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Abstract— Following a toxic contaminant release, either 
accidental or intentional, predicting the transport and 
dispersion of the contaminant becomes a critical problem 
for Homeland Defense and DoD agencies.  To produce 
accurate predictions requires characterizing both the source 
of hazardous material and the local meteorological 
conditions. Decision makers use information on 
contaminant source location and transport prediction to 
decide on the best methods to mitigate and prevent effects. 
The problem has both observational and computational 
aspects. Field monitors are likely to be used to detect the 
release and measure concentrations of the toxic material. 
Algorithms are then required to invert the problem in order 
to infer the characteristics of the source and the local 
meteorology. Here, a genetic algorithm is coupled with 
transport and dispersion models to assimilate sensor data in 
order to characterize emission sources and the wind vector. 
The parameters computed include two dimensional source 
location, amount of the release, and wind direction. This 
methodology is demonstrated for a basic Gaussian plume 
dispersion model and verified in the context of an identical 
twin numerical experiment, in which synthetic dispersion 
data is created with the same dispersion model. Error 
bounds are set using Monte Carlo techniques and 
robustness assessed by adding white noise. Algorithm speed 
is tuned by optimizing the parameters of the genetic 
algorithm. Specific GA configurations and cost function 
formulations are discussed. 
 
Index Terms—source inversion, genetic algorithm, data 
assimilation, sensor data fusion 
 

I.  INTRODUCTION 

It is often important to characterize sources of an 
atmospheric contaminant.  A modern application in 
homeland security is locating and estimating the emission 
conditions of a hazardous release. Such a release could 
range from an accidental spill of a toxic contaminant 
through an intentional release by terrorists. It is expected 
that Homeland Defense and DoD agencies will have 
monitors in the field to detect such toxic emissions. These 
__________________________________________     
Based on “A Genetic Algorithm Method to Assimilate Sensor Data for 
Homeland Defense Applications,” by S.E. Haupt, C.T. Allen, and G.S. 
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data could prove critical for 1) determining the extent of 
the emergency, 2) characterizing the source of the 
emissions, and 3) initializing subsequent predictive 
modeling. This work examines the use of these data to 
determine the source and wind information required by a 
transport and dispersion model for predicting the 
transport and dispersion of the contaminant.  This 
inversion method provides a means of assimilating 
observations into the modeling problem. 
 Some difficulties in the source characterization 
problem that must be addressed include errors in the 
monitored data, inadequate area coverage of the monitors, 
poor first guesses of the location and strength of the 
contaminant emission, meteorological data that are 
inadequate to characterize the atmospheric conditions, 
imperfect models of atmospheric transport and 
dispersion, and most importantly, the inherently chaotic 
nature of atmospheric turbulence. This last difficulty 
means that although we can statistically characterize 
pollutant concentrations, we cannot definitively predict 
an exact concentration at an instant in time, but instead 
compute ensemble average concentrations. 
Measurements, in contrast, represent a specific 
realization. There is not currently a good evaluation 
method for comparing the single realization of a field 
experiment with the ensemble average statistics from 
model output [1].  Thus, the physical specification of the 
source characterization problem is difficult. Our current 
approach attacks this problem using methods from 
computational intelligence, in this case, the genetic 
algorithm. 

A. Model Concept 
 Air pollution models can be divided into two primary 
categories: receptor and dispersion models. Receptor 
models are formulated to begin with contaminant 
concentration data from one or more receptors and 
project that information backward to characterize the 
source.  In contrast, forward transport and dispersion 
models start with the source characteristics and 
meteorological conditions, then use physical, 
mathematical, and chemical calculations to predict 
contaminant concentration at some distance from the 
source. Important input for these dispersion models 
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includes information about the emissions from the source, 
the local atmospheric conditions, and the geographical 
characterization.  Both types of models are highly 
developed and forms of them are widely used for 
diagnosis and prediction of atmospheric contaminant 
transport events [2]. 
 We formulate a coupled model that uses principals of 
receptor modeling to compare the monitored data with 
the predictions of the forward-looking dispersion model. 
The amount of the observed concentration attributable to 
each source is controlled by a source-specific tuning 
parameter, the value of which is determined by the data  
inversion method.  This method has been described in the 
literature [3-5]. This current work goes a step further, 
using the GA to tune the wind direction as well as to 
directly evolve the location and time of the release.  Thus, 
the current work reports on using the GA coupled model 
methodology to compute the release location (two 
dimensions), source strength, and the wind direction. 

