
ADE: Utility Driven Self-management in a

Networked Environment

Debzani Deb
Montana State University, Bozeman, USA

E-mail: debzani@cs.montana.edu

M. Muztaba Fuad
Winston-Salem State University, Winston-Salem, USA

E-mail: fuadmo@wssu.edu

Michael J. Oudshoorn
The University of Texas at Brownsville, Brownsville, USA

E-mail: michael.oudshoorn@utb.edu

Abstract ADE, autonomic distributed environment, is a

system which engages autonomic elements to automatically

take an existing centralized application and distribute it

across available resources. The autonomic elements provide

self-management to handle the complexities associated with

distribution, configuration, coordination and efficient execu-

tion of program components. The proposed approach models

a centralized application in terms of an application graph

consisting application components and then deploys the appli-

cation components across the underlying utility-aware hierar-

chically organized distributed resources so that all constraints

and requirements are satisfied and the system’s overall utility

is maximized. Then, based on the observations obtained by the

monitoring of the system resources, ADE redeploys the appli-

cation graph to maintain maximized system utilization in spite

of the dynamism and uncertainty involved in the system. One

important aspect of ADE is that, the deployment decisions can

be made based solely on locally available information and

without costly global communication or synchronization. The

proposed model is therefore decentralized and adaptive.

Index Terms Automatic partitioning, autonomic computing,

self-management, self-optimization, utility function.

I. INTRODUCTION

The growth of the Internet, along with the proliferation

of powerful workstations and high speed networks as low-

cost commodity components, is revolutionizing the way

scientists and engineers approach their computational prob-

lems. With these new technologies, it is possible to aggre-

Based on "On Utility Driven Deployment in a Distributed Environment"

by D. Deb and M. J. Oudshoorn which appeared in the proceedings of the

Fourth IEEE Workshop on Engineering of Autonomic Systems (EASe

2007), Tucson, Arizona, USA, March 2007. © 2007 IEEE.

gate large numbers of independent computing and commu-

nication resources with diverse capacities into a large-scale

integrated system. Many scientific fields, such as genomics,

phylogenetics, astrophysics, geophysics, computational

neuroscience or bioinformatics require massive computa-

tional power and resources and can benefit from such an

integrated infrastructure.

In most corporations, research institutes or universities,

there are significant numbers of computing resources un-

derutilized at various times. By harnessing the computing

power and storage of these idle or underutilized resources,

a large-scale computing environment with substantial

power and capacity can be formed. With such an infrastruc-

ture, it is possible to solve computationally intensive prob-

lems efficiently in a cost effective manner as opposed to

replacing these systems with expensive computational re-

sources such as supercomputers. Having such a large-scale

system, one can effectively partition an existing centralized

application in terms of communicating components and

distribute those components among the available resources

in a manner which results in efficient execution of user

program and maximized resource utilization.

 However, there are many challenging aspects associated

with effectively partitioning large-scale applications into

several components as well as the mapping and scheduling

of those components over the heterogeneous resources

across the system. Firstly, the programmer wishing to exe-

cute such an application may not have necessary skills to

rewrite the application to achieve effective partitioning and

distribution across the network. To transform a regular,

centralized application into a distributed one, the program-

mer needs to perform a large number of changes and most

of them require thorough knowledge of both the application

structure and the underlying architecture where the applica-

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 7

© 2007 ACADEMY PUBLISHER

tion is going to be deployed. Secondly, ensuring maximum

utilization requires mechanisms to estimate the application

components computation and communication needs and

their interdependencies so that an efficient mapping of

components to resources can be achieved and the map-

ping’s communication cost is minimized. Thirdly, applica-

tion behavior is highly dynamic and a different distribution

configuration may be appropriate in different phases of the

execution of an application. Therefore, application compo-

nents should be easy to migrate at runtime to enhance local-

ity and to minimize communication cost. Finally, the appli-

cation components should be tailored to dynamically re-

spond to their environment by expanding their functionality

or enhancing their performance as the underlying infra-

structure varies over time. Each of these factors introduces

additional complexities. In order to deal with them the sys-

tem must be adaptive and dynamic in nature.

 It would be tremendously useful to have a system that

can automatically transform an existing application to a

distributed one without the programmer being concerned

about distribution and management issues, and which can

deploy the distributed application across a large-scale inte-

grated infrastructure efficiently. The complexity and cost

associated with the management of such an infrastructure

and with the manual transformation of applications to be

deployed on that infrastructure is enormous. Therefore,

automation is paramount to lower operation costs, to allow

developers to largely ignore complex distribution issues, to

manage system complexities and to maximize overall utili-

zation of the system. This research envisions such an auto-

matic system as an autonomic computing challenge [1]. In

this paper, a self-managing distributed system that incorpo-

rates autonomic entities to handle the complexities associ-

ated with distribution, configuration, coordination and effi-

cient execution of program components is described. The

system is referred as ADE (Autonomic Distributed Envi-

ronment) [3-8]. The specific objectives that ADE tries to

pursue are:

1. To automatically identify the communicating applica-

tion components, and their dependencies, within a cen-

tralized application and to deploy them to best take ad-

vantage of the underlying distributed computing re-

sources.

