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Abstract�The FFT �lter bank-based summation CFAR
detector is widely used for the detection of narrowband
signals embedded in wideband noise. The simulation and
implementation of this detector involves some problems con-
cerning the reliable computation of the normalized detection
threshold for a given probability of false alarm. This paper
presents a comprehensive theoretical treatment of major
aspects of the numerical computation of the normalized
detection threshold for an AWGN channel model. Equations
are derived for the probability of false alarm, Pfa, for
both non-overlapped and overlapped input data and then
used to compute theoretical upper and lower bounds for
the detection threshold T . A very useful transformation is
introduced that guarantees the global quadratic convergence
of the Newton-Ralphson algorithm in the computation of T
for overlapped data with an overlap ratio not exceeding
50%. It is shown that if the product of the number of FFT
bins assigned to a channel for signal power estimation and
the number of input data blocks is relatively small, e.g.,
less than 60, the theoretical normalized detection threshold
can be accurately computed without numerical problems.
To handle other cases, good approximations are derived.

Index Terms�Digital FFT �lter bank, Detection and
estimation, Constant false alarm rate (CFAR) detection.

I. INTRODUCTION

The FFT �lter bank-based summation CFAR detector
is an ef�cient technique for the detection of narrowband
signals embedded in wideband noise and has important
applications in civilian spectrum monitoring, electronic
warfare, radio astronomy and instrumentation [1]-[7].
This detector operates by adding estimates of spectral
power of FFT bins in channels, each of which corresponds
to a group of one or more contiguous FFT bins, and
comparing the sum of the channel power estimates over
multiple input data blocks against a detection threshold,
T . In its general form, this detector has been the subject
of many recent studies [7]-[14]. In particular, closed-form
algebraic formulas for computing the probability of false
alarm, Pfa, as a function of T have been derived [5], [7],
[13]. These results can be used to compute the normalized
detection threshold (to be de�ned later) using numerical

procedures such as the Newton-Ralphson algorithm. As
practical implementations of these numerical procedures
require good lower and upper bounds of T for reliable
initialization, several theoretical lower and upper bounds
for T for a given Pfa have also been obtained [8].
However, a self-contained comprehensive treatment of
the FFT �lter bank-based summation CFAR detector has
not appeared in the literature and details of relevant
mathematical derivations have not been published.

This paper presents a comprehensive theoretical treat-
ment of major aspects of the numerical computation of
the normalized detection threshold for an AWGN channel
model. Formulas for computing Pfa as a function of T
are derived from �rst principles. Several theoretical lower
and upper bounds for T are derived and a very useful
transformation is introduced that guarantees the global
quadratic convergence of the Newton-Ralphson algorithm
in the computation of the normalized detection threshold
for overlapped data. Finally, accurate approximations for
T are presented. The results presented in this paper are
very useful for the simulation and implementation of the
FFT �lter bank-based summation CFAR detector.

This paper is organized as follows. Section II introduces
the FFT �lter bank-based summation CFAR detector.
Section III derives the formulas for computing Pfa for
a given T for overlapped and non-overlapped signal data.
Section IV proves several lower and upper bounds of T
for overlapped and non-overlapped input data. Section V
introduces a very useful transformation that guarantees
the global quadratic convergence of the Newton-Ralphson
algorithm while Section VI derives two approximations
for T . Finally Section VII presents concluding remarks.
Throughout this paper, typical numerical examples are
given to illustrate the results.

II. THE FFT FILTER BANK-BASED SUMMATION
CFAR DETECTOR

Consider a uniformly sampled band-limited signal em-
bedded in additive white Gaussian noise. Assume that M
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channels are uniformly distributed across the frequency
range contained within the Nyquist bandwidth and that
K FFT bins are assigned to each channel with the
N FFT bins (N ≤ K) centered within each channel
used to estimate the power contained within the channel.
Consequently, an FFT of length MK is used to compute
the power levels for the M channels. For notational
convenience and without loss of generality, assume K−N
is an even integer. Let w = [w0, · · · , wMK−1]t be a
symmetric window of length MK, where the superscript
t denotes matrix transposition. Let L ≥ 1 be a positive
integer and consider L consecutive overlapping sample
vectors, Rl, constructed as follows:

Rl = [rl(1−γ)MK+MK−1, · · · , rl(1−γ)MK ]t, (1)

where 0 ≤ l ≤ L − 1, 0 ≤ γ ≤ 1/2, rn is the n-th
sample of the input data stream and γMK is an integer.
In practice, the overlap ratio, γ, is often selected to be
either 0 or 1/2. These two cases correspond to zero
and 50% overlap, respectively. For each l, the two input
vectors, Rl and Rl+1, have γMK samples in common.
The vectors, Rl, are windowed by w, resulting in the
windowed sample vectors:

Xl = [w0rl(1−γ)MK+MK−1, · · · , wMK−1rl(1−γ)MK ]t.

The vectors, Xl, are then transformed by the inverse
discrete Fourier transform matrix F of dimensions MK×
MK to yield the FFT �lter bank output sample vectors:

Yl = FXl = [sl,0, sl,1, · · · , sl,MK−1]t,

where

F = (2)


1 1 · · · 1
· · · · · · · · · · · ·
1 e

2πjl
MK · · · e

2πj(MK−1)l
MK

· · · · · · · · · · · ·
1 e

2πj(MK−1)
MK · · · e

2πj(MK−1)(MK−1)
MK




.

From each vector, Yl, a vector zl = [zl,0, · · · , zl,M−1]t

of length M is formed by summing the power from the
N FFT bins centered within each channel:

zl,k =
N−1∑
m=0

|sl,Ik+m|2,

0 ≤ l ≤ L− 1, 0 ≤ k ≤ M − 1, (3)

i.e., the power estimates from the N FFT bins with indices
Ik, Ik + 1, · · ·, Ik + (N − 1) are summed to form the
power estimate for the k-th channel for the data block
Rl where Ik = kK + K−N

2 . The detection criterion is
de�ned as follows: if for a given detection threshold, T ,∑L−1

l=0 zl,k ≥ T , a signal is declared to exist in the k-
th channel. The choice of T is dependent on the desired
probability of false alarm, Pfa, the noise spectral density,
and the implementation details of the detector.

For brevity, the FFT �lter bank-based L-block sum-
mation CFAR detector shall be referred to as the L-
block summation CFAR detector or the summation CFAR

detector or simply the summation detector if there is no
risk of confusion. A block diagram is given in Figure 1
for the special case where N and K are equal.

IFFT

|  |
2

Detection threshold

+ -

Input data blocks

Channel 1
detection
decision

S.

.

.

L stage delay

|  |
2

|  |
2

L stage delay|  |
2

|  |
2

.

.

.

S

S

+ -

Channel 2
detection
decision

Fig. 1. Block diagram for the L-block summation CFAR detector.

