43.54 13.20
300 0.037 -11.35 7.78
300 0.078 -48.72 14.16
300 0.118 -49.01 7.89
300 0.159 -64.90 3.60

Each row represents a set of experiments characterized
by a test configuration. The first two values represent the
number of nodes and the density of the networks. For
each test configuration, at least 20 experiments have been
performed by taking different values ofk in the range
0.02m to 0.16m. The remaining two columns report the
average values gain% and their standard deviations. No-
tice that the values of gain% are negative, meaning that, in
average, BF.1 performs better than DECR. However, the
extra number of messages used by DECR can be seen as
the price to avoid space consumption, looping and count-
to-infinity phenomena.

This is explained in Figure 9 that shows a classical
topology where BF.1 and BF.2 count to infinity and create
a loop in which nodesa choosesb as via to s and
viceversa. In particular, when the weight of the edge(s, v)
changes,v updates its distance tos. Now, we concentrate
on the operations performed by nodesa and b. When
nodea (b, resp.) performs the updating step, it finds out
that its new via tos is b (a, resp.). Subsequent updating
steps (but the last one) do not change the via tos of
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Figure 9. A graphG before and after a weight increase on edge(s, v).

both a and b, but only the estimated distances. For each
updating step the estimated distances increase by 1 (i.e.,
the weight of the edge(a, b)). The counting stops after
a number of updating that depends on the new weight of
the edge(u, v). If the new weight is∞ - that is, the link
(u, v) breaks - then the algorithm counts to infinity.

Conversely, DECR requires few steps to update both the
estimated distance and via tos for each node inG. When
s andv detect the weight change, they perform Procedure
INCREASEwith respect sources. In particular,s does not
performsBUILD -TABLE phase, whilev does. Whenv gets
the estimated distances tos from its neighbors (Line 6 of
ProcedureINCREASE), it receives+∞ from both a and
b. This is due to the fact that, whena (b, resp.) performs
ProceduresDIST, the test at Line 1 returns true. At the end
of these executions,v correctly updates its routing table
and sends messagesincreaseto each neighbor. Hence,s,
a, andb perform ProcedureINCREASE, but onlya andb
perform theBUILD -TABLE phase. In this phase,a and b
send∞ (as their estimated distance tos) to each other
in response to theget-distmessage (see Line 6). This is
due to the fact that, during the executions of Procedure
DIST, both a and b are performing theBUILD -TABLE

phase and then, the test at Line 1 returns true. Hence,
both a and b correctly update their routing tables in one
step. Subsequent messages sent bya andb do not produce
further local data modification.

The tests on the example shown in Figure 9 are reported
in Table II.

TABLE II.
COUNT-TO-INFINITY

w(v, s) DECR BF.1 BF.2
100 39 702 3491
200 39 1402 6991
300 39 2102 10491
400 39 2802 13991
500 39 3502 17491
600 39 4202 20991
700 39 4902 24491
800 39 5602 27991
900 39 6302 31491

1000 39 7002 34991

The results show that DECR requires a constant number
of messages, while, as expected, BF.1 and BF.2 require
a number of messages that depends on the new weight
on the edge(s, v). Notice that, the table shows thetotal
number of messages required by the algorithms, while
in the previous discussion we have only considered the

messages required to update the routing table with respect
to s.

To conclude our discussion on the performances of
the three implemented algorithms, we show the results
about the space occupancy. BF.1 requires to store, for
each destination, the estimated distance given by each of
its neighbors, BF.2 only its estimated distance, whereas
DECR is something in between: the estimated distance
and the setvia. Since it is not common to have more
than one via to a destination, the size to store the routing
table for DECR is very close to the size required by BF.2.

TABLE III.
SPACE REQUIREMENTS IN THE DECREMENTAL CASE

n dens DECR BF.1 (max) BF.1 (avg) BF.2
100 0.096 206 1900 476 200
100 0.122 203 2300 604 200
100 0.148 201 2500 726 200
100 0.174 201 3100 862 200
100 0.200 201 3300 992 200
300 0.037 607 7500 1677 600
300 0.078 627 12300 3498 600
300 0.118 608 18000 5352 600
300 0.159 604 21300 8634 600
300 0.200 610 25800 8979 600
500 0.023 1006 13500 3005 1000
500 0.067 1010 29000 8470 1000
500 0.111 1009 41500 13935 1000
500 0.155 1010 56000 19565 1000
500 0.200 1009 68000 24950 1000

Table III summarizes the data relative to the space used
by the three algorithms, assuming that the cost to store
either a destination or an estimated distance is unitary.
The third column gives the space used by DECR. In
particular, it reports the space consumption of the node
with the maximum size ofvia. BF.1 requires much
more space (that is given byn times the degree of each
node): the fourth column reports the space consumption of
the node with maximum degree while the average space
consumption per node is listed in the fifth column. The
last columns gives the space used by BF.2 for each node.
This value is given by two timesn.
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Figure 10. Number of messages needed by INCR and BF.3

Incremental algorithm: results. In the following, we will
compare the performance of BF.3 with respect to INCR.
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Since, the space required by the two algorithms is the
same, then we just focus on the number of messages they
send.

In Figure 10 we report the number of messages used by
the two algorithms whenn = 100 and dens = 0.0964.
The average number of messages required by INCR is
always less than that required by BF.3. The gain%, defined
in this case as

m(BF.3)−m(INCR)
m(BF.3)

is about 15% and it is shown in Figure 11.
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Figure 11. Message exchange percentage gain in the incremental case

We repeated the experiments for many different test con-
figurations, always reaching results qualitatively similar to
those shown in Figure 10. These results are summarized
in Table IV. Each row in the table refers to at least 40
tests and it is worth to note that the gain% is always in
favor of INCR.

TABLE IV.
PERCENTAGE GAIN IN THE INCREMENTAL CASE

n dens gain% std.dev. gain%
100 0.096 14.81 0.73
100 0.147 11.30 0.46
100 0.198 9.93 0.28
100 0.249 8.68 0.66
100 0.3 8.30 0.67
300 0.037 13.10 0.43
300 0.103 7.94 0.33
300 0.168 6.78 0.26
300 0.234 6.05 0.27
300 0.3 5.76 0.23
500 0.024 12.77 0.22
500 0.093 6.85 0.19
500 0.162 5.57 0.22
500 0.231 5.20 0.17
500 0.3 4.69 0.11

VI. FUTURE WORK

Future work will explore the possibility to extend the
partially dynamic solutions proposed here to the more
realistic fully dynamic case, while keeping the merits of
the partially dynamic solution that is: being concurrent

and, in many cases, free of the looping and count-to-
infinity phenomena. Another research direction is that of
experimentally compare our solution with other variants
of the Bellman-Ford methods known in the literature.
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