B. Prior work 
     In our prior work, we demonstrated that coupling 

receptor models with dispersion models using a GA is an 
effective tool for attributing concentration contribution at 
a receptor to each of a specified number of sources [3].  
This methodology was tested using a basic Gaussian 
plume dispersion model on synthetic data for circular 
source configurations plus an actual source configuration 
for Logan, Utah. The methodology was then validated by 
using Monte Carlo techniques to determine the 
confidence intervals [4].  We also studied the robustness 
of the methodology by considering both additive and 
multiplicative white noise [4].  We found that even when 
the noise was the same magnitude as the signal, the GA 
coupled model could correctly apportion the pollutant to 
the correct source.  The next step was to replace the 
Gaussian plume dispersion model with an operational 
puff model, SCIPUFF [5].  The GA coupled model 
performed as well with SCIPUFF computing the 
dispersion as with the Gaussian plume model. That 
enhanced coupled model was then tested on field test data 
[5].  Within the limitations of the data, the coupled model 
still performed admirably.  The cases where performance 
was disappointing proved to be difficult situations during 
the field test that would be expected to impact data 
quality.  For those cases, prior comparisons of model 
results to the measured concentrations were also quite 
poor [6]. The initial reformulation of the problem for 
tuning the wind appears in [7]. This current paper 
describes how to best apply this model. 

II.  MODEL FRAMEWORK 

A. Model Formulation   
 Combining the technology of the forward-looking 
dispersion models and backward-looking receptor models 
enables using monitored concentrations to characterize 
sources, to estimate uncertainty, and to characterize the 
mean wind conditions during the time of transport. This 
coupled model integrates the physical basis of the 

dispersion calculations with the ground truth of the actual 
monitored pollutant concentrations. We choose to 
formulate the coupling problem as one in optimization 
and solve it using a genetic algorithm (GA). In particular, 
we wish to minimize the cost function formulated as 
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where Cr is the emissions predicted by the forward 
dispersion model, Rr is the monitored data value at 
receptor r, TR is the total number of receptors, and a is a 
constant:  
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 Our prior work showed that taking a difference of 
logarithms works better than a linear difference [5]. This 
issue is revisited in section V. 
 The concentrations are computed with a Gaussian 
plume model: 
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where: Cr = concentration of emission from source at 
receptor r 
 (xr ,yr ,zr ) = Cartesian coordinates of the receptor 
in the downwind direction of the source 

Q = emission rate from the source 
u = wind speed 
He = effective height of the plume centerline 

above ground 
yσ ,

zσ = dispersion coefficients, which are  the 
standard deviations of the concentration distribution in 
the y and z directions, respectively. 

This is the same Gaussian plume equation used in the 
original coupled model from our early experiments [3,4]. 
The dispersion coefficients are calculated following [8]. 
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                 (4) 

 
where x is the downwind distance (in km) and I, J, and K 
are empirical coefficients dependent on the atmospheric 
stability [8]. 

