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Abstract— In this paper, we study a 2 × 3 temporo-
mandibular joint (TMJ) underdetermined blind source sep-
aration (UBSS). This particular UBSS has been subject
to an empirical experiment performed previously on two
sparse TMJ sources and a non-sparse source modelled as
super-Gaussian noise. In this study, we found that FastICA
algorithm tends to separate the two highly super-Gaussian
sources when applied to the mixtures. When these two
mixtures were filtered, FastICA focused on the non-sparse
source (i.e. noise). Previously, we did not examine why such
filtering approach would lead to estimation of the non-
sparse source. To this end, the objective is to provide an
extensive set of simulations to demonstrate why this filtering
approach fully solve this particular underdetermined blind
identification. We have employed the shape parameter α of
the generalized Gaussian distribution (GGD) as a measure of
sparseness and Gaussianity. This parameter was also utilized
to illustrate the convergence of our filtering approach
and the sub-Gaussian effect of the filter on the mixtures.
Moreover, we have also considered the case where the noise
source is modelled as sub-Gaussian and Gaussian as an
extension of our previous work. Simulation studies show
that our filtering approach is robust and performs well in
this particular TMJ UBSS application.

Index Terms— sparsity, sparseness, Gaussianity, moving
average filter, independent component analysis

I. INTRODUCTION

Blind source separation (BSS) is one of the most
exciting current areas of research in statistical signal
processing and unsupervised machine learning due to its
potential applications in various areas such as financial
time series analysis, biomedical signal processing, and
digital communications [1], [2], [3]. The aim of BSS is
to recover the sources from observations composed of
mixtures, without a priori knowledge of the medium and
the sources. Conventionally, BSS can be formulated as:

yi(t) = wT
i V
(
As(t) + v(t)

)
(1)

This study investigates the role of sparsity in the empirical study
entitled “A Filtering Approach to Underdetermined Blind Source Sep-
aration With Application to Temporomandibular Disorders,” by Clive
Cheong Took, Saeid Sanei, and Jonathon Chambers, which appeared in
the Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP, May, 2006, Toulouse, France.

where yi(t) denotes the i-th estimated source at discrete
time instant t, wT

i the i-th row of the separating matrix
W, (.)T the transpose operation, s(t) the n × 1 source
vector, v(t) the n × 1 noise vector, and A the unknown
n × m mixing matrix. Furthermore, it is noted that
we have access to only the m × 1 mixture vector x(t)
= As(t) with the noise modelled as a third source as in [4].

Independent Component Analysis (ICA) is one
approach to perform BSS for estimation of the sources
si(t), i.e. the independent components (ICs), assuming
that the sources are statistically independent. FastICA
[1] which figures amongst the most well-established
algorithms in ICA, estimates the ith source by maximizing
the non-Gaussianity of the estimated sources y(t). In this
study, we will consider this algorithm. On the other hand
if n > m, then the problem is coined as underdetermined
BSS (UBSS). Firstly, it is required to identify A, and
thereafter source extraction is performed to solve fully
UBSS. However, UBSS is quite challenging since 1)
n > m implies that there are less number of equations
than variables, and therefore it is an ill-posed problem,
and 2) no explicit a priori knowledge of A and the sources
is available. Therefore, many researchers have focused
on the identification A as in [5], [6], [7]. Likewise, one
of the aims of this study is to investigate the role of
sparsity in a 2× 3 blind identification of A. In particular,
we consider the case where a pair of temporomandibular
joint (TMJ) sparse sound sources prevail in the presence
of a third non-sparse source modelled as noise as in [4].
In contrast to [4], we will also consider the possibility
that noise can be modelled not only as a super-Gaussian
source, but also as a sub-Gaussian or Gaussian source.
The presence of a sub-Gaussian source in biomedical
applications such as in [8] arises due to the proximity
of the power line to the sensors, while it is known that
noise is generally modelled as Gaussian [1], [9], [10].

