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Abstract—In this paper, a neural network solution to 
extract independent components from nonlinearly mixed 
signals is proposed. Firstly, a structurally constrained 
mixing model is introduced to extend the recently proposed 
mono-nonlinearity mixing model, allowing that different 
nonlinear distortion are applied to each source signal. Based 
on this nonlinear mixing model, a novel demixing system
characterized by polynomial neural network is then
proposed for recovering the original sources. The parameter
learning algorithm is derived mathematically based on the
minimum mutual information principle. It is shown that
unique extraction of independent components can be
achieved by optimizing the mutual information cost function 
under both model structure and signal constraints. In this 
framework, the theory of series reversion is developed with 
the aim to perform dual optimization on the polynomials of 
the proposed demixing system. Finally, simulation results 
are presented to verify the efficacy of the proposed 
approach.

Index Terms—Nonlinear independent component analysis, 
Nonlinear blind source separation, polynomial neural 
network, unsupervised learning

I. INTRODUCTION

Generally, the problem of the blind separation of 
independent sources involves a set of observations 

1 2( ) ( ) ( )x
T

px t x t x t     which are generated from a 

set of unknown independent components 

1 2( ) ( ) ( )s
T

qs t s t s t     according to

 1 2, , ,i i qx f s s s 
(1)

where if  is an unknown differentiable bijective 

mapping, 1,2, ,i p   and t is the time or sample index [1, 
15, 18]. A technique known as Independent Component 
Analysis (ICA) is exploited to estimate both the mixing

mappings if ’s and the original sources 

( ),  1,2, ,is t i q  . A common assumption by most ICA 

algorithm is that the mixing mapping takes the form of 
the linear combination, i.e. 

 1 2 1 1 2 2, , ,i q i i iq qf s s s m s m s m s     . However, this 

linear assumption is almost always violated due to the 
existence of the nonlinear distortion in practice, thus 
resulting in the failure in extracting the original source 
signals under nonlinear mixtures [2, 9, 11]. Hence, the 
search for a reliable nonlinear solution becomes 
paramount at both theoretical and practical levels.

The contribution of this paper is as follows: Firstly, a 
multi-nonlinearly constrained system is proposed as the 
mixing and demixing model. The model generalizes the 
original mono-nonlinearity model previously presented in 
[2]. The proposed model is a more general description
than the post-nonlinear systems [5] and provides a better 
representation of a nonlinear mixture. Secondly, a new 
polynomial-based neural network demixer is proposed 
and developed as the separation system to estimate the 
unknown source signals. Finally, the theory of Series 
Reversion is incorporated into the derivation of the 
parameter learning algorithm to account for the special 
structure of the demixing network.

II. NONLINEAR ICA MODEL

A mono-nonlinearity mixing model derived from the 
theory of functional analysis was proposed in [2] to 
provide a general description of the mixing system in the 
following form:

 1 ( )f f x M s (2)

where 
1 2

T

p   M m m m  with dimension p q  and 

1 2

T

i i i iqm m m   m  . In this paper, we assume that 

the number of sources is equal to that of observations, i.e. 
p q N  . This model is structured in the form of one 

linear mixing matrix sandwiched between two layers of 
nonlinearities, one of which is the inverse function of the 
other. The term ‘mono-nonlinearity’ represents the 
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condition where an identical nonlinear distortion is 
applied to each source signal. However, there is no 
guarantee that this condition is always fulfilled in 
practice. In fact, the channels between observations and 
sources are arbitrarily distorted due to the uncertainty of 
the environment. Hence, to preserve the special 
relationship between the two layers in (2), we represent 
the ‘multi-nonlinearity’ constrained mixing system by the 
following model:

( )  -1f f
x D MD s (3)

where 
 1 2diag Nf f ffD 

1 1 1
1 1diag Nf f f     -1f

D 

 1 1 2 2diag N Ng u g u g u    gD u 

( )i i i ig u g u 

This model will reduce to the mono-nonlinearity mixing 
model when 1 2 Nf f f f     and can further 

represent a linear mixture as a special case if   1

N

i i
f

  is 

linear.
A demixing system for (3) can be described by the 

inverse of the mixing system where the original sources 
are estimated as follows:

1 1 1ˆ ( )    -1 ff
s D M D x (4)

Using the identity 1
-1g g

D D  , (4) can be rewritten as

1ˆ ( )  f fs D WD x (5)

where W is the demixing matrix. Given the observed 

signals, the aim is to estimate   1

N

i i
f

  and W such that the 

resulting transformed signals are mutually as independent 
as possible and statistically as close as possible to the 
source signals. 