2. To enable distributed resources to self-organize and

self-manage.

3. To develop techniques that self-optimize the program

execution and the use of distributed computational re-

sources in order to maximize the system’s overall

business utility rather than focusing on single metrics

such as minimizing execution time or maximizing

throughput or utilizing resources in best possible way.

 ADE’s approach is to construct an application model

for a centralized application, represented as an application

graph and then deploy the application components across

the underlying hierarchically organized distributed re-

sources with little or no human intervention. Then, based

on the observations obtained by the monitoring of the sys-

tem resources, ADE automatically migrates application

components, reallocates resources and redeploys the appli-

cation graph. With respect to the self-optimizing criteria,

ADE maximizes a specific utility function [2] that returns a

measure of the overall system utility based on executing

application’s requirements, system’s operating conditions

as well as some user policies, priorities and constraints.

During execution, resource allocation and other operating

conditions may change; the corresponding change in the

overall utility of the system can be calculated by this utility

function and decisions can be taken toward maximizing

this value.

 This paper provides an overview of ADE [3-8], but

focuses primarily on two aspects of self-management: self-

configuration and self-optimization. The other two aspects

of autonomic computing defined in [1] are the focus of our

earlier works [5-7]. Ref. [4] provides a detailed description

of the static analysis and application graph construction

approach taken by ADE. This paper specifically focuses on

the modeling of the application and underlying architecture

into a common abstraction and on the incorporations of

autonomic features to those abstractions to achieve self-

managed deployment. To represent the underlying hetero-

geneous infrastructure, a hierarchical (tree) model [9,10] of

distributed resources has been adopted that offers self-

organization of distributed nodes in a utility-aware way.

To accomplish the self-optimization, a utility-function has

been formulated that governs both the initial deployment of

an application and maintains the optimality during execu-

tion despite the dynamism and uncertainty associated with

the application and the networked environment. Moreover,

self-management is decentralized to provide adaptability,

scalability and robustness.

 A preliminary version of this paper [8] describes early

concepts. However, this paper details the design and archi-

tecture of ADE and elaborates how the main focuses of this

paper such as self-configuration and self-optimization fits

in the overall flow of operation. This paper also includes a

detailed and more formal description of the task of config-

uring and optimizing deployed application graph on the

underlying distributed resources while maximizing the util-

ity from those resources. The remainder of the paper is

organized as follows. Section II presents an overview of

ADE along with the different steps associated with applica-

tion deployment process. Section III and IV describes the

graph and tree representation of the application and the

underlying networked environment respectively. Section V

illustrates the formulation of the utility function followed

by the detailed discussion of initial deployment and optimi-

zation. Section VI presents experimental evaluation of the

proposed deployment with the help of an illustrative exam-

ple. Section VII discusses the related researches and section

VIII concludes the paper.

8 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

II. AUTONOMIC DISTRIBUTED ENVIRONMENT (ADE)

 ADE aims to achieve self-management of a distributed

system via interconnections among autonomic elements

across the system. ADE targets existing Java programs,

consisting of independent or communicating objects as

components, and automatically generates a self-managed

distributed version of that program. Based on the cross-

platform Java technology, ADE is expected to support all

major contemporary platforms and handle heterogeneous

issues successfully. The availability of the source code can

not always be assumed, so the proposed system performs

analysis and transformations at the byte-code level. How-

ever, applications for which source code is available can be

transformed to byte-code and can exploit the benefits of-

fered by this research.

A. Flow of Operation

 Fig. 1 shows ADE’s overall flow of operation. At first,

a code analyzer statically inspects the user supplied byte

code to derive an object interaction graph. Based on this

graph, the partitioner then generates several partitions (con-

sists of a single object or grasps of objects) along with the

distribution policies and deploys those partitions to a set of

available resources. Deployment decisions are based on

several criteria such as the resource (CPU, memory, com-

munication bandwidth etc.) requirement of the objects and

their interactions, various system information collected via

monitoring services such as resource availability, work-

load, usage pattern etc. or any user supplied policy.

 During deployment, an autonomic transformer injects

the distribution and self-management primitives to

the partitions according to the system deduced distribution

policies and any other user-supplied policies/constraints

(e.g. the component C requires some input data that resides

on Machine M, so the component C should execute on Ma-

chine M) so that the resultant self-managed partitions can

execute on different nodes in a distributed fashion. The

underlying system comprises a platform-agnostic language

and the associate pre-processor for byte-code to byte-code

translation. The transformed program is based on self-

contained concurrent objects communicating through any

standard communication protocol and incorporates salient

features from existing middleware technologies.