In [4], we employed FastICA [1] to estimate the
two columns of A pertaining to the TMJ sources, while
the third column of A pertaining to the noise was
estimated by a pre-filtering approach. However, this
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approach was empirical, and we therefore propose to
extend this work by analyzing various aspects of this
particular TMJ BSS problem as follows. Hence, the
objectives of this paper are to 1) demonstrate why linear
filtering does not alter the structure of A, 2) investigate
the effect of considering different degrees of Gaussianity
of the third noise source on the identification of A, 3)
demonstrate the relationship between sparsity and the
degree of Gaussianity of the sources, and 4) illustrate
how the pre-filtering approach leads to the identification
of the third column of A.

II. BACKGROUND AND RELATED WORK

A. The Temporomandibular Disorder BSS Problem

The temporomandibular joint is located between the
mandible (lower jaw) and the temporal bone (skull). This
pair of joints generate two types of sounds known as
clicks and crepitus, when a person suffers from the tem-
poromandibular joint disorder (TMD). The latter refers to
all medical problems related to these two joints. The click
is active for short and distinct periods, while the crepitus
is a more noise-like signal, with approximately continuous
active periods. These TMJ sources are illustrated in Fig.
1. The nature of the TMJ sound source depends on the
type of TMD. For example, clicks arise as a result of
the disc displacement, while a degenerative joint disease
such as osteoarthrosis leads to the generation of crepitus.
A correct prognosis of TMD relies on the experience of
the dental specialist and it has often caused controversy
as in [11], and [12]. Likewise, diagnosis of TMD is
particularly challenging when both types of TMJ sound
sources prevail, in the presence of background noise as
simulated in [4]. However, only a pair of mixtures can be
recorded from a pair of stethoscopes placed inside the two
auditory canals. This results in a 2×3 UBSS. However in
this article, the main focus is on the blind identification of
A, as previously mentioned in introduction. Furthermore,
we will vary the degree of Gaussianity of the noise source,
instead of considering only the super-Gaussianity case
as in [4]. Subsequently, we shall investigate how the
degree of Gaussianity of this noise source can affect the
identification of A.

B. Sparsity, Sparseness and Super-Gaussianity

Sparsity (or disjointness) in this work refers to the sit-
uation where a relatively small number of source signals
are active over any particular time interval. For the case of
a single active source, sparsity [4] can be mathematically
described as

{si(t); i = 1, ..., n}

where ∀ t ∃ k ∈ 1, ..., n where |sk(t)| >> |sj(t)| (2)

and for j �= k sj(t) ≈ 0

where si(t) is a given source signal and sj(t) is another
source signal.
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Fig. 1. The crepitus and the click signals. Note the sparseness (i.e. its
tendency to be of zero magnitude) of the click compared to the crepitus.

On the other hand, the degree of sparseness of a
source signal depends on the number of occurrences of
its samples being zero or approximately zero. In [13],
the authors refer to a sparse signal if the magnitude of
most of its samples is zero or near zero, with only a few
sample entries taking significant values. We note that
this statement strongly correlates with the nature of an
impulsive signal as in [9], because an impulsive signal
consists of only a few high peaks of short duration.
Cichocki classified a signal as impulsive if 0 < α < 1 (p.
245 [9]). On the other hand, He et al. categorize a signal
to be sparse if its corresponding shape parameter α of
the GGD is less than two [14]. As the shape parameter α
of GGD seems to be a reasonable measure of sparseness,
let us define such distribution as follows:

p(si(t), σ, α) =
α
√
β

2σΓ(1/α)
e−|
√

βsi(t)/σ|α (3)

where si(t) denotes the i-th source at discrete time t,
σ > 0 is the scale parameter, Γ(.) is known as the
gamma function, and α > 0 is the shape parameter. As

for
√
β =

√
Γ(3/α)
Γ(1/α) , it is merely a scaling factor which

enables var(si(t)) = σ2 where var(.) denotes variance. A
signal is said to be Gaussian distributed if α = 2. However
when the shape parameter α of a signal is less than two,
it has a super-Gaussian or leptokurtic distribution, while
with α > 2, it has a sub-Gaussian/playtykurtic distribution
[1]. Hence, He et al. suggested the equivalence between
a super-Gaussian signal and a sparse signal. However,
the strong similarity between the impulsiveness definition
and that of sparseness given by Pearlmutter [13] suggests
that the latter was more restrictive in his definition of
sparseness, i.e. 0 < α < 1. In effect, for the sparsity
condition (2) to be fulfilled, the sparseness definition of
Pearlmutter seems more appropriate. This is because as α
tends to zero, the probability of the signal to be of zero
magnitude increases as was shown in [14]. Therefore, we
will call a signal sparse if 0 < α < 1.
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C. FastICA

