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Abstract - The kinematic filter is a common tool in control 
and signal processing applications dealing with position, 
velocity and other kinematical variables. Usually the filter 
gain is given a fixed value determined due to dynamic and 
measurement conditions. Most studies provide analytical 
solutions for optimal gains in particular scenarios. In 
practice, due to a lack of information (or under time-
varying conditions) these recipes are mostly inapplicable 
and the kinematic filter requires appropriate adaptation 
tools instead. In its simplest form, the problem may be 
formulated as the gain adaptation under the tracking index 
uncertainty. We suggest a simple adaptive-gain kinematic 
filter based on minimization of the innovation variance 
which is known to give the optimal Kalman gain. The study 
deals with commonly used kinematic models of order 2-4. 
As shown, for any order of the kinematic filter its transfer 
function matches the moving-averaging (MA) model 
parameterized by the filter gain. In this view, the adaptive 
kinematic filter may be implemented in a variety of forms 
either based on the MA identification or by a direct gain 
adaptation. Optimal closed-form solutions may be 
incorporated into the adaptive filter as constraints. With the 
optimally constrained gain-vector components, the multiple-
parameter adaptive filter is translated into a beneficial 
single-parameter version. The simulation study 
demonstrates behavior of suggested filters in a wide range of 
conditions. 
 
Index Terms - kinematic/tracking filter, adaptive gain, time-
series identification 

 
I.  INTRODUCTION 

In many real-time computer-based applications such as 
target tracking, navigation and control the problem is 
usually interpreted in terms of kinematic variables, i.e., 
position and its derivatives. An important class of digital 
filters titled as kinematic, tracking, polynomial, position-
velocity, etc remains the focus of interest over decades. 

Kinematic trackers are commonly presented in a 
Kalman-like form when the time-varying Kalman scheme 
is reduced to a familiar α-β (or α-β-γ) steady-state filter 
with a somehow prefixed gain [1-6]. Many studies 
concentrate on the gain optimality w.r.t. the so-called 
tracking (maneuvering) index (TI) and some other 
conditions. In the literature, one can find numerous 
closed-form and numeric solutions providing optimal 
gains under various types of the process and observation 
noise, kinematic equations and other variations of the 
tracking problem. 

In real-life situations, however, one meets uncertain or 
non-stationary conditions precluding direct use of such 
theoretical findings. Arrangement of a self-tuned adaptive 
kinematic filter is the issue of primary importance. 

Historically this problem has been formulated in terms 
of adaptive Kalman filter (AKF) and treated by means of 
the process and measurement noise estimation. Jazwinsky 
[7] has considered the adaptive noise estimation problem 
as letting the noise input levels adapt to the residuals. 
Ohap [8] has developed a so-called adaptive minimum 
variance estimation method based on the direct variance 
estimation. Mehra [9-11], Gelb [12] and other authors 
also exploited on-line estimation of the innovation 
variance. Maybeck [13] gave detailed presentation of the 
adaptive Kalman filtering including the innovation based 
methods. This approach has been also explored, with 
such or other variations, in several recent works. In [14] 
(Mohamed et al.), estimation of the observation or 
process covariance is based on the empirical innovation. 
Similarly, in [15] the covariance-matching principle has 
been applied, first, to estimate the process covariance 
from the practical residuals and, secondly, to use it in the 
Kalman update equation. The method in [16] is to inspect 
the normalized autocorrelation of innovation. In [17], the 
innovation is matched with a stored replica of the 
innovation impulse response. 

As an alternative to the innovation based AKF, the 
model uncertainty is frequently treated by a multiple-
model method based on the multi-hypothesis approach 
[13]. Recently, much attention is drawn by the Monte-
Carlo, particle filtering [18] and related methods. Another 
relevant field is the subspace identification [19, 20]. 

Together with all these powerful and yet sophisticated 
adaptation tools there is another candidate, namely, the 
parameter estimation method (PEM) whose efficiency 
depends on a properly parameterized model. 
Parameterization of the kinematic filter in terms of the 
kinematic gain is the core of the considered problem. 