B. Autonomic Elements in ADE

 In ADE, every distributed site (i.e. PCs, laptops, work-

stations, servers etc.) is managed by an Autonomic Element

(AE) that control resources and interacts with other AEs in

the system. More specifically, each AE encapsulates the

program partition allocated to the site managed by the AE

as its Managed Element (ME) and interacts with the envi-

ronment by using standard autonomic metaphors. Each AE

monitors the actual execution of the application and the

behavior of the resource itself. AEs also set up a mutual

service relationship to interact with each other so that in-

formation can be shared among them. Based on the infor-

mation, the underlying autonomic system then adjusts the

static parameters such as resource consumption, amount of

communications to their run time values and if needed dy-

namically repartitions the graph. Besides this basic func-

tionality, some of the AEs in the system are given some

higher level management authority such as managing sys-

tem registry or policy depository; acting as the user inter-

face for program partitioning and transformation; being the

source or destination of program input and output; manag-

ing workload etc.

To use the autonomic resources, a potential user must

first register her computer with the autonomic system

through some user portals. Once registered, an AE is initi-

ated on that machine and configures itself properly with all

the necessary system data and policy information and con-

sequently makes its services available to other AEs. A user

may deregister their machine at any time and consequently

the AE running on that machine will delegate its current

managed element to other available AE without the loss of

useful computation. Since the distributed environment is

shared by many users, the environment can change at run-

time and so does the applications communication pattern,

consequently AE need to adapt accordingly. To achieve

that, AE provide monitoring services and based on the

monitored data automatically takes decisions such as mi-

grate the managed element (or portion) to a less busy AE,

delays other non dedicated tasks to consume more resource,

initiate backup to accommodate more tasks etc.

C. Application Deployment in ADE

ADE supports multiple, logically separated application

environments each capable of supporting a distinct applica-

tion. As the application components within an application

execute with different constraints and requirements, they

Autonomic Trans-

former
Policy

Editor

S E

S E

S E

S E

S E

S E

Policy Repository

……… …..

……… …..

……… …..

Registry

Byte code

Static Analyzer

Graph info.

Partitioner

System data

Figure 1. Overall flow of operation.

Object Graph

Manageable autonomic

partitions

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 9

© 2007 ACADEMY PUBLISHER

should be mapped to appropriate hardware resources in the

distributed environment so that their constraints are satis-

fied and they provide the desired level of performance.

Mapping between these resource requirements and the spe-

cific resources that are used to host the application is not

straightforward.

ADE uses a three step process to perform this mapping

as shown in Fig. 2. In the first step of mapping, the applica-

tion’s code is statically analyzed to extract an application

model expressed as lower-level resource requirements such

as processing, bandwidth, storage etc. The next step in-

volves constructing a model of the underlying network by

obtaining knowledge about available resources such as

their computational and storage capabilities, workloads etc.

and then organizing them according to network proximity

(considering latency, bandwidth etc). The third and final

step allocates a specific set of resources to each applica-

tion with respect to the resources required by the applica-

tion components and the resources available in the sys-

tem. The goal of the mapping is to maximize the systems

overall utility based on certain policies, user-defined con-

straints and environmental conditions.

D. An Illustrative Example

Throughout this paper, a simulate-analyze-visualize ap-

plication (Fig. 3) is used to illustrate and evaluate the

important concepts described in this paper. A large number

of scientific and engineering applications can be character-

ized by this notion, where information is simulated in a

simulator (a high performance server may be required for

execution), then passed to some analyzer that analyzes,

operates and transforms the data, and eventually delivered

to some clients (high end graphics may be necessary) for

visualization. This specific application is chosen for

Figure 2. Application deployment process.

Figure 3. Simulate-Analyze-Visualize Application

investigation to realize the concepts of self-management in

ADE because it is inherently distributed in nature and

closely resembles vast majority of large-scale scientific and

engineering applications this research is concerned with.

III. THE APPLICATION MODEL

 To be truly autonomic, a computing system needs to

know and understand each of its elements. One such ele-

ment is the application executing on the autonomic infra-

structure; the system needs detailed knowledge of it. In

ADE, an application is modeled as a graph consisting of

application components and the interactions among them.

Analyzing and representing software in terms of its com-

ponents and their internal dependencies is important in or-

der to provide the self-managing capabilities because this is

actually the system’s view of the run-time structure of a

program. Well structured graph-based modeling of an ap-

plication also makes it easier to incorporate autonomic fea-

tures into each of the application components. Moreover,

graph theory algorithms can be exploited during deploy-

ment of such an application.