Concentration forecasts are created for each trial 
solution with (3).  These are then compared with receptor 
data for an arbitrary number of sites. The GA optimizes 
the combination of source location, strength, and surface 
wind direction that provides the best match between the 
monitored receptor data and the expected concentrations 
as compared by (1). 
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B. The Continuous Genetic Algorithm 
  For this problem we chose a continuous parameter 

GA, that is, one in which the parameters are real 
numbers. Fig. 1 flowcharts the GA solution process. The 
genetic algorithm starts with a population of random 
vectors (i.e. chromosomes) that are evaluated using the  
forward model and cost function (3). The GA then mates 
the best chromosomes, producing two new chromosomes 
from two existing chromosomes. Haupt and Haupt (2004) 
describe several mating schemes. The mating scheme 
used in [4] and [5] is single-point crossover, which 
chooses a random crossover point, swaps all parameters 
after the crossover point, and blends at the crossover 
point, thus producing two new chromosomes. Here we 
instead use a uniform crossover scheme that blends all 
parameters, not just a single parameter at the crossover 
point. This blending scheme has the advantage of 
simultaneously changing all parameters, which can 
improve performance when the response of the cost 
function to some of the parameters is correlated. In this 
case, the response to source location and wind vector are 
highly correlated. The number of new chromosomes 
produced by mating is determined by the selection rate, 
which is the fraction of the population retained in each 
generation.  

The chromosome population is further modified 
through mutations. Mutations replace individual values 
with new random values. The mutation process enables 
the algorithm to continue to search the entire solution 
space rather than converge to a local minimum. The 
number of mutations in each generation is controlled by 
the mutation rate. 

Each round of mating and mutating constitutes one 
GA generation. We run the GA for a pre-determined 
number of iterations, or until convergence has occurred. 
More details of the technique are found in [9].  We 
employ elitism, which prevents the best solution 
computed in each generation from being changed until it 
is supplanted. We discuss sensitivity to selection of the 
mutation rate and population size below.  

Figure 1. Flowchart of the continuous GA. 

 
Here, we use a hybrid GA, which uses the GA to find 

the correct solution basin, then applies the Nelder-Meade 
Downhill Simplex (NMDS) method to complete finding 
the minimum point of that basin.  The rationale for this 
combination is that the GA is sufficiently robust to 
usually find the basin of the global minima.  Once that 
basin is identified, however, the NMDS finds the bottom 
of that basin more rapidly.  As demonstrated in section 
IV, the NMDS method alone is not reliable for finding 
the global minimum. 

III. APPLICATION 

     The coupled receptor/dispersion model technique was 
demonstrated using both synthetic and real data [3], 
validated using carefully constructed synthetic data [4], 
demonstrated to work well with a highly refined 
dispersion model using field test data [5], and 
reformulated to directly solve for meteorological 
variables in addition to the source parameters [7].  Here 
we demonstrate that we can use the genetic algorithm to 
additionally back-calculate the wind direction for the 
transport and dispersion in the context of a basic 
Gaussian plume dispersion model.  The method is 
validated in identical twin experiments described below. 
Because the GA is a stochastic method initialized with 
random values for the parameters being sought, a slightly 
different solution and varying convergence properties are 
expected for each run.  Therefore, all results reported here 
are for the average of several model runs to remove the 
stochasticity from our analysis. 

A. Test Configuration 
The first step is to demonstrate and validate the 

method of tuning meteorological data and source 
characteristics. We do this in the context of an identical 
twin experiment; that is, we generate synthetic data 
produced by (3) to compute contaminant concentration at 
the receptors. Using the same dispersion model to 
generate the synthetic data as is used in the coupled GA 
system to back-calculate the source parameters enables us 
to eliminate part of the potential source of variability for 
the purpose of validating the technique.  The receptors 
are sited on a grid surrounding the source, each separated 
by 2000 meters. Model runs are performed using 2×2, 
4×4, 8×8, 16×16, and 32×32 grids of receptors. For all 
five receptor configurations, the source is located in the 
center of the receptor domain at the point defined as the 
origin (0,0). Synthetic data is produced for each receptor 
configuration for two different wind directions, 180° and 
225°. A wind direction of 180° places the plume 
centerline directly between receptors, and a wind 
direction of 225° places the plume centerline directly 
over some of the receptors. Fig. 2 shows the 8×8 
receptor grid for the 225°wind direction. 
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Figure 2. Schematic of receptor grid, pictured with plume from 225°. 