III. THE PROBABILITY OF FALSE ALARM FOR THE
SUMMATION CFAR DETECTOR

Assume the input data stream rn is a zero-mean
complex-valued white Gaussian noise sequence with
E(rpr

∗
q ) = σ2δpq, where σ2 > 0 is the noise variance

(noise �oor), δpq = 1 if p = q and δpq = 0 if p 6= q. For
a given threshold, T , the probability of false alarm, Pfa,
for the k-th channel of the L-block summation CFAR
detector is then given by:

Pfa = Pr
{

L−1∑

l=0

zl,k ≥ T

}
. (4)

The following three theorems provide the mathematical
foundation for computing the threshold T for a given Pfa.

Theorem 1. Assume L ≥ 2 and 0 < γ ≤ 1/2. For a
given T > 0, Pfa is given by:

Pfa =
LN∑

l=1

λLN−1
l∏

1≤m≤LN,m 6=l

(λl − λm)
e
− T

σ2λl , (5)

where λl, 1 ≤ l ≤ LN , are the LN distinct positive
eigenvalues of the L× L block matrix H:

H =




A B 0 · · · 0 0
BH A B 0 · · · 0
0 BH A B · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 BH A B
0 · · · 0 · · · BH A




. (6)
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In (6), H is of dimensions LN × LN , 0 is the N × N
zero matrix and A and B are N × N matrices de�ned
respectively by:

A =




τ11 τ12 · · · τ1q · · · τ1N

· · · · · · · · · · · · · · · · · ·
τp1 τp2 · · · τpq · · · τpN

· · · · · · · · · · · · · · · · · ·
τN1 τN2 · · · τNq · · · τNN




, (7)

τpq =
MK−1∑

l=0

w2
l exp

2πjl(p− q)
MK

, (8)

B =




γ11 γ12 · · · γ1q · · · γ1N

· · · · · · · · · · · · · · · · · ·
γp1 γp2 · · · γpq · · · γpN

· · · · · · · · · · · · · · · · · ·
γN1 γN2 · · · γNq · · · γNN




, (9)

γpq = e−2πj(1−γ)(Ik+q−1) ×
γMK−1∑

l=0

wlwl+(1−γ)MK exp
2πjl(p− q)

MK
. (10)

Theorem 2. Assume L ≥ 1, N > 1 and γ = 0. For a
given T > 0, Pfa is given by:

Pfa =
N∑

m=1

L∑
p=1

Amp

p−1∑
s=0

(
T

σ2µm

)s

s!
e
− T

σ2µm , (11)

where the coef�cients Amp, 1 ≤ m ≤ N , 1 ≤ p ≤ L, are
de�ned by:



AmL =




µN−1
m∏

1≤l≤N,l 6=m

(µm − µl)




L

,

Amp = AmL×∑

k1+···+km−1+km+1+···+kN=L−p

Γm(k1, · · · , km−1, km+1, · · · , kN ),

Γm(k1, · · · , km−1, km+1, · · · , kN ) =
∏

1≤l≤N,l 6=m

(L + kl − 1)!
(kl)!(L− 1)!

[
µl

µl − µm

]kl

.

(12)

Note that kq, 1 ≤ q ≤ N , are non-negative integers and
µq, 1 ≤ q ≤ N , are the N distinct positive eigenvalues
of the Hermitian matrix A de�ned by (7).
Theorem 3. Let L ≥ 1, N = 1 and γ = 0. For a given
T > 0, Pfa is given by:

Pfa =
L−1∑
s=0

(
T
λ

)s

s!
e−

T
λ , (13)

where

λ = σ2
MK−1∑

l=0

w2
l . (14)

The proofs of these theorems are relatively lengthy and
will be given in the appendix.

In practical systems, the noise �oor, σ2, needs to be
estimated from the output samples of the FFT �lter bank.
For a given Pfa, the detection threshold T is obtained by
multiplying the estimated noise �oor σ2 by T/σ2, which
is computed using one of the equations (5), (11) or (13).
In the analysis of the summation CFAR detector, it is
found that it is more appropriate to focus on the quantity,
T/(LNσ2), which will be called the normalized detection
threshold in this paper. This can be loosely interpreted as
the detection threshold for one FFT bin computed from a
single data block.

IV. LOWER AND UPPER BOUNDS FOR THE
DETECTION THRESHOLD T

In practice, the computation of T/σ2 involves the
numerical solution of one of equations (5), (11) or (13)
using numerical procedures such as the Newton-Ralphson
algorithm. To avoid potential numerical problems and
ensure fast convergence, a good lower or upper bound for
T is required to initialize the numerical procedures. This
section presents theoretical lower and upper bounds for
T . The cases for overlapped and non-overlapped signal
data are treated separately, with full proofs provided in
the appendix.

A. Overlapped Input Data

Theorem 4. Assume L ≥ 2, 0 < γ ≤ 1/2, and let λ1 >
λ2 > · · · > λLN be the LN distinct positive eigenvalues
of the LN × LN Hermitian matrix H de�ned by (6).
For a given threshold T > 0, let the probability of false
alarm be denoted by Pfa. Let T1(Pfa) = −λ1σ

2 ln Pfa

and denote the solution of the following equation in x by
Tn(Pfa):

Pfa =
n∑

m=1

λn−1
m∏

1≤l≤n,l 6=m

(λm − λl)
e
− x

σ2λm ,

2 ≤ n ≤ LN. (15)

Then

T1(Pfa) ≤ T2(Pfa) ≤ · · · ≤ Tl(Pfa)
≤ Tl+1(Pfa) ≤ · · · ≤ TLN (Pfa) = T. (16)

For any positive integer n ≥ 1, let the unique solution of
the following equation in z be denoted by Bn(Pfa):

e−z

(
1 + z +

z2

2!
+ · · ·+ zn−1

(n− 1)!

)
= Pfa. (17)

Then for 0 < Pfa ≤ 2/e,

Bn(Pfa) ≤ n +
√

2πn

2
ln

[
2

ePfa

]
, (18)

and for 0 < Pfa < 1,

T ≤ λ1σ
2BLN (Pfa). (19)
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B. Non-Overlapped Input Data

Theorem 5. Assume L ≥ 1, N ≥ 2, γ = 0 and let µ1 >
µ2 > · · · > µN be the N distinct positive eigenvalues of
the Hermitian matrix A de�ned by (7). We have

µ1σ
2BL(Pfa) ≤ T ≤ µ1σ

2BLN (Pfa). (20)

Moreover, if T1 and T2 are respectively the solutions of
the equations (21) and (22) in x:

N∑
m=1

µN−1
m∏

1≤l≤N,l 6=m(µm − µl)
e
− x

σ2µm

= (Pfa)
1
L , (21)

N∑
m=1

µN−1
m∏

1≤l≤N,l 6=m(µm − µl)
e
− x

σ2µm

= 1− (1− Pfa)
1
L , (22)

then

LT1 ≤ T ≤ LT2, (23)

with

T2 ≤ µ1σ
2BN

(
1− (1− Pfa)

1
L

)
. (24)