 To construct such an application graph, two pieces of

information must be determined, namely: 1) the resources

(i.e. computation time, storage, network etc.) required by

each application component and 2) the dependencies (di-

rectionality and weight) among the components which is

caused by the interactions among them. More formally, it is

necessary to construct a node-weighted, edge-weighted

directed graph G = (V, E, wg, cg), where each vertex v V

represents an application component and the edge (u,v) E

resembles the communication from component u to com-

ponent v. The computational weight of a vertex v is wg(v)

and represents the amount of computation that takes place

at component v and the communication weight cg(u,v) cap-

tures the amount of communication (volume of data trans-

ferred) between vertices u and v. When deployed across a

distributed heterogeneous environment, these weights

along with various system characteristics, such as the proc-

essing speed of a resource and the communication latency

between resources, determine the actual computation and

communication cost.

IV. THE NETWORK MODEL

In this research, the target environment for the deploy-

ment of the application is a distributed environment con-

sisting non-dedicated heterogeneous and distributed collec-

tion of nodes connected by a network. A resource (node) in

this environment could be a single PC, laptop, server or a

cluster of workstations. Therefore, each node has different

resource characteristics. The communication layer that

connects these diverse resources is also heterogeneous con-

sidering the network topology, communication latency and

bandwidth. This research aims to organize this heterogene-

ous pool of resources in a structure such that nodes that are

Application
Extracted

Application

Model

Distributed

Environment

Network

Model

Deployment

Constraints

and policies

S

V

V

V

AA

A

V

10 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

closer to each other in the structure are also closer to each

other considering network distance (latency, bandwidth

etc.). Once structured in this way, it is possible to detect

higher utility paths that correspond to low latency and high

bandwidth between network nodes. The deployment of the

application graph then can be performed in a utility-aware

way, without having full knowledge about the underlying

resources and without calculating the utility between all

pairs of network nodes.

To achieve this, a hierarchical model of the computing

environment is utilized where the execution begins at the

root and each node either executes the tasks assigned to it

or propagates them to the next level. More specifically,

ADE adopts a tree to model the underlying heterogeneous

infrastructure. Each node in the tree is solely responsible

for deciding whether to execute the application components

allocated to it or propagate them down the hierarchy. Each

parent node is capable of calculating the utility of its child

based on processor speed, workload, communication delay,

bandwidth etc. and selects its best child’s subtree to dele-

gate the components to, so that the overall communication

is minimized and the delegated component’s resource re-

quirement is satisfied.

There are three main advantages of representing the un-

derlying layer as a tree network. Each deployment decision

can be made locally, which may not be optimal compared

to centralized deployment, but certainly is efficient and

adaptive. Maintaining a global view of a large-scale dis-

tributed environment becomes prohibitively expensive,

even impossible at a certain stage, considering the poten-

tially large number of nodes and the unpredictability asso-

ciated with a large-scale computing system. The tree model

adopted in this paper can grow and reconfigure itself to

adapt to the dynamically evolving computing environment.

Second, this model relieves ADE from the costly

evaluation of the utility function globally by limiting the

utility evaluation within a subtree performed by the parent

of that subtree. Each parent is capable of monitoring its

child and calculating the corresponding utilities, as a result,

able to redeploy the assigned subtrees corresponding to the

changes in utility of its child. Optimizing certain utility

function globally is certainly more attractive, however this

does not scale very well when the number of deployed ap-

plication and/or number of resources grow within the sys-

tem. On the other hand, ADE may not be able to optimize

utility or resource allocation, but by reducing the problem

of evaluating and maintaining the utility across the whole

system to the problem of managing the utility within a sub-

tree, ADE promises to provide better adaptability and scal-

ability in such a dynamic environment.

Third, the model fits very well with the classes of appli-

cations this research is concerned with. For instance, appli-

cations with large number of independent tasks basically

exhibit master-slave behavior and coincide well with the

tree model. Inherently distributed applications, on the other

hand, can be modeled as divide and conquer type applica-

tions where components are divided among partitions and

allocated to the children for execution. Even in the case of

applications consisting of a large number of communicat-

ing components, there is still a single entity that initiates

the set of communicating components and allocates them to

processors. It is natural to think of the initiator as the root

of the tree.

The proposed hierarchical organization is obtained by

modeling the target distributed environment as a tree in

which the nodes correspond to compute resources, edges

correspond to network connections and execution starts at

the root. More specifically, a tree structured overlay net-

work is used to model the underlying resources, which is

built on top of the existing network topology. Such an ar-

chitecture was utilized recently in [9,10] to investigate ap-

plications with master/worker paradigm. Fig. 4(a) shows an

example computing environment where resources are dis-

tributed in three domains and Fig. 4(b) illustrates how this

environment translates into a tree.