B. Results 

     Table 1 gives results computed by the GA alone: wind 
directions, source strengths, source locations, and skill 
scores for six synthetic configurations.  We used a 
population size of 1,200, mutation rate of 0.01, and 100 
iterations for each GA run. The correct solution is  = 
(180 or 225°) for our two cases, strength = 1.00, and (x, 
y) = 0, 0.  Skill scores are designed to equally weight the 
error in wind direction, source strength, and source 
location. The errors in each parameter are normalized to a 
[0,1] scale, with a score of 0 given to exact solution, and 
a score of 1 when inaccuracy exceeds a predefined upper 
bound. These scores are then added up to give a final 
score from 0 to 3, with a score of 0 denoting an exact 
solution. 

θ

     The formulas for the three skill score components are: 
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where GA is the wind direction found by the GA, act is 
the actual wind direction, SGA is the source strength found 
by the GA, Sact is the actual source strength, and dist is 
the distance from the GA-computed source location to the 
actual source location in meters.  

θ θ

     The constants in these equations were computed to 
scale each score from 0 to 1. For each equation, if the 
computed value exceeds 1, the value is truncated to 1. 
The final skill score is Swind + Sstr + Sloc, where 0 is a 
perfect score, and 3 is the worst possible score. 
     The GA system was able to find the exact solution 
given a grid of at least 8×8 receptors. For fewer 
receptors, such as a 4×4 grid, performance was less 
satisfactory, as a smaller set of receptors does not provide 
enough information to distinguish the effect of wind 
direction from that of the source characteristics. 

 

TABLE 1. GA-PRODUCED WIND DIRECTIONS, SOURCE 
STRENGTHS, SOURCE LOCATIONS, AND SKILL SCORES FOR 
SIX SYNTHETIC CONFIGURATIONS USING A POPULATION 

SIZE OF 1,200, MUTATION RATE OF 0.01, AFTER 100 
ITERATIONS, FOR ONE GA RUN. THE CORRECT SOLUTION IS 

θ = (180 OR 225), STRENGTH = 1.00, AND (X, Y)=(0.,0.) 
Configuration Strength (x, y) m θ Skill 

score 

8× 8,    θ=0° 2.96 -417,1346 184.12° 1.4581 

8× 8,    θ=225° 1.06 -26, -56 223.95° 0.1952 
16×16, θ=0° 1.00 -1, 0 180.01° 0.0029 
16×16, θ=225° 1.00 -1, 1 225.01° 0.0019 
32× 32, θ=0° 1.00 0, 0 180.00° 0.0000 
32×32, θ=225° 1.12 -123,519 220.27° 0.6870 

      