V. NUMERICAL COMPUTATION OF THE NORMALIZED
DETECTION THRESHOLD FOR THE SUMMATION CFAR

DETECTOR

Using (5), (11) and (13) and in conjuction with the
lower and upper bounds derived in the previous section,
the normalized detection threshold T/(LNσ2) can be
computed numerically. It has been observed that in gen-
eral, equation (5) is numerically more unstable and hence
more dif�cult to apply in practice than equation (11). To
avoid numerical problems with (5), the transformation
p = e

−T

σ2λ1 has proved to be very useful. De�ne the
function g(p) by:

g(p) =
LN∑

l=1

λLN−1
l∏

1≤m≤LN,m 6=l

(λl − λm)
p

λ1
λl ,

0 < p < 1. (25)

Then the formula (5) can be rewritten as:

g

(
e
−T

σ2λ1

)
= Pfa. (26)

The detection threshold T can be obtained by �rst solving
the equation g(p) = Pfa for p and then using the
relationship T = λ1σ

2 ln(1/p). It can be shown that g(p)
is concave on the interval (0, 1), as is demonstrated by
Figure 2. For comparison, Pfa is plotted as a function
of T/σ2 using (5) in Figure 3. The concavity of g(p)
is a very desirable property to have in the numerical
computation of T/(LNσ2); it guarantees the fast global
quadratic convergence of the Newton-Ralphson algorithm
provided that the functions g(p) and g′(p) can be reliably

computed. The proof of the concavity of g(p) is rather
non-trivial and will be given in the appendix:

Theorem 6. The function g(p) is strictly increasing and
concave on the interval (0, 1). Speci�cally, g′(p) > 0 and
g′′(p) < 0 for 0 < p < 1.
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Fig. 2. The probability of false alarm, Pfa, as a function of p =

e−T/(σ2λ1), N = L = 5, MK = 1024, γ = 0.5, Blackman window.
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Fig. 3. The probability of false alarm, Pfa, as a function of T/σ2,
N = L = 5, MK = 1024, γ = 0.5, Blackman window.

For LN not too large, we have successfully computed
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the normalized detection threshold, T/(LNσ2), for the
L-block summation CFAR detector. Typical results are
plotted in Figures 4-5 for γ = 0. Note that the windows
used to produce these results have been normalized in the
sense that

∑MK−1
l=0 w2

l = 1. The results for γ = 1/2 are
very similar, but are not shown due to space limitations.
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Fig. 4. The normalized detection threshold, T/(LNσ2), as a function
of the probability of false alarm Pfa, N = 5, MK = 1024, L = 18,
γ = 0. The window functions are normalized.

VI. ACCURATE APPROXIMATIONS TO THE DETECTION
THRESHOLD

For very large LN , there are serious numerical dif�-
culties in computing the normalized detection threshold
T/(LNσ2) using (5) or (11). In such cases accurate
approximations to T/(LNσ2) are necessary. As will be
demonstrated in the appendix in the proofs of Theorems
1-3, the detection decision statistic,

∑L−1
l=0 zl,k, of the k-

th channel is distributed as a weighted sum of chi-square
random variables. More speci�cally,

L−1∑

l=0

zl,k ∼





∑LN
l=1

σ2λl

2 χ2
2(l), 0 < γ ≤ 1/2,

∑N
m=1

σ2µm

2 χ2
2L(m), γ = 0,

(27)

where λl, 1 ≤ l ≤ LN , are the LN distinct positive
eigenvalues of the Hermitian matrix H de�ned by (6) and
µm, 1 ≤ m ≤ N , are the N distinct positive eigenvalues
of the Hermitian matrix A de�ned by (7). As pointed
out in [15], one can approximate a weighted sum of
chi-square random variables by a random variable of the
form c + dχ2

h where c and d are constants and χh is a
chi-square random variable with h degrees of freedom.
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Fig. 5. The normalized detection threshold, T/(LNσ2), as a function
of the probability of false alarm Pfa, with N = 8, MK = 1024,
L = 10, γ = 0. The window functions are normalized.

This implies that the normalized detection threshold,
T/(LNσ2), can be approximately computed via a chi-
square distribution. Using this approach, the following
two theorems have been derived for normalized windows
(i.e.,

∑MK−1
l=0 w2

l = 1).
Theorem 7. Assume L ≥ 2 and γ = 0. For a given

Pfa, T is approximately computed by:

T ≈

σ2


L


N −

(∑N
m=1 µ2

m

)2

∑N
m=1 µ3

m


 + Bh(Pfa)

∑N
m=1 µ3

m∑N
m=1 µ2

m


 ,

h =

L

(∑N
m=1 µ2

m

)3

(∑N
m=1 µ3

m

)2

 , (28)

where µm, 1 ≤ m ≤ N , are the N distinct positive
eigenvalues of A de�ned by (7) and bxc denotes the
greatest integer less than or equal to x.

Theorem 8. Assume L ≥ 2 and 0 < γ ≤ 1/2. For a
given Pfa, T is approximately computed by:

T ≈ σ2


LN −

(∑LN
l=1 λ2

l

)2

∑LN
l=1 λ3

l

+ Bh(Pfa)
∑LN

l=1 λ3
l∑LN

l=1 λ2
l


 ,

h =



(∑LN
l=1 λ2

l

)3

(∑LN
l=1 λ3

l

)2

 , (29)

where λl, 1 ≤ l ≤ LN , are the LN distinct positive
eigenvalues of H de�ned by (6).
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The excellent accuracy of approximations (28) and
(29) is apparent in Figure 6. This �gure shows the true
normalized detection thresholds for the cases of γ = 0 and
γ = 1/2 and the corresponding approximate normalized
detection thresholds plotted as a function of Pfa for a
typical example. In this �gure's legend, �NO� and �O�
denote non-overlapped (γ = 0) and overlapped (γ = 1/2),
respectively. It follows that, the approximations (28 ) and
(29) can be used to avoid numerical problems in the direct
computation of the normalized detection threshold.
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Fig. 6. Upper and lower bounds and true and approximate normalized
detection thresholds as a function of the probability of false alarm Pfa,
N = L = 5, MK = 1024, γ = 0 or γ = 1/2, Blackman window.

VII. CONCLUSIONS

The problem of computing the normalized detection
threshold for the FFT �lter bank-based summation CFAR
detector has been comprehensively treated. Formulas for
computing the probability of false alarm, Pfa, as a
function of the detection threshold, T , were derived from
�rst principles. In addition, accurate approximations for
T that avoid potential numerical problems are presented.
These results are very useful for the simulation and
implementation of the FFT �lter bank-based summation
CFAR detector.
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APPENDIX

Proof of Theorems 1-3. Assume 0 ≤ γ ≤ 1/2 and let
Ik = kK + K−N

2 . For 0 ≤ l ≤ L− 1, we have

zl,k =
N−1∑
m=0

|sl,Ik+m|2 =
N−1∑
m=0

sl,Ik+m(sl,Ik+m)∗

= ZH
l,kZl,k, (30)

Zl,k = [sl,Ik
, sl,Ik+1, · · · , sl,Ik+N−1]t

= FkWRl, (31)

where in (31), Rl is the l-th sample vector de�ned by (1),
W is the MK ×MK diagonal matrix with its diagonal
elements de�ned by w:

W =




w0 0 · · · · · · 0
0 w1 · · · · · · 0
· · · · · · · · · · · · · · ·
0 · · · · · · · · · wMK−1


 , (32)

and Fk is the N ×MK matrix consisting of N rows of
the MK×MK inverse discrete Fourier transform matrix
F with row indices Ik, Ik+1, · · ·, Ik+m, · · ·, Ik+N−1:

Fk = (33)


1 αIk · · · α(MK−1)Ik

· · · · · · · · · · · ·
1 αIk+m · · · α(MK−1)(Ik+m)

· · · · · · · · · · · ·
1 αIk+N−1 · · · α(MK−1)(Ik+N−1)




,

where α = exp 2πj
MK . Hence

L−1∑

l=0

zl,k =
L−1∑

l=0

ZH
l,kZl,k = ZHZ, (34)

where Z is the length-LN zero mean Gaussian random
vector de�ned by:

Z =
[
Zt

0,k,Zt
1,k, · · · ,Zt

L−1,k

]t
. (35)

From the identity (4a) of [16], the characteristic function
of the quadratic form

∑L−1
l=0 zl,k = ZHZ, denoted by

φ(t), can be shown to be given by:

φ(t) =
1

det |I− jtE (ZZH)| , (36)

where I denotes the identity matrix of dimensions LN ×
LN . We shall derive the equations (5), (11) and (13)
using the characteristic function φ(t). First, it is necessary
to compute the Hermitian matrix E

(
ZZH

)
explicitly. In
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fact, E
(
ZZH

)
is given by:

E
(
ZZH

)
= E







Z0,k

Z1,k

· · ·
Zp,k

· · ·
ZL−1,k







Z0,k

Z1,k

· · ·
Zp,k

· · ·
ZL−1,k




H


=




E
(
Z0,kZH

0,k

)
· · · E

(
Z0,kZH

L−1,k

)

· · · · · · · · ·
E

(
Zp,kZH

0,k

)
· · · E

(
Zp,kZH

L−1,k

)

· · · · · · · · ·
E

(
ZL−1,kZH

0,k

)
· · · E

(
ZL−1,kZH

L−1,k

)




.

(37)

For any l, m, 0 ≤ l ≤ m ≤ L− 1,

E
(
Zl,kZH

m,k

)

= E
(
(FkWRl) (FkWRm)H

)

= E
(
FkWRlRH

mWHFH
k

)

= FkWE
(
RlRH

m

)
WFH

k , (38)

where it can be veri�ed that

E
(
RlRH

m

)
= σ2 × (39)



δJ · · · δJ−m · · · δJ−MK+1

· · · · · · · · · · · · · · ·
δJ+n−1 · · · δJ+n−1−m · · · δJ−MK+n

· · · · · · · · · · · · · · ·
δJ+MK−1 · · · δJ+MK−1−m · · · δJ




,

with J = (m− l)(1− γ)MK.
Here in (39), δq = 0, if q 6= 0 and δq = 1 if q = 0.

It is clear that the matrix E
(
RlRH

m

)
is shift invariant in

the sense that it depends only on the value of m− l. Let

Ap = E
(
Zl,kZH

m,k

)
(40)

= FkWE
(
RlRH

m

)
WFH

k ,

p = m− l, m ≥ l.

The covariance matrix E
(
ZZH

)
can then be put in the

following block Toeplitz form:

E
(
ZZH

)
= (41)



A0 A1 A2 · · · AL−2 AL−1

AH
1 A0 A1 A2 · · · AL−2

AH
2 AH

1 A0 A1 · · · AL−3

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
AH

L−3 · · · AH
1 A0 A1 A2

AH
L−2 · · · AH

2 AH
1 A0 A1

AH
L−1 AH

L−2 · · · AH
2 AH

1 A0




.

If m−l ≥ 2, then |(m−l)(1−γ)MK| ≥ 2(1−γ)MK ≥
2(1− 1/2)MK = MK and hence entries in E

(
RlRH

m

)
are all equal to zero. Thus Ap = 0 if p ≥ 2 and H =

E
(
ZZH

)
simpli�es to the following tridiagonal L × L

block matrix:

E
(
ZZH

)
= (42)



A0 A1 0 · · · 0 0
AH

1 A0 A1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 AH

1 A0 A1

0 · · · 0 · · · AH
1 A0




,

where A0 = E
(
Z0,kZH

0,k

)
and A1 = E

(
Z0,kZH

1,k

)
are

of dimensions N ×N .
We now consider the two separate cases γ = 0 and

0 < γ ≤ 1/2.
1) γ = 0. In this case, A1 = 0 and E

(
ZZH

)
becomes

the following diagonal L× L block matrix

E
(
ZZH

)
= (43)



A0 0 0 · · · 0 0
0 A0 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 0 A0 0
0 · · · 0 · · · 0 A0




,

where

A0 = E
(
Z0,kZH

0,k

)

= FkWE
(
R0RH

0

)
WFH

k

= σ2FkW2FH
k . (44)

With Ik = kK + K−N
2 , J = MK and α =

exp 2πj
MK , we obtain:

A0 = σ2FkW2FH
k = σ2 ×



w2
0 w2

1α
Ik · · · w2

MK−1α
(MK−1)Ik

· · · · · · · · · · · ·
w2

0 w2
1α

Ik+l · · · · · ·
· · · · · · · · · · · ·
w2

0 w2
1α

Ik+N−1 · · · · · ·




×




1 · · · 1
· · · · · · · · ·

α−lIk · · · α−l(Ik+N−1)

· · · · · · · · ·
α−(MK−1)Ik · · · α−(MK−1)(Ik+N−1)




= σ2




τ11 τ12 · · · τ1q · · · τ1N

· · · · · · · · · · · · · · · · · ·
τp1 τp2 · · · τpq · · · τpN

· · · · · · · · · · · · · · · · · ·
τN1 τN2 · · · τNq · · · τNN




= σ2A, (45)

where, for 1 ≤ p ≤ q ≤ N ,

τpq =
MK−1∑

l=0

w2
l αl(p−q)

=
MK−1∑

l=0

w2
l exp

2πjl(p− q)
MK

, (46)

and A is de�ned by (7).
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2) 0 < γ ≤ 1/2. In this case A0 is computed by (45)
and it remains to compute A1. In fact,

E
(
R0RH

1

)
= (47)

σ2

[
0γMK×(1−γ)MK IγMK×γMK

0(1−γ)MK×(1−γ)MK 0(1−γ)MK×γMK

]
,

where 0γMK×(1−γ)MK , 0(1−γ)MK×(1−γ)MK and
0(1−γ)MK×γMK are zero matrices of dimensions
γMK×(1−γ)MK, (1−γ)MK×(1−γ)MK and
(1−γ)MK×γMK respectively and IγMK×γMK

is the identity matrix of dimensions γMK×γMK.
Let

W1 =




w0 0 · · · 0
0 w1 0 · · ·
· · · · · · · · · · · ·
0 0 · · · wγMK−1


 , (48)

W2 =




w0 0 · · · 0
0 w1 0 · · ·
· · · · · · · · · · · ·
0 0 · · · w(1−γ)MK−1


 , (49)

W3 = (50)




wγMK 0 · · · 0 0
0 wγMK+1 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 wMK−1


 ,

W4 = (51)




w(1−γ)MK 0 · · · 0
0 w(1−γ)MK+1 · · · 0
· · · · · · · · · · · ·
0 0 · · · wMK−1


 .