Formally, the entire network is represented as a

weighted tree T = (N, L, wt, ct), where N represents the set

n9

n10

n11

n13

n12

n2 n3

n1

Domain 2

Domain 3

Figure 4(a). Sample distributed environment spans at 3 domains.

Figure 4(b). Hierarchical model of the environment.

n4

n5

n6

n8

n7

n1

n2 n3n4

n5
n8

n6 n7

n11

n9
n12

n13

n10

Domain 1

Root

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 11

© 2007 ACADEMY PUBLISHER

of computational nodes and L represents network links

among them. The weights associated with the nodes and

edges represent the corresponding expected computation

and communication costs. The computational weight wt(n)

indicates the cost associated with each unit of computation

at node n. The communication weight ct(m,n) models the

cost associated with each unit of communication of the

link between node m and n considering both

bandwidth and latency. When two nodes are not connected

directly, their communication weight is the sum of the link

weights on the shortest path between them. Therefore, lar-

ger values of node and edge weights translate to slower

nodes and slower communication respectively.

V. SELF-CONFIGURATION AND SELF-OPTIMIZATION

 This section discusses the application graph deployment

process and formulates the utility function that basically

drives the initial deployment and further optimization.

A. Utility Function

In a distributed environment, the utility function can be

calculated based on many criteria such as application per-

formance, resource utilizations, user defined policies, or

economic concerns. These issues can be associated with

different objective functions of the optimization problem.

In this research, the utility function governs both the initial

placement of application components and their reconfigura-

tions. The goal is to minimize the average application exe-

cution time and to provide high utilization of resources

ensuring that both application-level (each application may

have different importance to the system) and system-level

requirements and constraints are satisfied. Toward our goal,

the following criteria need to be considered by the utility

function:

1. While mapping partitions containing a large number of

application components in the tree network, nodes with

a higher degree of connectivity should result in a

higher utility as a higher degree allows more directions

for partition growth.

2. Faster and less busy nodes should be favored over

slower and overloaded nodes when assigning compo-

nents to resources.

3. Nodes with faster communication links should be pre-

ferred over nodes with slower communication links

when dealing with communication intensive compo-

nents.

4. High priority applications should be preferred during

deployment over low priority jobs.

B. Initial Deployment

Once both the application and underlying resources

have been modeled, the deployment problem reduces to the

mapping of different application components and their in-

terconnections to different nodes in the target environment

and network links among them so that all requirements and

constraints are satisfied and system’s overall utility is

maximized. In ADE, the assumption is that the application

can be submitted to any node, which acts as the root or

starting point of the application. Also the application may

end its execution either at the root node or at one or more

clients at different destination nodes. The nodes in the sys-

tem are structured into a tree-shaped environment rooted at

the source of execution according to the model described in

section IV.

Once the application graph G is submitted to the root

node of the tree network, the root then decides which ap-

plication components to execute itself and which compo-

nents to forward to its child’s sub-tree so that the overall

mapping results the highest utility. The child, who has been

delegated a set of components again deploys them in the

same way to its subtrees. For effective delegation of com-

ponents at a particular node having |P| children, graph

coarsening techniques [11] is exploited to collapse several

application components into a single partition, so that |P| or

less than |P| partitions are generated at that stage. The

coarsened graph is projected back to the original or to a

more refined graph once it is delegated to a child.

In the above approach, each parent selects the highest

utility child to delegate a particular partition (set of compo-

nents). Finding the highest utility child to delegate a parti-

tion to means finding the highest utility mapping M of the

edges (vj,vk) where vj Vr (represents the set of components

that the parent decided to execute itself) and vk Vs (repre-

sents the set of components that belong to a partition that a

parent decided to delegate). More formally, a mapping

needs to be produced, which assigns each vk Vs to a nq N

in a way such that the network node nq is capable of fulfill-

ing the requirements and constraints of application node vk

and the edge (vj,vk) is mapped to the highest utility link

considering all children available at that stage for delega-

tion. The utility of an edge (vj,vk) is represented as U(vj,vk),

and it is a mathematical function that returns the utility

based on different application and system level attributes

and considers the factors discussed in Section V.A. Con-

sidering all these issues, the utility of an edge (vj,vk), while

mapped to the network link (np,nq), where np represents

the parent in the tree-shaped network and nq represents a

potential child for delegation of application node vk, is cal-

culated by using the following function:

qptkjg

qtkg
k

q
kj

nnwvvwf

nwvwf
vnp

nnc
vvU

,,

,

2

1
,

where nc(nq) represents the number of children of network

tree node nq and np(vk) signifies the number of application

components resident on application graph node vk, if vk is a

collapsed node and represents a set of components. The

function f1 should produce lower utility when the computa-

tion cost associated with executing component vk at node nq

12 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

increases. In the same way, function f2 should return lower

values for increasing communication cost resulting from

mapping edge (vj,vk) to link (np,nq).