III.  POLYNOMIAL-BASED NEURAL NETWORK FOR 

NONLINEAR ICA

In current literature, popular nonlinear network
demixers such as SOM [16], GTM [17], RBF [4] and 
MLP with sigmoidal nonlinearity [7] are inherently
nonlinear because of the fixed nonlinearities in the hidden 
neurons. However, the fixed rigidness of the nonlinearity 
will lead to the oversized and overfitted network and
inevitably increase computational complexity [2]. Instead 
of using a fixed form of nonlinearity in the hidden 
neurons, we propose to design a demixer whereby its
intrinsic nonlinearity can be flexibly controlled.

A. Polynomial-based Network as the Nonlinear ICA 
Demixing System

The Weierstrass Approximation Theorem states that 

for every continuous function :[ , ]   R , there 

always exists a polynomial series  
0

M
m

m
m

p u u


  , 

parameterized by   0
,  

M

m m
M 


 , which can uniformly 

approximate   with arbitrary accuracy. Therefore, a 

feedforward polynomial-based network shown in Figure 
1 is proposed to reflect the model in (5). The hidden layer 
neurons in the proposed network perform the polynomial 
series to approximate the mixing mapping functions 

  1

N

i i
f

  and  1
1

N

i i
f 


. The outputs of the demixing 

system assume the following form 

 

  

1

2
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(6)

where [ ] [ ,1] [ , ]

T

i i i Ny y   y  , [ ,1] [ , ]

T

m m m Na a   a  ,

[ ,1] [ , ]

T

n n n Nb b   b  , [ , ]j iy  denotes the ith output of the jth

layer in the demixer,   1;

[ , ] 0; 1

m M i N

m i m i
a

 

 
 and   2 ;

[ , ] 1; 1

n M i N

n i n i
b

 

 
are

the coefficients, M1 and M2 represents the order of the 
series expansion and ‘  ’ denotes the Hadamard product.

Figure 1: (a). Multi-nonlinearity Constrained Mixing Model. (b)
Polynomial-based Nonlinear ICA Demixer.

B. Series Reversion

As shown in Figure 1, the implementation of the 
proposed demixer requires the inverse function of the 
polynomial series. It is possible to express the inverse 
function of a polynomial in a closed form when the order 
of the forward function is 4 or less. However, computing
the inverse function becomes difficult and intractable as 
the order increases. The theory of the Series Reversion 
provides an alternative solution and further establishes 
the foundation for computing the inverse function of a
general polynomial expansion. In this paper, instead of 
presenting the theorem formally, we provide a paraphrase 
of the main theorem in [6, 13] with further derivation to 
our proposed demixing system.
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Theorem 1: If the function g(.) has a polynomial

expression as  
1

0

M
m

m
m

g u u


  , then its inverse function 

can be given by the similar form of    1
0

1

n

n
n

g u u 






 
and the coefficients computed from

 

1

1
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, , 1
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M

Mik
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i
i

n k

n k

  





 
          

 
 


 



(7)

where 2 3 42 3 1,  0,  2,3,4,ik k k n k i         and 
1

1
2

M

i
i

k n k


 
   

 
 . In addition, the differential of n with 

respect to m ’s takes the form of

   

 

1 11

2
1

2 3

1 1

1 , , 1

2

1 !
1

! !

M

i i m
i

MM
k k k

n i m m mM
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k
d k d
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(8)

Hence, the derivative of the reverse series with respect to

the coefficients in the forward polynomial
1

m

g






 can be

easily derived from
21 1

1

M
n

nm n m

g g 
  

 



  
     
 .

C.  Gradient Based Parameter Learning Algorithm

The primary goal of the demixing system is to obtain a 
set of signals as independent as possible. The cost 
function based on the Kullback-Leibler Divergence
(KLD) in [1] is commonly used in blind signal separation 
problems. However, in nonlinear ICA, the preservation of 
independence is not strong enough to ensure signal 
separability and this inadvertently results in non-
uniqueness of solutions. Therefore, to reduce the 
indeterminacy of non-unique solutions, the cost function
is modified by incorporating a set of signal constraints 
into the original KLD cost function as follows:

 

   

[3] ( )
[3, ] [3, ]

1 1

constraints

2
( )

[3, ] [3, ]
1

log det log ( ) ( , )

( , ) , ,

y

x

N N
c

i i i i i iT
i i

D
c

i i i i i
j

d
J p y g y s

d

g y s cum y j cum s j


 



   

   

 




    (9)

where βi’s denotes a set of constants that control the 
weight of the additional constraints;  ,cum u j  represents 

the jth order cumulant of u and D is the maximum order of 
the cumulant. In fact, these constraints imply the use of a 
priori information about the source distributions which is 
intended to match the outputs of the demixer to the 
original source signals in terms of cumulants.