  C.   Noisy Observations 
     The results shown to this point have assumed that the 
sensors provide perfectly accurate data, the remaining 
atmospheric variables (except for the wind direction) are 
exactly known, there is no unrepresented turbulence, and 
the Gaussian plume model is an accurate representation 
of the effects of atmospheric dispersion. Of course these 
assumptions are unreasonable. In reality, we would 
expect high variability in atmospheric state, the specific 
realization does not match the ensemble average 
Gaussian plume model, and the sensors have thresholds 
and are prone to errors. In addition, the success of the GA 
in matching the synthetic data runs is partially due to the 
nature of the identical twin experiment: the synthetic 
receptor data is computed with the same dispersion model 
as the expected concentrations. With real data, the 
dispersion model would not provide a perfect match to 
the receptor data, as there are discrepancies between 
ensemble-means being predicted and realization values 
that are measured. The match is compromised further by 
monitoring errors. Therefore, the next step in validating 
the GA model is to contaminate our synthetic data with 
white noise to simulate the variability and errors present 
in monitored receptor data. 
     Twelve model runs are performed spanning two wind 
directions and six different ratios of signal-to-noise 
(SNRs): infinity (no noise), 100., 10., 1., 0.1, and 0.01. 
An SNR above 1 indicates less noise than signal, while an 
SNR below 1 indicates more noise than signal. Analyses 
are made for wind directions of both 180° and 225°. Each 
of these runs is performed repeatedly, once using each the 
five receptor grid configurations from section IIIA, so as 
to resolve the role of data quantity in determining the 
sensitivity of the results to various quantities of noise. It 
is expected that runs with more receptors are less 
sensitive to noise than runs with fewer receptors. 
     Fig. 3 indicates median skill scores across twelve runs 
for each combination of SNR and n×n receptor grid. 
Recall that lower skill scores denote better solutions. Fig. 
3 shows the results for additive noise; the results for 
multiplicative noise are quite similar. The median skill 
score is considered rather than the mean, because the 
median is less sensitive to outliers and is more indicative 
of what to expect in a single run.  Looking along the 
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horizontal lines, this figure shows that the ability of the 
model to compute the correct solution is not appreciably 
affected as long as the signal is greater than the noise 
(SNR > 1) and the receptor grid is sufficiently large. For 
SNR = 1, where the signal and noise are of equal 
magnitude, the model performs slightly better with 
additional receptors beyond an 8×8 grid. Performance at 
this point has deteriorated, however, as indicated by the 
sharp skill score gradient between SNR = 10 and SNR = 
1. For runs with more noise than signal (SNR < 1), the 
GA is unable to compute the solution to any reasonable 
degree of accuracy. It is likely that with this much noise, 
the actual plume can no longer be detected from the 
receptor data. At this noise level, we expect that no 
optimization method can find the solution. This 
conclusion is supported by the graph, which shows that 
additional noise beyond SNR = 0.1 does not affect the 
GA’s ability to compute the known solution, as solutions 
at SNR = 0.1 are already poor. 
     Recall that in the synthetic data runs without noise, the 
NMDS algorithm could be applied to further improve the 
computed solution after the 100th GA iteration. In the 
runs with noise, however, application of NMDS after the 
100th GA iteration typically did not improve the solution. 
The average skill score of the GA-produced solutions 
across all SNRs and receptor grids was 1.578, whereas 
the average skill score after the application of NMDS was 
1.582. This result is not surprising, because after the 
receptor data is contaminated with noise, the fitness 
landscape has become more rugged.  Therefore, fine-
tuning the solution with the NMDS can push the solution 
into the incorrect sub-basin.  While NMDS may find a 
lower cost function value than the GA, the objective skill 
score compares the result to the known correct solution in 
the noise-free solution space. Thus, application of NMDS 
may not result in a lower skill score for noisy data. 
 

 
Figure 3. Contour plot of median skill score for various n-by-n receptor 
grids and signal-to-noise ratios (SNRs) for additive noise. The median 

skill scores are taken over 12 runs. Lower skill scores denote better 
solutions. 

 
 
 

IV. ANALYSIS OF GA CONFIGURATION 
 
The GA model successfully found correct wind 

directions and source configurations in most cases. The 
next question is which configuration of GA parameters 
and receptor grid works best for this problem. 

A. Mating 
     Best GA performance was obtained using a mating 
scheme where all parameters are blended according to 
uniform crossover. The superiority of this method to the 
single-point crossover scheme used in our previous work 
[3-5] is most likely due to correlations between the 
effects of the parameters, specifically the response of 
plume structure to wind direction and source location. 
The location of the plume centerline is uniquely 
determined by source location and wind direction.  
Changes in either of these parameters will modify the 
location of the plume centerline.  Therefore, it is 
advantageous to modify these parameters simultaneously 
when.searching for an improved solution. Blending all 
parameters improves the average skill score across six 
runs from 0.613 to 0.061, a remarkable improvement 
from single-point crossover.  