The terms involved in the above utility function are de-

rived to fulfill the requirements (1-3) specified in the previ-

ous section. The utility model in this scenario is the "high-

est-degree child with the fastest computation capability and

fastest communication link is more suitable for utility". To

ensure that the partitions with the largest number of com-

ponents are delegated to the highest degree child, candidate

partitions need to be sorted according to their sizes and

then deployed according to that order. In the case of simul-

taneous scheduling of multiple applications with different

priorities, ADE needs to guarantee that higher priority ap-

plications execute before applications with lower priority.

To achieve this, applications need to be ordered according

to their priorities and then mapped following that order.

The overall utility of an application graph G with priority p

due to deployment M is then calculated as:

Evv
kj

kj

vvUpMGU
),(

),(),(.

C. Self-optimization

After initial placement, the environment may change

and as a result utility may drop. Therefore it is necessary to

monitor the utility and trigger reconfiguration as required.

Reconfiguration within a subtree is expected to be a light

weight process because of the way the underlying network

is modeled. Through the resource monitoring module, each

parent node periodically measures the workload at each

child node and its bandwidth to that child node and changes

computational and communication weights wt and ct ac-

cordingly. By employing these new values in the utility

function, the parent observes the change in utility due to

the changes in the network and computes nodes, and there-

fore initiates reconfiguration autonomously. Reconfigura-

tion is costly and disruptive, therefore, it is not feasible to

initiate reconfiguration unless it is productive. ADE trig-

gers reconfiguration whenever the utility drops below a

certain threshold (user specified or system generated by

comparing the utility during initial deployment).

VI. EXPERIMENTAL EVALUATION

In order to evaluate the approaches described in the

previous sections, we set up an experimental environment

that simulates the deployment of the example application

discussed in section II.D on a networked environment

where nodes are organized as a tree. The network is repre-

sented as a collection of domains and each of them contains

a random number of nodes. Each domain acts like a LAN

and contains a single gateway through which communica-

tion with other domains is performed. Once created, the

domains are populated with a random number of nodes and

links are created to connect two randomly-chosen nodes,

provided that adding the link does not create a cycle. Es-

sentially, each domain is modeled as a tree whose root is its

gateway and each node has a randomly chosen number of

children. Each node is assigned a computational weight of

the range [3.0, 15.0] and each link is assigned a communi-

cation weight in the range [1, 10]. Similarly the vertices

and edges of the application graph (Fig. 3) are also popu-

lated with random computation and communication

weights.

At this stage, we justify the applicability of our decen-

tralized utility-driven deployment approach by finding the

highest utility mapping of an individual application graph

to the underlying network. Fig. 5 shows such a deployment

as a result of the highest-utility mapping of the application

graph (Fig. 3) to the underlying network (Fig. 4). Fig. 5

also illustrates other implementation aspects such as coars-

ening, partitioning etc. The resultant placement of applica-

tion components to the network nodes (Fig. 5(c)) validates

that it is possible to find the most efficient deployment by

applying the utility function derived in this paper locally,

between the parent-child pair, and without having the full

knowledge of the network and the utility between all pairs

of network nodes. As the nodes in the underlying layer are

organized in a hierarchy according to network proximity,

partitions are allocated to nearer nodes and communication

overhead is minimized. By decentralizing the problem of

finding the highest utility association among the set of

components and the set of nodes, this solution also makes

self-management feasible in the case of an infrastructure

containing large number of nodes.

VII. RELATED WORKS

Fully automating the organization and optimization of a

large distributed system is a staggering challenge and the

autonomic computing research community is working to-

wards that. Accord [12] is a component-based program-

ming framework to support the development of autonomic

application in grid environments. In their work, they have

proposed a new programming paradigm where the compo-

sition (configuration, interaction and coordination) aspect

is separated from computations in a component/service

based models and both computations and compositions can

be dynamically managed by the rules that are introduced

during run time. AutoMate [13] enables the development of

Grid-based autonomic applications that are context aware

and capable of self-managing. AutoMate develops an auto-

nomic composition engine to calculate a composition plan

of components based on dynamically defined objective

constraints that describe how a given high-level task can be

achieved by using available basic Grid services. Autonomia

[14] is a software development environment that provides

application developers with tools for specifying and im-

plementing autonomic requirements in a distributed appli-

cation. The aforementioned approaches are developing

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 13

© 2007 ACADEMY PUBLISHER

environments and suggest new programming metaphors in

order to realize the desired benefits of self-management in

a distributed environment. On the contrary, ADE is an exe-

cution environment intended for transforming applications

written in a centralized fashion to the corresponding dis-

tributed version and executing it in a networked environ-

ment while offering self-management at both application

and network level.