In general, the observer canonical form of the state-
space model provides an autoregressive moving-average 
(ARMA) process [19] whose coefficients may be readily 
estimated. However, this method may be inefficient 
because of complex combinations of the gain and model 
parameters. Fortunately, the problem simplifies for the 
kinematic filter parameterized by the solo innovation 
gain. 

In particular, the α-β, α-β-γ and higher order kinematic 
filters specify an autoregressive-integrated moving-
average (ARIMA) series with parameters linearly tied to 
the kinematic gain. In this light, the kinematic gain may 
be tuned using principles of the above-mentioned PEM. 

The objective of this paper is twofold. First, we suggest 
an approach which can be further extended by different 
methods. Some of them are mentioned in Section 7. 
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Secondly, the paper is oriented for practitioners 
interested in application of the α-β- or α-β-γ-like filters. 
We suggest two simple implementation schemes of the 
developed adaptive-gain kinematic filter. The first 
scheme identifies the (differenced) observation as a 
moving-average (MA) process and then translates its 
parameters into the desired kinematic gain. The state 
estimator is applied in cascade. In another 
implementation scheme the gain adjustment is coupled 
with the state estimator and relies on the innovation 
instead of the prediction error. 

In the sequel, Section II recalls basics of the kinematic 
filter, Section III derives the transfer function and links 
between the innovation gain and MA model, Section IV 
presents the gain adaptation procedures, Section V 
analyzes the filter performance, Section VI describes the 
simulation study and Section VII concludes the work. 

 
II.  FILTER BASICS 

Let us consider a discrete-time kinematic model 
  

(1) 

where i – discrete time, xi – N×1 state-vector of kinematic 
variables, yi – observation, F – N×N transition matrix, h – 
1×N measurement matrix, g – N×1 control vector, w and 
v are mutually uncorrelated process and measurement 
noises, respectively, with variances Q=σw

2 and R=σv
2. 

The tracking filter follows the Kalman-like state-equation 
   (2a) 

 
  (2b) 

where the superscript ‘^’ marks the state estimator, ei 
denotes innovation, ki - gain-vector. The asymptotic gain 
k=lim(ki) (i→∞) is defined as [1] 

 (3) 
with the covariance update equations 

   (4a) 

   (4b) 

where P(+)={p(+)
i,j} and P(-)={p(-)

i,j}, i,j=1,…,N are the 
estimation and prediction covariances, respectively, and 

 (5) 

is the innovation variance (E – expectation sign). The 
minimum variance of ei, irrespective of the filter order, is 

 (6) 

There are particular recipes for the kinematic gain k. 
 

A. α-β Filter 
The so-called α-β filter associates with the model 

  
 (7) 

where xi and its first derivative are the position and 
velocity states, T - sampling period. The steady gain k is 
defined by a vector with normalized terms α and β. Given 
a so-called tracking index Λ (Kalata [3]) 

    (8) 

one can derive optimal α and β as [4]: 
  

(9) 

The optimal α and β are tied by the useful link 
   (10) 

 
B. α-β-γ Filter 

Another common filter, α-β-γ, relies on the model 
  

 
(11) 

where the 3-state vector xi comprises, in addition, the 
acceleration state and the gain-vector k contains an 
auxiliary term γ/2T2. The link (10) between optimal α and 
β holds while the optimal γ follows as [3] 

   (12) 

 
C. α-β-γ-λ Filter 

A 4-state constant-jerk kinematic model is defined as 
[4] 

  
 
 (13a) 

Similar to lower orders the 4-state filter, let it be titled 
as α-β-γ-λ, may be used with a gain-vector of the form  

  (13b) 

Closed-form solutions in this case are unavailable while 
a numeric procedure may be found, e.g., in [4]. 

For convenience, the gain may be expanded as 
   (14) 

where χ=[α β γ …]T is introduced as a normalized gain 
and Z=diag(1 1/T 1/2T2 …) - a proper scaling diagonal 
matrix. 

So, given Λ one may find optimal χ (and k) analytically 
or numerically. In practice, however, Λ is unknown or 
time-varying term. Accordingly, we consider an adaptive 
technique allowing on-line adjustment of the gain k. 