The ultimate aim of FastICA is to perform ICA and
subsequently achieve separation of the sources by es-
timating the separating vectors wi = [w1w2...wn]T as
shown in (1). FastICA seeks such vectors through the
maximization of the non-Gaussianity of the linear combi-
nation of mixtures x(t). The authors of FastICA employed
negative entropy (negentropy) as the non-Gaussianity
measure. This measure can be viewed as the deviation
from non-Gaussianity. Negentropy can be implemented
via different non-linearities and therefore it can have
different formulations. This topic is out of the scope of
this study. Subsequently for simplicity, we assume that
we can estimate wi by [4]:

wi,k+1 ← max
wi,k

(
Neg(wT

i,kx(t))

)
(4)

where k denotes the kth iteration of FastICA and i
corresponds to the ith source. These iterations are repeated
until convergence. An orthogonalization procedure is then
adopted to enable the extraction procedure to be repeated
for the next source. The reader can refer to [1] for more
information on FastICA and its associated non-linearities
for the implementation of negentropy.

D. Why is moving average filtering possible prior to ICA

This section is based on pp. 264-265 in [1] to demon-
strate that the ICA model in terms of the structure of
A still stands after applying moving average filtering
elementwise on the mixtures x(t). This is clear from the
following equation:

X′ = XF = ASF = AS′ (5)

where X′ = [x′(1) x′(2) ... x′(t) ... x′(T) ], S = [s(1) s(2)...
s(t) ... s(T) ] and F will have the following form if the
filter length M is 3 [1]:

F =
1

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

.

.
... 1 1 1 0 0 0 0 0 ...
... 0 1 1 1 0 0 0 0 ...
... 0 0 1 1 1 0 0 0 ...
... 0 0 0 1 1 1 0 0 ...

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

Since the independent sources si(t) are filtered elemen-
twise by F, the resulting si(t)

′ are not linear mixtures of
si(t). This demonstrates that 1) filtering does not have
any effect on A, and 2) the filtered sources si(t)

′ still
enjoy statistical independence.

E. Filtering UBSS FastICA approach

In the light of the above background, we are now
in a position to review our work [4] in terms of the
blind identification of A and provide explanations on its

hypotheses which are listed as follows:
A1) All source signals are statistically independent and
super-Gaussian.
A2) The columns of the mixing matrix A are pairwise
linearly independent.
A3) Considering the three sources as s1(t), s2(t), and
s3(t), kurt(s2(t)), kurt(s3(t)) >> kurt(s1(t)) where kurt(.)
denotes kurtosis.
A4) The two highly super-Gaussian source signals are
sparse.

To clarify assumptions A1 and A2, this section
is based on pp. 306-313 in [15]. A1, A2 along with
the implicit assumption that the number of sources is
known, guarantees the uniqueness of the model x(t) =
As(t) [5]. By the term ‘uniqueness’, we mean that x(t)
does not have two non-equivalent representations [15].
Likewise, two representations, i.e. x(t)=As(t)=Bz(t) are
referred to as non-equivalent if every column of A is not
proportional to any column B and vice-versa. Now, let
us review lemma 10.2.4 of [15] which is given as follows:

Consider x(t) to be a two-dimensional random vector,
x=[x1 x2] with two representations:

x1(t) = a11s1(t) + ...+ a1jsn(t)

x2(t) = a21s1(t) + ...+ a2jsn(t)

(7)

x1(t) = b11z1(t) + ...+ b1jzk(t)

x2(t) = b21z1(t) + ...+ b2jzk(t)

(8)

where s1(t),...,sn(t) and z1(t),...,zk(t) are sets of
independent random variables (r.v.’s). If the jth column
of A is not proportional to any other of its ith column
(j �=i) or to any column of B, then sj(t) is Gaussian
distributed. Its proof can be found in p. 309 of [15].