 Unity [15] shares the same goal as ADE and provides a

platform designed to help autonomic elements interact with

each others and their environment. Unity realizes a number

of autonomic system behaviors such as self-organization,

self-healing and self-optmization in a distributed environ-

ment. However, in Unity resource-level utility functions for

multiple application environments are sent to an element

called Resource Arbiter, which computes a globally opti-

mal allocation of servers across the application. In contrast,

by utilizing tree model, ADE is capable of making local

optimization decisions that are lightweight and decentral-

ized, and as a result, provides better adaptability and scal-

ability in a dynamic environment.

 Kinesthetics eXtreme [16], or KX retrofits autonomic

capabilities onto legacy systems designed and developed

without monitoring and dynamic adaptation in mind. KX is

being used to add self-configuration and self-healing func-

tionality to several legacy systems, whereas ADE is fo-

cused to provide self-configuration and self-optimization.

In addition to retrofit autonomic computing, externally,

without any need to understand or modify the target sys-

tem’s code, ADE also tries to relive the programmer from

the distributional concerns by automatically transforming a

centralized application to a distributed one and deploying it

to the underlying network.

 The system proposed in [17] shares similar goal and pre-

sents a self-adaptive middleware for distributed stream

management that deploys a large number of data flow op-

erators across the underlying network to optimize the busi-

ness utility. To achieve their goal, they adopt a hierarchical

organization of underlying resources clustered according to

various system attributes. On the other hand, ADE uses a

tree to model the distributed environment.

 Several recent works are classified as automatic parti-

tioning system [18-21] and have similar goal of distributing

an existing centralized application without rewriting the

application’s source code or modifying the existing runtime

environment. The main difference between these systems

and ADE is that ADE’s partitioning and distribution deci-

sions are utility driven. Automatic partitioning system only

contains knowledge about the internal structure of the ap-

plication, not about the environment the application is go-

ing to be deployed. ADE, on the other hand, is knowledge-

able about both the application and the underlying network

and automatically reallocates resources and reconfigures

the deployed application graph to maximize the overall

utility of the system.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper presents ADE, a self-managed distributed

environment where a centralized application is automati-

cally decomposed into self-managed components, and dis-

tributed across the underlying network to maximize sys-

tem’s utility. The approach is to construct an application

model for a centralized application, represented as a graph

of application components and their interactions and then

deploy that graph across the underlying distributed re-

sources self-organized as a utility-aware tree. A suitable

utility function is derived that controls both initial deploy-

ment and reconfiguration ensuring that system’s overall

utility is maximized while certain policies and constraints

are satisfied. The proposed model is decentralized and

adaptive. Preliminary result shows that it is possible to

achieve efficient deployment by applying the utility func-

tion derived in this paper based solely on locally available

Collapse

n1

n2n4 n3

n5 n8 n11

n6 n7 n9 n12 n13

n10

e2

e1

e3

e6 e7

e5

Figure 5(a). Application graph collapsed to a coarser level.

Figure 5(b). Graph partitions are allocated to the network nodes.

Figure 5(c). Final placement.

n1

n2n4 n3

n5 n8 n11

n6 n7 n9 n12 n13

n10

e2

e1

e3

e6 e7 e4

e5

A3

V4

V3e6

e7

A2 e4

e5

V2

A1

S

A1 A3

V1

e1

e2 e3

A2

e5

V2

S

V1

V3 V4

A3 A1

A2

V2

e4

SA2

A1 A3

V1 V4

V3

e1

e2e4

e5

e3 e6

e7

V2

S

A1 A3

V1

e1

e2 e3

A3

14 JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

information and without costly global communication or

synchronization.

Currently, ADE is able to configure an individual appli-

cation graph to the underlying network at a time while

maximizing the utility. In future, we plan to study the be-

havior of ADE in the presence of more than one application

graph. By deploying applications with different priorities at

the same time on the underlying network, we hope to see

how the higher utility paths previously available to the low

priority application may get assigned to the high-priority

application to sustain the overall utility of the system. In

future, we also like to conduct experiments to evaluate our

self-optimization approach that dynamically reconfigure

the application graph based on the changes in the network.

REFERENCES

[1]. J.O. Kephart and D.M. Chess, "The vision of auto-

nomic computing", Computer, Vol. 36, No. 1, 2003,

pp.41–52.

[2]. W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, "Util-

ity functions in autonomic systems", Proceedings. Of

the International Conference on Autonomic Comput-

ing (ICAC), May 2004.