 
III.  TRANSFER FUNCTION 

In the first step we translate the state-space model into a 
properly parameterized transfer function (t.f.). One may 
tie the innovation and observation by the t.f. [19] 

   (15) 

where q denotes the forward shift operator. Since the 
matrix F and vector h are constant the t.f. (15) is 
parameterized by the solo k. Expanding (15) shows that 
the resulting t.f. has a common for all orders N form 

   (16) 

which describes the N-order ARIMA process driven by 
the innovation ei. ∆(N) in (16) denotes the N-order 
difference and DN=DN (q) is a polynomial of q-1, namely 
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    (17a) 
 
 
   (17b) 
 
 
 
 
   (17c) 

Accordingly, (16) yields the time-domain MA equation 
  

  (18) 
where bj, j=1,…, N denote the MA parameters and the 
prediction error εi  replaces the innovation ei. In view of 
(17) χ and vector b=[b1,…, bN]T are tied by a linear link 

   (19) 

where for orders N=2 to 4, respectively, L and b0 are: 
  

(20a) 

   
 
(20b) 

  
 
(20c) 

For all N inverse of L exists and χ follows from (19) as 
   (21) 

The vector χ (and yet k) is uniquely tied to b. Two 
adaptation methods for k result from the above 
discussion. 

 
VI. ADAPTIVE FILTER 

 
A. Method 1 

Summarizing the Method 1 (sketched in Fig. 1), one 
finds the Nth difference of yi, estimates the vector b for 
the Nth-order MA model and maps b into the gain vector 
k. The state estimator utilizes the most recent value of k. 
The MA identification is thus viewed as a stand-alone 
task which can run at a rate different to that of the state 
estimator. 

 

The MA identification is a familiar regression requiring 
use of the so-called regressors (sensitivity functions) [19]  

  
   (22) 

where, in view of (18), the filtered error [20] is defined as 
    (23) 

The Method 1 allows variants. The Matlab user may 
apply standard routines RARMAX or ARMAX for the 
MA identification. Thus the batch ARMAX routine can 
be used periodically after collecting groups of data (Table 
1). 

 
 

Table 1. Estimation of the kinematic gain. 
Step Definition MATLAB code 

N-difference of y yd=diff(y,N) 
Batch MA estimator  MDL=armax(yd,[0,N]) 
Collect b B(1:N)=MDL.c(2:N+1) 
Find gain χ kn=inv(L)*(b-b0)’  %Eq.(21) 
Find gain k k=Z*kn  %Eq.(14) 
 
 
Accordingly the time-varying ki follows as a piecewise-

constant term. Alternatively one may replace the second 
and third raws in Table 1 by the single line: 

 
[b,yHat]=rarmax(yd,[0,N]) 

 
The RARMAX routine updates b at each instant so the 

whole procedure immitates on-line estimation of ki. 
Note that at an initial stage only the MA estimation may 

be performed until the kinematic gain approaches its 
optimum. Neither the vector of kinematic variables nor 
the innovation is necessary for the MA estimator. Given 
appropriately tuned ki one may start (or continue) the 
kinematic state estimator. Initialization of the position 
and other states is performed as usual [1]. The state errors 
do not affect ki. 

The Method 1 distinguishes between the prediction 
error and innovation. The former associates with the MA 
predictor while the latter with the state-space predictor. 

 
B. Method 2 

With the Method 2 (Fig. 2), the MA identification step 
is omitted and χi is updated explicitly, using the 
innovation instead of the prediction error. Keeping in 
mind (19) one determines derivatives of the innovation 
w.r.t. χ=χ i as 

    (24) 

In view of (22), the regressor (24) obtains the form 
    (25) 

where ξi=ei/DN(q) is the filtered innovation obtained by 
analogy to the filtered prediction error (23). 

Regressors for N=2-4 are specified in Table 2. 
Fig. 1. Block diagram of the Method 1. 
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Table 2. Sensitivity functions w.r.t. terms of χ (N=2-4) 

     N 
H 

2 3 4 

    

 
 

Table 3. Adaptive-Gain Kinematic Filter 
Design Parameters: 

Initial and Final Convergence Factors η0=η(0), η∞=η(∞) 
Model Order N, Forgetting Factorµ 
Transition Matrix F (due to Eq. (7), (11) or (13)) 
Initial Matrix P(0), Initial Normalized Gain χ (0) 

Initialization: 
Convergence Factor:  η= η0 
Inverse Covariance Matrix: P=P(0) 