We obtain
A1 = E

(
Z0,kZH

1,k

)
(52)

= FkWE
(
R0RH

1

)
WFH

k

= σ2Fk

[
W1 0
0 W3

]
×

[
0γMK×(1−γ)MK IγMK×γMK

0(1−γ)MK×(1−γ)MK 0(1−γ)MK×γMK

]

×
[

W2 0
0 W4

]
FH

k

= σ2Fk ×[
0γMK×(1−γ)MK W1W4

0(1−γ)MK×(1−γ)MK 0(1−γ)MK×γMK

]

×FH
k .

Let α = exp( 2πj
MK ), J = (1− γ)MK and set

F0
k = (53)



1 αIk · · · α(γMK−1)Ik

· · · · · · · · · · · ·
1 αIk+p−1 · · · α(γMK−1)(Ik+p−1)

· · · · · · · · · · · ·
1 αIk+N−1 · · · α(γMK−1)(Ik+N−1)




,

and

F1
k = (54)



αJIk · · · α(MK−1)Ik

· · · · · · · · ·
αJ(Ik+p−1) · · · α(MK−1)(Ik+p−1)

· · · · · · · · ·
αJ(Ik+N−1) · · · α(MK−1)(Ik+N−1)




.

Then A1 can be further simpli�ed to yield:

A1 = E
(
Z0,kZH

1,k

)
(55)

= σ2Fk

[
0 W1W4

0 0

]
FH

k

= σ2 F0
k W1W4

(
F1

k

)H

= σ2C,

where

C = F0
k W1W4

(
F1

k

)H (56)

=




γ11 γ12 · · · γ1q · · · γ1N

· · · · · · · · · · · · · · · · · ·
γp1 γp2 · · · γpq · · · γpN

· · · · · · · · · · · · · · · · · ·
γN1 γN2 · · · γNq · · · γNN




,

with

γpq =
γMK−1∑

l=0

αl(Ik+p−1) × (57)

wlwl+(1−γ)MKα−(l+(1−γ)MK)(Ik+q−1)

= e−2πj(1−γ)(Ik+q−1) ×
γMK−1∑

l=0

wlwl+(1−γ)MK exp
2πjl(p− q)

MK
.

Summarizing the preceding calculations, we see that
E

(
ZZH

)
= σ2H where H is de�ned by (6) with B = 0

if γ = 0.
Theorems 1-3 can now be proved using the following

identity:

1
2π

∫ +∞

T

[∫ +∞

−∞

e−2πjtx

(1− jtλ)p
dt

]
dx

=
p−1∑
s=0

(
T
λ

)s

s!
e−

T
λ , (58)

where T > 0, λ > 0 and p is a positive integer. This
identity can be proved using an elaborate but standard
contour integral argument from the theory of functions of
one complex variable. Details are omitted due to space
constraints.

We �rst prove Theorem 1. Assume 0 < γ ≤ 1/2.
Let the distinct positive eigenvalues of H de�ned by (6)
be arranged in decreasing order and denoted by λ1 >
λ2 > · · · > λLN > 0. From (36) it follows that the
characteristic function φ(t) of

∑L−1
l=0 zl,k = ZHZ is given
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by:

φ(t) =
1

det |I− jtE (ZZH)| (59)

=
1

det |I− jtσ2H| =
1∏LN

l=1(1− jtσ2λl)

=
LN∑

l=1

λLN−1
l∏

1≤m≤LN,m 6=l

(λl − λm)

1
1− jtσ2λl

.

This implies that
∑L−1

l=0 zl,k = ZHZ is distributed as the
following weighted sum of chi-square random variables:

L−1∑

l=0

zl,k = ZHZ ∼
LN∑

l=1

σ2λl

2
χ2

2(l), (60)

where χ2
2(l), 1 ≤ l ≤ LN, are independent and identi-

cally distributed chi-square random variables, each of two
degrees of freedom, and ∼ means having identical prob-
ability density functions. Note that here we used the fact
that the characteristic function of σ2λl

2 χ2
2(l) is given by

1
1−jtσ2λl

. Let p(x) denote the probability density function
of the detection decision statistic

∑L−1
l=0 zl,k = ZHZ. We

have

p(x) =
1
2π

∫ +∞

−∞
φ(t)e−2πjtxdt, x > 0, (61)

and for a given T > 0, Pfa is then computed by:

Pfa =

{
L−1∑

l=0

zl,k > T

}
=

∫ +∞

T

p(x)dx

=
∫ +∞

T

[
1
2π

∫ +∞

−∞
φ(t)e−2πjtxdt

]
dx

=
LN∑

l=1

λLN−1
l∏

1≤m≤LN,m 6=l

(λl − λm)
×

1
2π

∫ +∞

T

[∫ +∞

−∞

e−2πjtx

1− jtσ2λl
dt

]
dx

=
LN∑

l=1

λLN−1
l∏

1≤m≤LN,m 6=l

(λl − λm)
e
− T

σ2λl , (62)

where the formula (58) with p = 1 was used. This
completes the proof of Theorem 1.

To prove Theorem 2, let the distinct positive eigenval-
ues of the positive de�nite Hermitian matrix A de�ned
by (7) be arranged in decreasing order and denoted by
µ1 > µ2 > · · · > µN . It follows from (36) that the
characteristic function φ(t) of

∑L−1
l=0 zl,k = ZHZ is given

by:

φ(t) =
1

det |I− jtE (ZZH)|
=

1
det |I− jtσ2H|

=
1∏N

m=1(1− jtσ2µm)L

=
N∑

m=1

L∑
p=1

Amp
1

(1− jtσ2µm)p
, (63)

where Amp, 1 ≤ m ≤ N , 1 ≤ p ≤ L, are de�ned by
(12). The routine but tedious derivations of the fractional
decomposition of the rational function 1∏N

m=1
(1−jtσ2µm)L

are omitted due to space constraints. It then follows that
the detection decision statistic

∑L−1
l=0 zl,k is distributed

as the following weighted sum of chi-square random
variables:

L−1∑

l=0

zl,k = ZHZ ∼
N∑

m=1

σ2µm

2
χ2

2L(m), (64)

where χ2
2L(m), 1 ≤ m ≤ N, are independent and

identically distributed chi-square random variables each
of 2L degrees of freedom. For a given T > 0, Pfa is
given by:

Pfa =

{
L−1∑

l=0

zl,k > T

}
=

∫ +∞

T

p(x)dx (65)

=
∫ +∞

T

[
1
2π

∫ +∞

−∞
φ(t)e−2πjtxdt

]
dx

=
N∑

m=1

L∑
p=1

Amp

2π

∫ +∞

T

[∫ +∞

−∞

e−2πjtx

(1− jtσ2µm)p
dt

]
dx

=
N∑

m=1

L∑
p=1

Amp

p−1∑
s=0

(
T

σ2µm

)s

s!
e
− T

σ2µm .