B.  Population Size 
     For this problem, the GA requires a larger population 
size than used in our prior work [3-5] in order to 
adequately sample the solution space. With a population 
size of 1,200, the GA can find the solution in a single run 
in 100 iterations or less. All GA runs in Table 1 produced 
a solution close to the actual, and some even produced a 
solution within tolerance, defined as correct within 0.01° 
in wind direction, 1% of source strength, and 1 meter 
from the actual source location.. 
     Larger population sizes than 1,200 and longer runs 
than 100 iterations result in slightly better performance, 
but the improvement is not significant when compared to 
the extra computing time, which is proportional to the 
population size times the number of iterations. Smaller 
population sizes often converge too quickly and thus 
reach an incorrect solution, even with a high mutation 
rate. Numerous population sizes and iteration numbers 
were tested to determine the best compromise between 
computing time and performance. Table 2 shows how 
many of six runs returned the solution within the 
specified tolerance after the application of the hybrid 
GA/NMDS for 16 combinations of population size and 
number of iterations. A population size of 1,200 and 100 
iterations resulted in the prescribed solution for all six 
runs made with the least computing time. These are the 
same runs from Table 1, but Table 1 shows the results 
before the application of the downhill simplex. 

C. Receptor Grid 
     In Table 1 we saw that the GA’s performance is 
exceptional. Numerous additional runs (not shown) were 
able to find an accurate solution repeatedly, 
demonstrating the consistency of the GA. Accurate 
solutions, however, can only be found when using at least  
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TABLE 2. NUMBER OF RUNS (OUT OF SIX) THAT PRODUCED 
A SOLUTION WITHIN TOLERANCE FOR THE GIVEN 

COMBINATION OF POPULATION SIZE AND NUMBER OF 
ITERATIONS. THE ROWS ARE DIFFERENT POPULATION SIZES, 

AND THE COLUMNS ARE DIFFERENT NUMBERS OF 
ITERATIONS. 

Iteration/ 
Population 

Size 

50 100 150 200 

400 3 4 4 5 
800 4 4 4 5 

1200 5 6 6 6 
1600 5 6 6 6 

 
an 8 8 grid of receptors. For a 2×2 receptor grid, 
solutions were basically random. For a 4×4 grid, 
solutions were better, but nowhere near the exactness of 
the 8×8 grid solutions. This suggests that a 4×4 grid of 
receptors does not provide enough receptor data to 
distinguish the effects of wind direction from those of 
source location and source strength. Only two or three of 
the receptors in a 4×4 grid provide useful data since the 
others are outside the plume or nearly so. In that case 
there are four parameters to be tuned (wind direction, 
source strength, and two for source location). The poor 
results should not be surprising as there are more 
unknowns than inputs. In contrast, for an 8×8 grid, the 
number of receptors inside the plume exceeds the number 
of unknowns, so the model is successful. 

×

     Fig. 3 gives information on the grid requirements in 
the presence of noise.  It is clear that with a 32×32 grid 
we can invert the problem as long as the noise does not 
exceed the signal.  For grids on the order of 4×4 to 8×8, 
the GA model has difficulty identifying the correct 
solution as more noise is added. 

D. Cost Function Formulation 
Would a different formulation of the cost function 

produce different results?  A cost function with a higher 
power on the difference than the root mean square (RMS) 
value in (1) would weight the outliers more heavily. 
Conversely, lower powers consider the outliers as less 
important.  To evaluate how this might impact the results, 
we look at alternate formulations for the cost function. 

The normalization method makes no difference since 
the GA mating function used here is based on ranking 
rather than absolute difference.  The formulation of the 
cost function's numerator, however, could make a 
difference in the results or in the convergence properties 
of the model.  In general, for this problem, the more GA 
iterations performed, the lower will be the final value of 
the cost function.  We choose to lump accuracy and 
convergence properties into a single issue by holding the 
number of iterations in each GA coupled model run to 
20,000.   