       Kinematic State Vector: x0=x(0) 
       Kinematic Gain: χ0=χ(0), k0=Zχ0 

Compute For Time Instant i=1, 2, … 
------------------------State Estimator ---------------                  
ei= yi-hFxi-1                                 Eq. (2): Innovation 
xi=Fxi-1+ki-1ei                            Eq. (2): State Update  
--------------------------RLS----------------------------                  
Ψ=(-ξi-1,…,-ξi-N)                           Eq. (22) 
H=LΨ                                               Eq. (25) 
G=[HPHT+η]-1PHT                                  RLS gain 
P=η-1[P-GHP]                                    Inverse Covariance 
χi=χi-1+Gei                                    Parameter Update 
ki=Zχi                                    Tracker Gain Eq.(14) 
b=Lχi                                   Eq. (19)-Translate χ into b 
ξi=ei-b1ξi-1-…-bNξi-N            Eq. (36),  ξj =0, j<1 
η=µγ +(1-µ)η∞                     Convergence Factor Update 

 
 
Table 3 describes the adaptive-gain tracker built in 

accordance to the Method 2. The algorithm has two basic 
stages. The first stage is the state update based on a given 
gain ki-1. The second is a usual RLS which refreshes the 
desired gain ki (not to be confused with the RLS gain G). 

The second stage exploits the current innovation 
obtained in the first stage. The first stage receives ki-1 
from the second stage fulfilled at the preceding instant. 

Method 2 utilizes the same innovation to update the state 
vector and to refresh the adaptive gain k i. 

To determine the required sensitivity functions, one 
collects the delayed filtered errors ξi and translates them 
into desired terms using the predefined matrix L. 

 
C. Constrained Adaptive Filter 

It is noteworthy that the optimality constraints (10) and 
(12) can be properly aggregated with the adaptive filter. 
With the Method 1, however, these constraints should be 
used in the MA identification and this takes us out of the 
attractive standard MA estimator. In the Method 2 use of 
constraints is straightforward and its description follows. 

First, we consider the α-β adaptive kinematic filter. The 
derivatives of ei w.r.t. α and β (see Table 2) specify a 
typical two-parameter adaptative scheme. The number of 
adapted parameters, however, can be reduced using (10). 
Viewing β as a function of α provides 

   
  (26) 

where the derivative for β follows from (10) as 
  (27) 

Applying the gradient (26) together with a proper 
expression (10) for β results in a single-parameter 
scheme. 

To give the constrained adaptive filter even a simpler 
truncated (β’=0) form one can drop the extra term in (26). 

Now we turn to the α-β-γ adaptive kinematic filter. 
The derivatives of ei w.r.t. α, β and γ present in Table 2 

specify a 3-parameter adaptive tracker. Analogously, one 
may rearrange it into a single-parameter form. Viewing β 
and γ as functions of α gives 

  
   (28) 

where β’ is held as in (27) while γ’ follows from (12) as 
    (29) 

Letting β’=γ’=0 in (28) yields a truncated filter form. 
 

V. PERFORMANCE ANALYSIS 
The adaptive tracker inherits many attractive properties 

of its predecessors, the Kalman filter and MA estimator. 
The asymptotic error variance of the recursive MA is 
equivalent to that of the batch LS estimator and this 
simplifies analysis of the kinematic filter. The covariance 
of the gain errors should achieve the Cramer-Rao bound. 

Importantly that due to the known unimodality property 
of the MA estimator, the MA-based adaptive tracker 
necessarily converges to a true optimal-gain solution. 
Some of these points will be next discussed in more 
detail. 

 
A. Gain Optimality 

The first point to be stressed is that the minimum-
innovation-variance yields the optimal steady-state 
Kalman gain. As known [8] if the transition matrix F and 
observation matrix h are available, the steady gain k 
which whitens the innovation process (and minimizes the 
innovation variance) is the optimal steady Kalman gain. 

Fig. 2. Block diagram of the Method 2. 
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The Kalman gain (3) obeys the optimality condition 
  

   (30) 

where ‘Tr’ is short for the matrix trace, 
  

   (31) 

On the second hand, minimizing S [defined in (5)] gives  
  

   (32) 

As known, the Kalman gain is optimal for any linear 
combination of states, including one underlying (32). In 
particular, the equivalence of (30) and (32) for the α-β 
filter can be inspected explicitly. 