This completes the proof of Theorem 2.
It remains to prove Theorem 3. Since N = 1,

the covariance matrix E
(
ZZH

)
reduces to a L × L

diagonal matrix with the diagonal elements all equal to
σ2

∑MK
l=0 w2

l . It follows from (36) that the characteristic
function φ(t) of

∑L−1
l=0 zl,k = ZHZ is given by:

φ(t) =
1

det |I− jtE (ZZH)|
=

1(
1− jtσ2

∑MK
l=0 w2

l

)L
. (66)

This implies that
∑L−1

l=0 zl,k = ZHZ is distributed as a
weighted chi-square random variable:

L−1∑

l=0

zl,k = ZHZ ∼ σ2
∑MK−1

l=0 w2
l

2
χ2

2L, (67)

where χ2
2L is a chi-square random variable with 2L

degrees of freedom. For a given T > 0, Pfa is then
computed by:

Pfa =

{
L−1∑

l=0

zl,k > T

}
=

∫ +∞

T

p(x)dx

=
∫ +∞

T

[
1
2π

∫ +∞

−∞
φ(t)e−2πjtxdt

]
dx

=
1
2π

∫ +∞

T

[∫ +∞

−∞

e−2πjtx

(1− jtσ2
∑MK−1

l=0 w2
l )L

dt

]
dx
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=
L−1∑
s=0

(
T

σ2
∑MK−1

l=0
w2

l

)s

s!
e
− T

σ2
∑MK−1

l=0
w2

l . (68)

This completes the proof of Theorem 3.
Proof of Theorem 4. For x > 0, de�ne the function

fn(x) by:

fn(x) = Pr
{

n∑

l=1

σ2λl

2
χ2

2(l) > x

}
, (69)

where n is an integer in the range 1 ≤ n ≤ LN . Since
chi-square random variables are non-negative (i.e., their
probability density functions are supported on the positive
real axis), we have:

fn+1(x) = Pr
{

n+1∑

l=1

σ2λl

2
χ2

2(l) > x

}

≥ Pr
{

n∑

l=1

σ2λl

2
χ2

2(l) > x

}
= fn(x). (70)

Also we have f1(x) = e
− x

σ2λ1 and

fn(x) =
n∑

m=1

λn−1
m∏

1≤l≤n,l 6=m

(λm − λl)
e
− x

σ2λm ,

2 ≤ n ≤ LN. (71)

From the de�nition (15), we see that fn(Tn(Pfa)) = Pfa,
1 ≤ n ≤ LN . Since fn(x) ≤ fn+1(x), 1 ≤ n ≤ LN − 1,
and since fn(x) are decreasing functions of x, we see
immediately that Tn(Pfa) ≤ Tn+1(Pfa), 1 ≤ n ≤ LN −
1. Also T1(Pfa) = −σ2λ1 ln(Pfa) and TLN (Pfa) = T .
This proves the chain of inequalities in (16).

We next prove the inequality (18). For each positive
integer n, de�ne gn(x) as follows:

gn(x) = e−x

(
1 + x +

x2

2!
+ · · ·+ xn

n!

)
. (72)

It can be veri�ed that

g′n(x) = −xne−x

n!
, (73)

and

g′′n(x) =
xn−1(x− n)e−x

n!
. (74)

Clearly gn is a decreasing function on the interval (0,∞),
since g′n(x) < 0 for x > 0. gn is concave on (0, n)
and convex on (n,∞) since g′′n(x) < 0 on (0, n) and
g′′n(x) > 0 on (n,∞). It can be proved that gn(n) > 1/2
for all n ≥ 1 and gn(n) monotonically decreases to 1/2 as
n approaches in�nity. Let the solution in x to the equation

gn(x) = e−x
n∑

l=0

xl

l!
= p, 0 < p < 1, (75)

be denoted by µ. We now derive an upper bound for µ.
De�ne ψn(x) as the natural logarithm of gn(x), that is,

ψn(x) = ln(gn(x)) = −x + ln
n∑

l=0

xl

l!
. (76)

The function ψn(x) can be shown to be concave on the
positive real line (0,∞). In fact,

ψ′n(x) = −
xn

n!

1 + x + x2

2! + · · ·+ xn

n!

, (77)

and

ψ′′n(x) = −
xn−1

[
n +

∑n−1
k=1( n

k! − 1
(k−1)! )x

k
]

n!
(
1 + x + x2

2! + · · ·+ xn

n!

)2 .

(78)

The above expression shows that ψ′′n(x) < 0 for all x ∈
(0,∞). Hence ψn(x) is concave on the positive real axis
(0,∞) and is always below its tangent lines. Let x0 = n.
The equation of the tangent line of the curve of ψn(x) at
the point (x0, ψn(x0)) is given by:

y = (x− x0)ψ′n(x0) + ψn(x0). (79)

As this tangent line is above the curve of ψn(x), it follows
that

(x− x0)ψ′n(x0) + ψn(x0) ≥ ψn(x),
x ∈ (0,∞). (80)

Let µ0 be the solution in x to the equation

ln p = (x− x0)ψ′n(x0) + ψn(x0). (81)

This linear equation in x is easily solved and µ0 is
obtained as:

µ0 = x0 +
ln p− ψn(x0)

ψ′n(x0)

= n +
ln p− ψn(n)

ψ′n(n)
. (82)

We claim that µ0 is an upper bound for the solution µ to
the equation (75). In fact, from (80) and (81), we see that
ln p ≥ ψn(µ0) = ln(gn(µ0)). Hence p ≥ gn(µ0). Since
gn(µ) = p, we have gn(µ) ≥ gn(µ0). Hence µ ≤ µ0,
since gn(x) is a decreasing function of x. Thus µ0 is an
upper bound for µ.

We can simplify the expression (82). Assume 0 < p ≤
2/e. Since gn(n) is a monotone decreasing sequence,
gn(n) ≤ g1(1) = 2/e and therefore ψn(n) ≤ ln(2/e).
It follows that

µ0 (83)

= n +
ln p− ψn(n)

ψ′n(n)
≤ n +

ln p− ln(2/e)
ψ′n(n)

≤ n +

[
1 + n + n2

2! + n3

3! + · · ·+ nn

n!
nn

n!

]
ln

(
2
pe

)
.

This upper bound can be further simpli�ed. Using the
following result for large n,

gn(n) = (84)

e−n

(
1 + n +

n2

2!
+

n3

3!
+ · · ·+ nn

n!

)
∼= 1/2,
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the expression

1 + n + n2

2! + n3

3! + · · ·+ nn

n!
nn

n!

(85)

can be shown to be bounded from above by
√

2πn
2 . In

fact, using Stirling's formula

n! ∼=
√

2πn
(n

e

)n

, (86)

we see that
(

1 + n + n2

2! + n3

3! + · · ·+ nn

n!
nn

n!