Five additional cost function formulations are 
considered:  
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RMSAbs = RMS + AbsVal                     (12) 

                                              
        These cost functions are compared in the context of 
our original GA coupled model formulation [3-5]. Table 
3 summarizes the results for the average of six coupled 
model runs of 20,000 iterations each.  The four different 
metrics used are: 
1. RMS:  The RMS difference from the calibration 
factor that was used to create the synthetic data.  We hope 
to see this minimized.  
2. Max:  The maximum calibration factor for each run, 
averaged over the six runs.  We hope to see this as close 
to the actual as possible (1.0 for the circle and normalized 
to 0.0 for the spiral case). 
3. Min:  The minimum calibration factor each run, 
averaged over the six runs.  We again hope to see this as 
close to the actual as possible. 
4. In 0.01:  The number of sources calibrated within 
1% of actual.  A higher value for this metric implies a 
better result.   

As seen in the Table 3, the metrics for the different 
cost functions vary little, although the higher power cost 
functions perform somewhat worse than the SqRoot, 
AbsVal, RMS, and RMSAbs. For a circular 
configuration, the AbsVal function works best, closely 
followed by the SqRoot.  For a spiral geometry the results 
were somewhat different, but performance differences 
between the cost functions are relatively small. 

A few runs of the GA coupled model with 200,000 
iterations for the RMS and AbsVal cost functions 
confirmed the results of Table 3. Thus, although genetic 
algorithm results can be sensitive to formulation of the 
cost function, for this problem, any of the cost functions 
described above will give similar results.  We conclude 
that our original choice of an RMS cost function is 
reasonable and easy to compare with other methods that 
are based on RMS differences. 
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TABLE 3.  EVALUATION OF DIFFERENT COST FUNCTION 
FORMULATIONS FOR A CIRCULAR GEOMETRY. 

Metric/ 
Cost Func. 

   RMS    Max Min In 0.01 

RMS 0.050919 1.02305 0.97063 10.5 
SqRoot 0.048137 1.02045 0.97270 11.2 
AbsVal 0.044658 1.02457 0.97757 11.3 

FourthRoot 0.056269 1.02503 0.97215 8.0 
EighthRoot 0.063798 1.03520 0.97195 9.8 
RMSAbs 0.049764 1.02443 0.97546 11.2 

 

E. GA vs. Random search   
Does solving the inversion problem require the GA? 

To answer this question, the GA’s performance is 
compared to the performance of a random search method. 
Fig. 4 shows the minimum cost found by the GA (dashed) 
and a random search (solid), averaged over 5 runs, each 
with 20,000 iterations. While the “number of iterations” 
is specific to the GA, the corresponding computing time 
for the random search method is normalized to be 
equivalent to the number of GA iterations, so that the 
graph provides a fair comparison. The random search 
took much longer to find a solution with a sufficiently 
low cost function value. In fact, out to 20,000 iterations, 
the random search never caught up to the GA while the 
GA converged to the optimal solution (within the 
tolerance) in about 7000 iterations. Thus, we conclude 
that a random search is inefficient and that more 
sophisticated optimization methods such as a GA are 
required for this problem. 

F.  Refinement via a Hybrid GA 
     Because the solution after the 100th iteration is often 
close to the optimal solution (i.e. global minimum of the 
cost function), we investigate whether a traditional 
gradient descent method such as NMDS [10] further 
improves the solution.  The method begins with a first 
guess solution on a multi-dimensional surface and finds a 
local minimum in the vicinity of the starting point.  
 

 

Figure  4. Minimum cost function value as a function of iteration 
number for the GA (dashed) versus a random search method (solid), 

carried out to 20,000 iterations. 

Traditional gradient descent methods such as NMDS are 
ineffective if we cannot obtain a good first guess. As 
discussed earlier, the NMDS method can only find the 
exact solution if it is close enough initially to be in the 
same basin as the global minimum.  If we use the GA to 
provide a good first guess, the NMDS method is very 
efficient at further tuning the solution. 