The innovation variance may be expanded as 
    (33) 

Assume that P(-) is a steady-state covariance associated 
with the optimal α-β filter. Then P(+) may be obtained as 

  
 
   (34) 

Differentiating the latter w.r.t. α and β and collecting 
non-zero derivatives provides (up to a scale factor) 

  
 
   (35) 

Equating the first equation (35) to zero gives the 
Kalman 

    (36) 

while the second equation (35) gives, in turn, the Kalman 
    (37) 

Note, the third line (34) (cross covariance) combines 
the optimality conditions both for α and β. 

So, the loss functions (31) and (33) are minimized by 
the same α and β. Similarly, one may illustrate 
equivalence between criteria (30) and (32) for higher-
order filters. 

 
B. Unimodality 

There is always a question of interest whether the 
asymptotic innovation variance is a convex unimodal 
function of adjusted parameters. 

Regarding the ARMA identification there is a unique 
minimum if the ARMA model order is correctly chosen 
[20]. In this case the ARMA estimator provides the true 
solution. Accordingly if the kinematic model order is 
correctly chosen the adaptive tracker due to its unique 
correspondence with the MA model finds the 'true' gain. 

As an example, let us depict variances of the predictor 
and estimator for the suggested constrained α-β filter. 

The state estimator error of this filter is extended as 

  
   (38) 

The state error (38) is built from two parts induced by 
the process and measurement noises. Note that strength of 
the fist part is proportional to σwT2, strength of the second 
– to σv, while their ratio gives exactly the index Λ 
determined by (8). As α varies so the strength of 
'dynamic' and 'measurement' parts vary in opposite 
directions. 

The prediction error (innovation) is also composed from 
two parts induced by the process and measurement 
noises, 

  
   (39) 

The independent terms in (38)-(39) fit the 2nd-order 
ARMA model [23] 

  
   (40) 

driven by the unit-strength noise ωi. The variance of ζi is 
  

   (41) 

 
 

 
In the case of α-β filter al, l=l, 2; are zeros while bj, 

j=1,2; are functions (19) of α and β. By substituting (10) 
β may be excluded. Fig. 3 depicts numerically computed 
variances of the estimator error and innovation as 
functions of α for different Λ. As expected, for any Λ 
both variances are unimodal and achieve their minima 
with the same α. Note, for higher Λ (smaller α) the 
innovation variance is more sensitive to α and has a more 
stressed minimum than the estimator. This means that a 
slight deviation from the optimal α caused by the gain 
misadjustment noise is not crucial for the kinematic state-
estimator. As Λ decreases, α grows and its accuracy 
becomes more critical. 
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C. Error Covariance for Multiple-Parameter Filter 
Accuracy of χ is measured by the covariance V(χ) 

which can be found from the covariance matrix for the 
MA parameters V(b). Specifically, 

 (42) 

where n is an equivalent length of the data window. The 
2nd-order MA estimator has the covariance matrix [22] 

  
(43) 

Accordingly, applying (42), the α-β filter has the 
covariance matrix (in terms of b1 and b2) 

  
(44) 

where b1 and b2, as noted, are known functions of α and 
β. 

 
D. Error Covariance for Single-Parameter Version 

The optimal solution for χ varies in accordance to Λ. 
The constraints (10) and (12) describe a subspace of 
solutions satisfying the optimality criterion and hence 
their use doesn't change the optimal solution. For the 2-
state filter the space of optimal solutions is a curve in the 
α-β plane. The particular Λ specifies a point in this curve. 

Though constraints do not change the optimal solution 
they do reduce the estimator variance. For the single-
parameter adaptive α-β filter the variance for α follows as 

  

  
(45) 

Keeping in mind (20a) and (27) one can readily 
compute variances for both multiple- and single-
parameter versions of the adaptive tracking filter. 
Comparison shows that Eq. (45) provides a lower than 
(44) variance of α. 

 
VI. SIMULATION 

The simulation study pursues several objectives. First, it 
inspects behavior of various adaptive filter types. Next, 
the study compares the adaptive gain to analytically and 
numerically found optimal solutions. The multi-
parameter filter is checked versus its single-parameter 
variant. 