)

≈

(
exp(n)

2

)

nn

n!

=
n! exp(n)

2nn

≈
√

2πn
(

n
e

)n exp(n)
2nn

=
√

2πn

2
. (87)

Substituting (87) into (83), we obtain the following upper
bound for µ:

µ ≤ n +
√

2πn

2
ln

(
2
pe

)
, 0 < p ≤ 2/e. (88)

The inequality (18) then follows directly from (88).
Finally we prove (19). Since

Pfa = Pr
{

L−1∑

l=0

zl,k > T

}

= Pr
{

LN∑

l=1

σ2λl

2
χ2

2(l) > T

}

≤ Pr
{

LN∑

l=1

σ2λ1

2
χ2

2(l) > T

}

= Pr
{

σ2λ1

2
χ2

2LN > T

}

=
LN−1∑
s=0

(
T

σ2λ1

)s

s!
e
− T

σ2λ1 , (89)

where χ2
2LN is a chi-square random variable of 2LN

degrees of freedom, we have

Pfa ≤
LN−1∑
s=0

(
T

σ2λ1

)s

s!
e
− T

σ2λ1 . (90)

This implies

T

σ2λ1
≤ BLN (Pfa), (91)

which completes the proof of (19).

Proof of Theorem 5. From (64) we see that

Pfa = Pr
{

L−1∑

l=0

zl,k > T

}

= Pr
{

N∑
m=1

σ2µm

2
χ2

2L(m) > T

}

≥ Pr
{

σ2µ1

2
χ2

2L(1) > T

}

=
L−1∑
s=0

(
T

σ2µ1

)s

s!
e
− T

σ2µ1 . (92)

This implies that
T

σ2µ1
≥ BL(Pfa) or σ2µ1BL(Pfa) ≤ T. (93)

Similarly from (64) we also see that

Pfa = Pr
{

L−1∑

l=0

zl,k > T

}

= Pr
{

N∑
m=1

σ2µm

2
χ2

2L(m) > T

}

≤ Pr
{

N∑
m=1

σ2µ1

2
χ2

2L(m) > T

}

= Pr
{

σ2µ1

2
χ2

2LN > T

}

=
LN−1∑
s=0

(
T

σ2µ1

)s

s!
e
− T

σ2µ1 , (94)

where χ2
2LN is a chi-square random variable with 2LN

degrees of freedom. This implies that
T

σ2µ1
≤ BLN (Pfa) or T ≤ σ2µ1BLN (Pfa). (95)

Combining (93) and (95) yields (20).
It remains to prove (23). Rearrange the power levels

zl,k, 0 ≤ l ≤ L− 1, in increasing order as follows:

y1 ≤ y2 ≤ y3 ≤ · · · ≤ yL. (96)

Then we have

Ly1 ≤
L−1∑

l=0

zl,k ≤ LyL, (97)

and it follows that

Pfa = Pr
{

L−1∑

l=0

zl,k > T

}
(98)

≥ Pr {Ly1 > T} = Pr {y1 > T/L}
= Pr {zl,k > T/L, 1 ≤ l ≤ L− 1}

=
L−1∏

l=0

Pr {zl,k > T/L}

=

[
N∑

m=1

µN−1
m∏

1≤l≤N,l 6=m(µm − µl)
e
−

T
L

σ2µm

]L

.
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This implies
N∑

m=1

µN−1
m∏

1≤l≤N,l 6=m(µm − µl)
e
−

T
L

σ2µm ≤ P
1/L
fa (99)

which in turn yields
T

L
≥ T1, or LT1 ≤ T. (100)

Similarly, we have

Pfa = Pr
{

L−1∑

l=0

zl,k > T

}
(101)

≤ Pr {LyL > T} = Pr {yL > T/L}
= 1− Pr {yL ≤ T/L}
= 1− Pr {zl,k ≤ T/L, 1 ≤ l ≤ L− 1}

= 1−
L−1∏

l=0

Pr {zl,k ≤ T/L}

= 1−
L−1∏

l=0

[1− Pr {zl,k > T/L}]

= 1−
[
1−

N∑
m=1

µN−1
m∏

1≤l≤N,l 6=m(µm − µl)
e
−

T
L

σ2µm

]L

.

This implies
N∑

m=1

µN−1
m∏

1≤l≤N,l 6=m(µm − µl)
e
−

T
L

σ2µm

≥ 1− (1− Pfa)1/L
, (102)

which in turn yields
T

L
≤ T2, or T ≤ LT2. (103)

Combining (100) and (103) yields the inequalities of
(23). The inequality (24) is obtained by using (102) and
applying the argument in the proof of (19) in Theorem
4. The proof of Theorem 5 is thus completed.

To prove Theorem 6, we need to prove two lemmas.
Lemma 1. Let n ≥ 2. Assume 0 < α1 < α2 < · · · <

αn is an increasing sequence of positive real numbers and
de�ne the sequence βl by setting:

βl =
αn−1

l∏

1≤m≤n,m 6=l

(αl − αm)
, 1 ≤ l ≤ n. (104)

Then 



∑n
l=1 βl = 1,∑n
l=1

βl

αl
= 0,

· · · · · · · · ·∑n
l=1

βl

αn−1
l

= 0.

(105)

Proof of Lemma 1. Let 1 ≤ m ≤ n−1 be an integer and
de�ne the polynomial Pm by Pm(α) = αm. According to
Lagrange's Interpolation Theorem, the following identity
holds for all α ∈ (−∞, +∞):

n∑

i=1

Pm(αi)

∏
k 6=i(αk − α)∏
k 6=i(αk − αi)

= Pm(α), (106)

or
n∑

i=1

αm
i

∏
k 6=i(αk − α)∏
k 6=i(αk − αi)

= αm. (107)

This identity can be rewritten as
n∑

i=1

(−1)n−1 βi

αn−1−m
i

∏

k 6=i

(αk − α) = αm. (108)

If m = n− 1, (108) can be rewritten as
n∑

i=1

(−1)n−1βi

∏
k 6=i(αk − α)

αn−1
= 1. (109)

Letting α go to in�nity yields the identity
n∑

i=1

(−1)n−1βi lim
α→+∞

∏
k 6=i(αk − α)

αn−1
= 1. (110)

But

lim
α→+∞

∏
k 6=i(αk − α)

αn−1
= (−1)n−1. (111)

Substituting this result into (110) yields:
n∑

i=1

βi = 1. (112)

This proves the �rst identity in (105). To prove the
remaining identities in (105), assume 1 ≤ m ≤ n − 1
and let α = 0 in (108). We then obtain the identity

n∑

i=1

βi

αn−1−m
i

∏

k 6=i

αk = 0. (113)

Dividing both sides of (113) by
∏n

k=1 αk yields
n∑

i=1

βi

αn−m
i

= 0. (114)

This proves the rest of the identities in (105).
Lemma 2. Let n ≥ 2, 0 < p < 1 and let 0 < α1 <

α2 < · · · < αn−1 < αn be an increasing sequence of
positive real numbers. De�ne





C(p, α1, α2, · · · , αn)
=

∑n−1
i=1

αn

αi

[
αn

αi
− 1

]
pαn/αiβi,

D(p, α1, α2, · · · , αn)
=

∑n
i=1

αn

αi
pαn/αiβi,

(115)

where βi are de�ned by (104). Then
{

C(p, α1, α2, · · · , αn) < 0,
D(p, α1, α2, · · · , αn) > 0.