[3]. M.M. Fuad and M.J. Oudshoorn, "An Autonomic

Architecture for Legacy Systems", Third IEEE Work-

shop on Engineering of Autonomic Systems (EASe06),

Maryland, USA, April, 2006.

[4]. D. Deb, M.M. Fuad, M.J. Oudshoorn, "Towards

Autonomic Distribution of Existing Object Oriented

Programs", International Conference on Autonomic

and Autonomous Systems (ICAS'06), 2006.

[5]. M.M. Fuad and M.J. Oudshoorn, "Transformation of

Existing Programs into Autonomic and Self-healing

Entities", The 14th IEEE International Conference on

the Engineering of Computer Based Systems

(IEEE/ECBS), Arizona, USA, 2007, pp. 133-144.

[6]. M. M. Fuad, D. Deb and M. J. Oudshoorn, "An Auto-

nomic Element Design for a Distributed Object Sys-

tem", ISCA 20th International Conference on Parallel

and Distributed Computing Systems (PDCS 2007),

Las Vegus, Nevada, USA, September, 2007, Ac-

cepted for publication.

[7]. M. M. Fuad, "An Autonomic Software Architecture

for Distributed Applications", Ph. D. thesis, Depart-

ment of Computer Science, Montana State University,

USA, 2007.

[8]. D. Deb and M. J. Oudshoorn, "On Utility Driven

Deployment in a Distributed Environment", Fourth

IEEE Workshop on Engineering of Autonomic Sys-

tems (EASe 2007), Arizona, USA, 2007.

[9]. O. Beaumont, A. Legrand, Y. Robert, L. Carter, J.

Ferrante, "Bandwidth-Centric Allocation of Inde-

pendent Tasks on Heterogeneous Platforms", Interna-

tional Parallel and Distributed Processing Sympo-

sium (IPDPS), 2002.

[10]. B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante,

"Autonomous protocols for bandwidth-centric sched-

uling of independent-task applications", International

Parallel and Distributed Processing Symposium

(IPDPS), 2003.

[11]. G. Karypis and V. Kumar, "Multilevel k-way Parti-

tioning Scheme for Irregular Graphs", Journal of Par-

allel and Distributed Computing, vol. 48, 1998, pp.

86-129.

[12]. H. Liu and M. Parashar, "Accord: A Programming

Framework for Autonomic Applications,”, IEEE

Transactions on Systems, Man and Cybernetics, Spe-

cial Issue on Engineering Autonomic Systems, Edi-

tors: R. Sterritt and T. Bapty, IEEE Press, Vol. 36, No

3, pp. 341 – 352, 2006.

[13]. M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt,

G. Zhang and S. Hariri, "AutoMate: Enabling Auto-

nomic Grid Applications", Cluster Computing: The

Journal of Networks, Software Tools, and Applica-

tions, Special Issue on Autonomic Computing, Klu-

wer Academic Publishers, Vol. 9, No. 1, 2006.

[14]. X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S.

Pavuluri, and S. Rao, "AUTONOMIA: An Auto-

nomic Computing Environment", Proc. of the 2003

IEEE International Performance, Computing, and

Communication Conference, 2003, pp. 61-68.

[15]. D. M. Chess, A. Segal, I. Whalley and S. R. White,

"Unity: Experiences with a Prototype Autonomic

Computing System", 1st International. Conference.

on Autonomic Computing (ICAC), 2004, pp. 140-147.

[16]. J. Parekh, G. Kaiser, P. Gross and G. Valetto, "Retro-

fitting Autonomic Capabilities onto Legacy Systems."

Journal of Cluster Computing, Kluwer Academic

Publishers , Vol. 9, No. 2 pp. 141-159, April 2006.

[17]. V. Kumar, B. F. Cooper, K. Schwan, "Distributed

Stream Management using Utility-Driven Self-

Adaptive Middleware", Second International Confer-

ence on Autonomic Computing (ICAC'05), 2005.

[18]. M. Tatsubori, T. Sasaki, S. Chiba and K. Itano, "A

Bytecode Translator for Distributed Execution of

Legacy Java Software", ECOOP, Hungary, June

2001, pp. 236-255.

[19]. E. Tilevich and Y. Smaragdakis, "J-Orchestra: Auto-

matic Java Application Partitioning", ECOOP,

Malaga, June 2002.

[20]. R. E. Diaconescu, L. Wang, Z. Mouri and M. Chu, "A

Compiler and Runtime Infrastructure for Automatic

Program Distribution", IPDPS, 2005.

[21]. A. Spiegel, "Automatic Distribution of Object-

Oriented Programs", PhD thesis, Fachbereich Mathe-

matik u. Informatik, Freie Universitat, Berlin, 2002.

JOURNAL OF COMPUTERS, VOL. 2, NO. 9, NOVEMBER 2007 15

© 2007 ACADEMY PUBLISHER