 
A. Signal Model 

The observation is viewed as the output of the system 
    (46) 

excited by the input noise wi and contaminated by the 
observation noise vi. The latter model obtains particular 
forms in accordance to the specified kinematic matrix F 
and column vector g. Note that g may specify different 
types of inputs. Thus Eq. (7) defines a so-called 
piecewise-constant random noise assuming that the input 
is constant between samples, while (11) and (13) provide 
a quantized instantaneous random noise [6]. 

For the 2nd-order model Eq. (46) is expanded as 
    (47) 

with N=2. The 3-state model (11) driven by the input 
random noise results in a similar to (47) form however 
with N=3. In turn, the 4-state model (13) defines yi as 

   (48) 

The noises wi and vi are generated as white Gaussian 
sequences. Let us recall that the optimal kinematic gain 
depends exclusively on Λ. Hence we may fix any of 
variances (let it be Q=1) and vary the second in 
accordance to the desired Λ. In all trials assumed T=1. 

 
B. Simulation Results 

In the first example we compare the Methods 1 and 2. 
Three variants of the α-β filter are involved. The first 
variant (as a reference) represents the Method 1 
exploiting the batch ARMAX routine for the gain 
computation via the MA parameters. The Method 1 
utilizing the recursive RARMAX routine for the gain 
computation via the MA parameters is the second variant. 
The Method 2 coupling direct adaptation of α and β with 
the state estimator is the third variant.  

As seen from Fig. 4, both recursive estimators (second 
and third variants) rapidly approach the batch LS 
estimator (first variant) and yet the second variant 
converges faster. The reason is that with the Method 1 
behind the second variant the gain (provided by the MA 
estimator and corresponding linear transformation of the 
MA parameters) is not affected by the kinematic state 
errors.  

 

 
The second example inspects performance of the 

constrained variant of the kinematic filter. Fig. 5 presents 
behavior of the constrained and unconstrained variants of 
the α-β filter implemented in accordance with the Method 
2 (the gain adaptation and state estimator are coupled). 
Both constrained and unconstrained recursive versions 
rapidly approach the batch form of the Method 1 (the 
same as in the previous example). However, the gain α 
converges faster and has a lower variance with the 
constrained single-parameter filter. 
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Figs. 6-8 compare adaptive gains versus optimal 

solutions found analytically (for orders 2-3) or 
numerically (order 4). In these trials, the signal yi is 
processed by several ways. First, by a multiple-parameter 
adaptive tracker constructed in accordance to the Method 
1, then by a tracker due to the Method 2 and finally by a 
single-parameter variant (full or truncated) of the Method 
2. As an applied filter converges and the innovation 
approaches the white-noise sequence, the kinematic gain 
is averaged over the remaining time and the resulting 
statistics, mean and standard deviation, are collected. 
This procedure is repeated 10 times and the final gain is 
averaged over 10 runs. These trials are performed with 
different Λ changing from 10–3 to 103 (with Q=1 and R 
varied due to Λ). 

Fig. 6 compares the adaptive α and β (obtained by 
various algorithms) versus the theoretical α (solid curve) 
and β (dash), respectively. The model (47) with N=2 
provides a signal with the 1st-order trend. First, Fig. 6 
depicts the adaptive α (diamond) and β (square) values 
outputted by the two-parameter adaptive filter. Both 
Method 1 and 2 gave like results. Next, Fig. 6 shows the 
adaptive α (plus) associated with the single-parameter 
tracker and, equivalently, its truncated version (in the plot 
two indistinguishable). In average, the adaptive α and β 
are shown to be close to analytically found optimal 
values. 