Further to this, we now cite theorem 10.3.5 [15]:
If s1(t),...,sn(t) are non-Gaussian, then x(t) has a unique
structure with respect to the given number of variables
s(t), i.e. if x(t)=Bz(t), where the order of B is the same as
A, then A and B are equivalent. Proof: Assume there are
two nonequivalent representations with the same number
of variables, x(t)=As(t)=Bz(t). Then by lemma 10.2.4,
some of the variables are Gaussian, which contradicts
our non-Gaussian assumption.

Moreover, theorem 10.3.8 [15] states that, provided
the variables s(t) are non-Gaussian and the columns of
A are linearly independent, then the model x(t)=As(t)
is unique for the specified number of variables. Proof:
By theorem 10.3.5, when s(t) are non-Gaussian,
it is deduced from the Eq. x(t)=As(t)=Bq(t) that A
and B are equivalent. In the sequel, x(t)=As(t) and
x(t)=Bq(t) can be two representations of x(t). Due
to the linear independence of the columns of A,
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(AT A) is non-singular and therefore invertible. Hence,
s(t) = (AT A)−1AT x(t) and q(t) = (AT A)−1AT x(t)
are equal, which concludes the proof.

Theorems 10.3.5 and 10.3.8 which imply the
non-Gaussianity assumption A1 together with the
implicit knowledge of the number of sources, and the
linear independence of the columns of A guarantees the
uniqueness of the model x(t)=As(t). However, it should
be stressed that the model x(t)=As(t) is still unique if
there is at most one Gaussian source. This statement
follows from the corollary of theorem 10.3.6 [15] and
from theorem 5 of [16].

On the other hand, A3 implicitly implies A4
which will be explained as follows. The kurtosis kurt(si)
which is a measure of the ‘peakedness’ of the probability
distribution of si can be defined as [17]:

kurt(si) =
E{s4

i }

E{s2
i }

2
− 3 (9)

where E{.} stands for the expected value. If kurt(si) = 0,
then si is referred to as Gaussian, while kurt(si) > 0 im-
plies that si has a super-Gaussian distribution. Otherwise,
si is known as sub-Gaussian. As the rth moment of a
GGD can be expressed as follows [18]:

E{|si|
r} =

Γ( r+1
α )

Γ( 1
α )

βr/2 (10)

We can then formulate (9) in terms of α using (10) as:

kurt(si) =
Γ( 5

α )Γ( 1
α )

Γ2( 3
α )

− 3 (11)

Thus we can plot kurt(si) as a function of α as shown
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Fig. 2. Kurtosis as a function of α. Note that when α > 2, kurtosis <
0 for the sub-Gaussian case and the rate of change of kurtosis is much
lower than that of the super-Gaussian case (α < 2)

in Fig. 2. Notice that the kurtosis has a large value
when 0 < α < 1. This in turn implies the highly
super-Gaussianity of si for 0 < α < 1. Recall that we

classify a source signal as sparse if 0 < α < 1. Thus,
as A3 states that there are two highly super-Gaussian
sources, it implies their sparseness (A4) as well. Hence,
we stress that the equivalence between A3 and A4 is
not straightforward without the formulation of equation
(11). As FastICA maximizes the non-Gaussianity of the
estimated ICs, this algorithm will focus on the two-highly
super-Gaussian sources (A3) as will be shown in section
III-B.

In the context of blind identification of A, the
resumé of the underdetermined UBSS FastICA is given
below:

• FastICA is applied to X to compute two columns
of A pertaining to the two highly super-Gaussian
sources. The key point here is that FastICA will
focus on the highly super-Gaussian sources due to
the maximization of negentropy in (4).

• X is pre-filtered as shown in (5) to yield X′. The
inputs to the FastICA are the resulting X′ to estimate
the third column pertaining to the noise. The column
of A′ corresponding to the IC with the lowest
kurtosis is selected as the third column of A′ due
to assumption A3.

It is understood that the two estimated columns of A′ can
be computed by the inversion of the separating matrix
W′ = [w1w2]

T of FastICA to be used in each of the
above two steps.