The NMDS method was run on each of the solutions 
from Table 1. Each time, the NMDS method returned a 
very accurate solution. Thus, this method can be used 
effectively to further improve the accuracy of the solution 
after the termination of the GA. In this mode the GA is 
used to locate the basin of the global minimum of the cost 
function and the NMDS method to find the bottom of the 
basin. Thus, the entire optimization process is a hybrid 
GA. While the simplex is not designed to find global 
minima due to its requirement for a sufficiently close first 
guess, it provides an efficient means of refining trial 
solutions that are in the same basin as the actual solution. 
     In light of the discussion above, another issue to 
consider is whether the NMDS method, by itself, could 
solve the problem.  We recognize that the NMDS method 
is sensitive to the initial guess; therefore, we choose to 
initialize it with random initial guesses and average the 
number of cost function evaluations required to solve the 
problem directly.  Table 4 shows the number of function 
calls (a uniform unit of computing time) required to find 
the solution within a tolerance of 0.01° for wind 
direction, 1% of source strength, and 1 meter of source 
location for the GA and for the random initialization 
NMDS method. The results are averaged over two runs 
for each receptor and wind direction configuration for a 
total of twelve runs. The number of function calls 
required in any individual run using the simplex method 
is highly dependent on random initialization. Therefore, it 
is not surprising that in some instances, NMDS found the 
solution faster than the GA. The performance of the GA, 
however, is far more consistent than the NMDS method 
over the twelve runs performed, because it is able to 
overcome a bad start to find the basin of the global 
minimum. Averaged across all six configurations tested, 
the GA took an average of 11,900 function calls to find 
the solution, while NMDS took an average of 78,725 
function calls. Thus, running the NMDS method from 
random starting points until the solution is found is 
inefficient compared to the GA, and particularly the GA-
NMDS hybrid. 

 
TABLE 4. NUMBER OF COST FUNCTION EVALUATIONS 

REQUIRED TO FIND THE SOLUTION FOR THE GA AND THE 
NMDS METHOD, AVERAGED OVER TWO RUNS FOR EACH 

CONFIGURATION.  

Configuration Nelder-Mead 
function calls 

GA function 
calls 

8×8,   θ=180° 17180 19200 
8×8,   θ=225° 123235 1200 

16×16, θ=180° 60874 13800 
16×16, θ=225° 121035 3600 
32×32, θ=180° 16996 10200 
32×32, θ=225° 133034 23400 
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.IV. CONCLUSIONS 

This data assimilation and source characterization 
problem is an example of how computational intelligence 
can be applied in real-world problems of practical interest 
that extend to operational applications. Homeland 
Defense and DoD agencies have a need to assimilate 
concentration and wind data that is being monitored in 
the field and use it to characterize the contaminant 
source. The source information could then be used to 
initialize predictions of transport and dispersion of the 
contaminant.  In addition, this method provides the data 
necessary for assimilating wind direction into 
meteorological forcing models for transport and 
dispersion. It is related to sensor data fusion in that it uses 
data obtained in the field to obtain appropriate modeling 
data. 

The GA model system has shown promise in 
characterizing the wind direction as well as the strength 
and two-dimensional location.  The success of this 
method has required careful formulation of the cost 
function and the solution methodology as discussed in 
section V.   

This work is just the beginning of what can be done 
with AI-type techniques to blend sensor data into real-
world computational problems. Our own continuing 
efforts are now focusing on using these same techniques 
to additionally back-calculate source height, time of 
release, and wind speed. As for this work, those 
calculations will be validated using identical twin 
experiments then analyzing the robustness of the 
technique when noise is added. Additionally, we will test 
the model in more realistic frameworks, such as sensor 
data simulators and on field test data.   

We are also looking at integrating these methods 
with assimilation and sensor data fusion tools to provide 
further means of using these inverted data for subsequent 
transport and dispersion modeling. We also expect to 
analyze how much data are necessary to perform our 
inversions, and how this result changes when system 
noise is considered. 
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