 

Similarly, the model (47) with N=3 was used to 
generate the signal with the 2nd-order trend. Fig. 7 
illustrates performance of the 3-state adaptive tracking 
filter and its constrained variants, single-parameter and 
truncated. The adaptive α, β and γ obtained by different 
algorithms are compared to the theoretical α (solid curve) 
and β (dash) and γ (dotted), respectively. Fig. 7 plots the 
adaptive α (diamond), β (square) and γ (triangle) related 
to the three-parameter tracker implemented by the 
Method 1 or 2. In addition, Fig. 7 shows the adaptive α 
(plus) associated with the single-parameter tracker and, 
equivalently, with its truncated version (both 
indistinguishable). In average, the adaptive α, β and γ are 
close to the optimal solutions. As observed from all trials, 
the single-parameter version of the adaptive filter shows a 
lower gain-adjustment noise than its multiple-parameter 
counterpart. Monitoring is required only for the single-
parameter filter utilizing the constraint (10) to keep α < 1. 

 
 

The truncated form doesn't deviate visibly from the full-
gradient (single-parameter) adaptive filter. 

Next, Fig. 8 exposes simulation results for a higher 
order model, namely, α-β-γ-λ filter. The experiments obey 
the previous scenario however with a signal generated 
due to the model (48) driven by the instantaneous random 
jerk-like noise. As a gold reference, we use a standard 
Kalman filter with known Q and R. As seen from Fig. 8, 
the adaptive gain closely fits 'optimal' values provided by 
the steady-state Kalman filter. 
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Apparently, a constrained variant of the 4-state filter is 
unavailable. 

 
VII. CONCLUDING REMARKS 

The steady-gain α-β, α-β-γ and α–β-γ-λ tracking filters 
are given a simple adaptive form when the filter gain is 
treated as an adaptation parameter. Importantly, for the 
kinematic model, the innovation-minimum-variance 
criterion results in the optimal Kalman gain. Accordingly, 
the innovation-based adaptive kinematic filter is 
asymptotically equivalent to the optimal steady-state 
Kalman filter. The resulting adaptive-gain kinematic filter 
may be implemented using two methods. 

The Method 1 combines a stand-alone MA 
identification with the kinematic state estimator. Both 
stages are linked via the gain obtained from the MA 
parameters by a linear transform (20). The method 
performs, in series, difference of the observation signal, 
estimation of the MA parameters, their linear 
transformation into the kinematic gain-vector and, finally, 
the state estimation step. 

An alternative Method 2 updates the gain directly using 
the innovation sequence produced by the Kalman filter. 

The adaptive kinematic filter allows reasonable 
modifications. Thus, constraining components of the 
optimal gain translates the multiple-parameter adaptive 
kinematic filter into a beneficial single-parameter version. 

The developed adaptive filters were tested using a wide 
range of conditions. In all runs, the gain approaches the 
optimal value predicted by theory. Asymptotically, both 
Methods 1 and 2 show similar results. The single-
parameter version exhibits a lower gain-adjustment noise 
than the multiple-parameter filter. 

Some other attractive properties of the adaptive 
kinematic filter deserve to be mentioned here. As shown 
[21], the adaptive gain successfully tracks rapidly varying 
maneuvering index Λ. The gain transient is analogous to 
that of the Kalman gain. To this end, adaptation translates 
the steady-state kinematic filter into a time-dependent 
version which by contrast to the time-varying Kalman 
counterpart does not require a priori data. 

The suggested adaptive-gain filter should be compared 
with the covariance-matching and other related methods. 
Apparently the Method 1 should be beneficial to any 
other innivation based method because the kinematic gain 
is independent of the state errors. More thoroughul 
comparison of the suggested adaptive-gain filter with its 
numerous counterparts is postponed to future works.  

Importantly, the simple kinematic model may be 
extended or viewed as a part of other models. In this 
context, one may consider the kinematic filter with 
exponentially-correlated states, with different types of 
dynamic input and measurement noise, with position-
velocity or even position-velocity-acceleration 
measurements. Useful extended formulations arise also 
with the 2D and 3D tracking problems. Next, the 
kinematic model may be coupled with other commonly 
used models, e.g., with the sinusoidal or comb. There are 
also many nonlinear formulations resulting, e.g., from 
aggregation of the kinematic model with non-linear 

observation equations (bearing-only, etc). In all cases, the 
suggested approach may be adapted with certain efforts. 

Finally, note that using an equivalent ARMA model 
behind the kinematic filter provides, in addition to the 
gain-adaptation property, a highly desired structure 
adaptability. Particularly, utilizing well-known 
procedures for the ARMA order-recursive estimation 
allows automatic identification of the kinematic filter 
order. 
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