III. CASE STUDY

A. Simulation

In this section, we investigate how the filtering UBSS
FastICA approach [4] performs subject to different condi-
tions via extensive simulation studies. The conditions we
have considered were: the Signal-to-Noise Ratio (SNR),
the degree of Gaussianity of the noise, and the filter
length. The three distributions utilized in this study was
Laplace, normal, and uniform to convey respectively
the super-Gaussianity, Gaussianity and sub-Gaussianity
nature of the non-sparse source. Furthermore, we have
monitored the evolution α to assess the convergence of
the UBSS FastICA. The performance measure (PM) that
provides an indication of the difference between A and its
estimated Â is employed here [19]. However, PM requires
both A and Â to have unit norm columns. This index falls
within 0 ≤ PM ≤ 1. PM equals to 0 if Â = AP where P
is a permutation matrix. Therefore the lower the PM, the
better is the performance of the UBSS algorithm.

PM(A, Â) = 1−(
1

2n

n∑

i=1

sup
j
|AT Â|ij+

1

2n

n∑

j=1

sup
i
|AT Â|ij)

(12)
For each simulation where one condition was varied,

20 independent Monte Carlo trials were run and averaged
to provide the graphs in Fig. 3-8. However, before we
proceed to assess the performance of UBSS FastICA, we
investigate the effect of the filter length on the mixtures
x(t) in terms of their Gaussianity via α. This is illustrated
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in Fig. 3.
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Fig. 3. Effect of filter length on the degree of Gaussianity of the
mixtures when super-Gaussian, Gaussian, sub-Gaussian noise (from top
to bottom) at 0 dB. It is noteworthy to say at the maximum filter
length M = 20 000 samples, α > 5. In other words, the mixtures
are still sub-Gaussian. However, prior to pre-filtering of the mixtures,
α < 1. This explains why without filtering, FastICA focuses on the TMJ
sources, while pre-filtering leads to the non-sparseness of the mixtures
and consequently estimate the non-sparse noise instead of the sparse
TMJ sources.

In Figs. 4 & 5 we assess the performance of
UBSS FastICA, as SNR and filter length were varied.
Note that for each simulation, we have considered noise
as the non-sparse source whose distribution ranged from
super-Gaussian to sub-Gaussian.

Thereafter, we simulate the 2 × 3 TMJ UBSS at
SNR=0 dB when the degree of Gaussianity of the noise
was altered from Figs. 6, 7, and 8. From these plots, we
show the convergence in terms of α of the estimated ICs
at each iteration. The true values α of the ICs are also
included.

B. Discussion

In the first place, we note the sub-Gaussianity effect
on the mixtures x(t) by moving average filtering in Fig.
3. However prior to filtering, α of the mixtures was
less than unity and therefore the signals were highly
super-Gaussian and sparse. In [4], we intuitively stated
that the filtering process suppressed the two highly
super-Gaussian sources in the mixtures and therefore
the non-sparse noise was more prominent in x(t). In
section II-B, it was deduced that when α ≥ 1, a signal
is non-sparse. On this basis, we re-affirm that the
filtering suppress the two highly super-Gaussian sparse
sources. This is because the moving average has altered
the nature of the mixtures from highly super-Gaussian

to sub-Gaussian or equivalently from sparse to non-
sparse. On the other hand, it is clear that as the filter
length M increases, both mixtures tend to have Gaussian
distribution due to the central limit theorem. Nonetheless,
it is worth noting that at the maximum filter length of M
= 20 000 samples, α > 5 indicates that the mixtures are
still sub-Gaussian.

With regard to the PM against SNR shown in
Fig. 4, notice the maximum value of PM is of order
10−3. This demonstrates the good performance of UBSS
FastICA in all the three scenarios. Observe the much
better performance of the sub-Gaussian case. This was
expected as further to our discussion in the previous
paragraph, where we addressed the sub-Gaussian/ non-
sparse effect of the filter on the mixtures. Additionally, all
three curves have a minimum at SNR=10 dB. However,
this is not obvious for the sub-Gaussian case from
Fig. 4 due to its much lower performance measure (of
magnitude of order 10−5). The minimum at 10 dB arises
due to the following: the higher the SNR, the better the
estimation of the two columns of A pertaining to the two
TMJ sources and vice-versa for the noise. These explain
the best performance mid-way between 0 dB and 20 dB.