(116)

Proof of Lemma 2. We prove this lemma by mathemat-
ical induction. First consider the case n = 2. We have

C(p, α1, α2) = (117)[
α2

α1

] [
α2

α1
− 1

]
pα2/α1β1

=
[
α2

α1

] [
α2

α1
− 1

]
pα2/α1

[
α1

α1 − α2

]
< 0,
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since α2 > α1 and p ∈ (0, 1). On the other hand,

D(p, α1, α2)

=
[
α2

α1

] [
pα2/α1

]
β1 +

[
α2

α2

] [
pα2/α2

]
β2

=
[
α2

α1

] [
α1

α1 − α2

]
pα2/α1 −

[
α2

α1 − α2

]
p

=
[

α2

α1 − α2

] [
pα2/α1 − p

]
> 0, (118)

again using the fact that α2 > α1 and p ∈ (0, 1). This
proves Lemma 2 for the case n = 2. Next assume
Lemma 2 holds for positive integer n− 1. We show that
Lemma 2 must also hold for the integer n. To do this, we
reformulate the expression C(p, α1, · · · , αn) as follows:

C(p, α1, α2, · · · , αn) (119)

=
n−1∑

i=1

[
αn

αi

] [
αn

αi
− 1

]
pαn/αiβi

=
n−1∑

i=1

[
αn

αi

] [
αn − αi

αi

]
αn−1

i∏
k 6=i(αi − αk)

pαn/αi

= −αn

n−1∑

i=1

1
αi

αn−2
i∏

1≤k≤n−1,k 6=i(αi − αk)
pαn/αi

= − αn

αn−1

n−1∑

i=1

αn−1

αi

(
pαn/αn−1

)αn−1/αi

β∗i ,

where

β∗i =
αn−2

i∏
1≤k≤n−1,k 6=i(αi − αk)

. (120)

Hence

C(p, α1, α2, · · · , αn) = (121)
− αn

αn−1
D(p

αn
αn−1 , α1, α2, · · · , αn−1).

Since D(p, α1, α2, · · · , αn−1) > 0, we have

C(p, α1, α2, · · · , αn) = (122)
− αn

αn−1
D(p

αn
αn−1 , α1, α2, · · · , αn−1) < 0.

To prove D(p, α1, α2, · · · , αn) > 0, let

E(p, α1, α2, · · · , αn) =
n∑

i=1

pαn/αiβi. (123)

It can be veri�ed that




∂E
∂p (p, α1, α2, · · · , αn)
= p−1D(p, α1, α2, · · · , αn),
∂2E
∂2p (p, α1, α2, · · · , αn)
= p−2C(p, α1, α2, · · · , αn).

(124)

Since C(p, α1, α2, · · · , αn) < 0, it follows that

∂2E

∂2p
(p, α1, α2, · · · , αn)

= p−2C(p, α1, α2, · · · , αn) < 0. (125)

Hence, ∂E
∂p (p, α1, α2, · · · , αn), viewed as a function of

p, is strictly decreasing on the interval [0, 1]. Using the
identity,

∑n
i=1

βi

αi
= 0, proved in Lemma 1, we see that

∂E

∂p
(p, α1, α2, · · · , αn)|p=1

=
(
p−1D(p, α1, α2, · · · , αn)

)
p=1

= D(1, α1, α2, · · · , αn)

= αn

n∑

i=1

βi

αi
= 0. (126)

It follows that for all 0 < p < 1,

∂E

∂p
(p, α1, α2, · · · , αn)

>

(
∂E

∂p
(p, α1, α2, · · · , αn)

)
|p=1 = 0, (127)

and consequently

D(p, α1, α2, · · · , αn)

= p

(
∂E

∂p
(p, α1, α2, · · · , αn)

)
> 0. (128)

By the principle of mathematical induction, Lemma 2
must hold for all integers n ≥ 2.

Proof of Theorem 6. Applying Lemma 2 to the
increasing sequence λLN < λLN−1 < · · · < λ2 < λ1, we
see immediately that g′(p) > 0 and g′′(p) for 0 < p < 1.

Proof of Theorem 7. Since (c.f. (27))

L−1∑

l=0

zl,k ∼
N∑

m=1

σ2µm

2
χ2

2L(m),

we see from Eq. (4.1) of [15] that

Pfa = Pr
{

L−1∑

l=0

zl,k > T

}

= Pr
{

N∑
m=1

µmχ2
2L(m) > 2T/σ2

}

≈ Pr
{
χ2

h′ > y
}

, (129)

where h′ = c3
2/c2

3, y =
(
2T/σ2 − c1

)
(h′/c2)

1/2+h′ and




c1 = 2L
∑N

m=1 µm = 2LN,

c2 = 2L
∑N

m=1 µ2
m,

c3 = 2L
∑N

m=1 µ3
m.

(130)

Here we used the fact that
∑N

m=1 µm = N , which follows
from the assumption that the window is normalized. We
have

h′ =

(
2L

∑N
m=1 µ2

m

)3

(
2L

∑N
m=1 µ3

m

)2 = 2L

(∑N
m=1 µ2

m

)3

(∑N
m=1 µ3

m

)2 ,

(131)
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and

(h′/c2)
1/2

=




2L

(∑N

m=1
µ2

m

)3

(∑N

m=1
µ3

m

)2

2L
∑N

m=1 µ2
m




1/2

=
∑N

m=1 µ2
m∑N

m=1 µ3
m

. (132)

It follows that

y =
(
2T/σ2 − c1

)
(h′/c2)

1/2 + h′ (133)

=
(
2T/σ2 − 2LN

) ∑N
m=1 µ2

m∑N
m=1 µ3

m

+ 2L

(∑N
m=1 µ2

m

)3

(∑N
m=1 µ3

m

)2 .

Consequently

Pfa ≈ Pr
{
χ2

h′ > y
} ≈ Pr

{
χ2

2h > y
}

≈ Pr
{
χ2

2h/2 > y/2
}

= e−z

(
1 + z +

z2

2!
+ · · ·+ zh−1

(n− 1)!

)
, (134)

where z = y/2 and h =

⌊
L

(∑N

m=1
µ2

m

)3

(∑N

m=1
µ3

m

)2

⌋
. Hence

z = y/2 ≈ Bh(Pfa),

or

(
T/σ2 − LN

) ∑N
m=1 µ2

m∑N
m=1 µ3

m

+ L

(∑N
m=1 µ2

m

)3

(∑N
m=1 µ3

m

)2

≈ Bh(Pfa). (135)

The approximation (28) then follows immediately from
(135).

The proof of Theorem 8, as it is almost identical to
that of Theorem 7, is omitted here.
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