Next, we discuss the performance of UBSS FastICA
in terms of the filter length in Fig. 5. However before
we proceed further, let us go back to Fig. 3. This graph
might be misleading in terms of the high magnitude
of α in the sense of the degree of sub-Gaussianity.
Fig. 2 demonstrates that for the sub-Gaussian case (i.e.
α > 2), the kurtosis does not change exponentially as
when α < 2. For example, the difference between the
kurtoses corresponding to α = 3 and α = 400 is not
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considered. Note the much better performance measure of the sub-
Gaussian noise case. This is because pre-filtering leads to the non-
sparseness/sub-Gaussianity of the mixtures as seen in Fig. 3 . Therefore
their distributions are much closer to the sub-Gaussian noise.
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Fig. 6. Convergence graph: Evolution of α at 0 dB when super-
Gaussian noise was considered.

significant (i.e. difference ≈ 0.6). Hence, the degree
of sub-Gaussianity from α > 2 to α = 400 does not
change significantly. Hence, the filter length does not
alter significantly the degree of sub-Gaussianity of the
mixtures. From Fig. 5, we note that the filter length
does not have any significant effect on the performance
measure (all three curves are approximately unvaried).
Further to our previous discussion, such trend was
expected. Moreover, the superior performance of the
sub-Gaussian case is again highlighted.

Last but not least, we examine the convergence
of UBSS FastICA in terms of α when super-Gaussian,
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Fig. 7. Convergence graph: Evolution of α at 0 dB when Gaussian
noise was considered.
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Fig. 8. Convergence graph: Evolution of α at 0 dB when sub-Gaussian
noise was considered. Note the closeness of the αi of the estimated TMJ
sources with those of the original TMJ, compared to the super-Gaussian
and Gaussian noise cases in Fig. 6 & 7 respectively.

Gaussian and sub-Gaussian noises considered in Figs.
6, 7, & 8 respectively. From these plots, the most
striking curve (topmost) belongs to the estimated noise.
From Figs. 6 & 7, the estimated noise converges
to sub-Gaussianity as α > 2. This contradicts the
super-Gaussianity and Gaussianity nature of the noise
considered. Nevertheless if we look at equation (5), we
can deduce that we are estimating the filtered ICs S′,
instead of the original S. As discussed previously, the
moving average process in this particular TMJ UBSS
accounts for this sub-Gaussian/ non-sparse effect. On
the other hand, if we inspect the convergence of the
estimated TMJ ICs (i.e. click and crepitus), we can see
that in all cases they converge to α ≤ 1 (i.e. highly
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super-Gaussianity). The reason why they do not converge
to the true values is probably due to the low SNR of 0
dB. Again, we emphasize the much better performance
of sub-Gaussian case in Fig. 8. This is illustrated by the
closeness of the estimated TMJ ICs to the true ones in
Fig. 8 compared to those in Figs. 6 & 7.

IV. CONCLUSION

In this paper, we have investigated the role of sparsity
in the empirical study in [4] via the shape parameter α
of the generalized Gaussian distribution. We have seen a
close relationship between this parameter, the sparseness
of a signal and consequently the sparsity situation in this
particular TMJ UBSS. We have implicitly explained the
subtle difference between sparsity and sparseness. We
have gathered that a highly super-Gaussian signal, i.e.
α < 1 is likely to be sparse in section II-B. Furthermore,
we have demonstrated why the ICA model still stands
after pre-filtering in equation (5) in terms of the statistical
independence of the new IC S′ and the unaltered structure
of A.

In the simulation studies, we deemed that the moving
average filter has a sub-Gaussian/non-sparse effect on
these particular TMJ mixtures x(t). Consequently, the
sub-Gaussian noise TMJ UBSS outperformed the other
scenarios, i.e. when super-Gaussian and Gaussian noises
were considered. However, the performances in all three
scenarios were good due to their performance measure
being of order 10−3 or less. Equation (5) demonstrates
why the estimated noise does not converge to the
original ones in Figs. 6 & 7. In [4], we intuitively stated
that the filter suppressed the two sparse TMJ sources.
In the sequel, the non-sparse noise pre-dominates
in the filtered mixtures. This is obvious from the
sub-Gaussian/non-sparse effect of the filter in Fig. 3.
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