The mutual information of the output will only be zero 
if the obtained outputs are independent with each other.
The use of signal constraints primarily aims to force the 
demixer outputs to have identical statistics with the 
source signals up to the 2nd order statistics. It is noted that 
the use of signal constraints alone is not sufficient but 
needs to be used in conjunction with the structural 

constraint in order to effectively ameliorate the 
indeterminacy problem. When the mutual information is 
minimised and the signal constraints are satisfied, the 
outputs of the demixer will correspond to the original 
sources. According to the structure of the network, we 

have [3]

[2]

-1f f
Dy D

W
y xxT

dd d

d dd
   . Since the forward and the 

inverse functions take the forms of the Weierstrass series:

 

   

1

2

[2] 1
[ , ] [2]

1[2]

1
1

[ , ] [0, ]
1

   
y

y
y

x
x

x

M
i m

m i
m

M
ni

n i i
n

df
ma

d

df
nb a

d












 




(10)

where 1M  and 2M  denote the order of the forward and 

the reverse Weierstrass series respectively. Therefore,

    1 2
1[3] 1

[2] 0
1 1

diag diag
y

a y W b x a
x

M M
nm

m nT
m n

d
m n

d



 

   
    

   
     (11)

Accordingly, the cost function for the demixer assumes 
the following form:
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   (12)

Since the theory of series reversion is used, by using 
Theorem 1, for 1,2, ,i N  , we can obtain the total 

derivatives of   2

[ , ] 1

n M

n i n





with respect to   1

[ , ] 1

m M

m i m





 as:

1

[ , ] [ , , ] [ , ]
1

M

n i n m i m i
m
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       (13)

where
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. For 

simplicity, we define the following functions:
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     1 3,1 3,

[3,1] [3, ]

log ( ) log ( )
T

N N

N

d p y d p y

dy dy

    
      
  

ψ 

   ( ) ( )
1 [3,1] 1 [3, ]

[3,1] [3, ]

, ,
(c)g

T
c c

N N N

N

d f y s d f y s

dy dy

        
  



The total differential of the cost function is then 
derived as
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From the structure of the network, the following 
equations can be found:
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The derivative of the cost function with respect to the 
parameters can therefore be derived as (18)-(20).
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By inserting (18)-(20) into (21)-(22), the gradient descent 
based learning algorithm can be obtained.

( 1) ( ) ( )TJ
t t t 
  

WW W W W
W

(21)

1( 1) ( )     ;   0,1, ,
mm m

m

dJ
t t m M

d
    aa a

a
      (22)

where W  and 
m

a  represent the step size of the 

demixing matrix W and ma ’s respectively.

IV.  RESULTS

In this section, three experiments will be conducted to 
verify the efficacy of the proposed approach. In the first 
experiment, the robustness of the linear algorithm in 
nonlinear mixture is investigated to show the importance 
of the solution specifically tailored for the blind signal 
separation under nonlinear environment. The second
experiment is carried out for the blind source separation 
based on synthetic data while the third experiment on real 
life speech signals. Analysis based on the order of the 
Weierstrass series is presented. Before showing the 
results, a performance index which is able to evaluate the 
performance is introduced. It is well known that Mean 
Square Error (MSE) is a great performance index to 
measure the similarity between two signals. However, it
is sensitive to the variability of both scale and phase of 
the signals. In the context of blind source separation, the 
estimated signals can be subject to scale and phase 
reversal ambiguities and therefore, the MSE criterion is 
not suitable for direct performance comparison between 
original sources and estimated sources. As an alternative, 
the following performance index is proposed in [2] as

1

1
2 1

N

i
i

N




 
   

 
Ρ                       (23)

where

[3, ] [3, ]

22
[3, ] [3, ]

( [ ])( [ ])

[ ] [ ]

i i i i
i

i i i i

E s E s y E y

E s E s E y E y


   
      

  (24)

i  is denoted as the normalised cross-correlation between 

the original and the estimates source signals. In above, 
‘ u ’ and ‘ u ’ denote the complex conjugate and 

absolute operation of u, respectively. In short, this
performance index Ρ  is essentially a variant of the MSE 
criterion that implicitly takes into account the scale and 
phase reversal ambiguities.

A. Experiment 1

Two sinusoid signals are generated synthetically as the 
original source signals. The source signals are passed 
through the nonlinear mixing system defined as 

( )x Msf  where M  is selected to be an orthogonal 
matrix parameterised by the angle of   with the form of

cos sin

sin cos
M

 
 

 
  
 

                      (25)

and ( )f   is the memoryless nonlinear function which is 

given by 3( ) ( )Ms Ms Msf   where   represents the 

degree of the nonlinearity. It can be implied that the 
higher value   has, the more severe the intrinsic 

nonlinearity of ( )f   is. Along with the MSE, the 

following performance index is evaluated to formulate 
explicitly the normalised cross correlation between 
original and the estimates source signals.
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  (26)

The MSE performance index shows how accurate the 
estimate signals resemble the original sources while the 
normalised cross correlation implies the statistical 
independence among the estimated signals. In this 
experiment, the parameter α from the equation (26) which 
characterise the degree of mixing is within [0°,45°] and 
β∈[0, 2]. The achieved MSE and δ with respect to α and
β using JADE algorithm [12] is shown in Figure 2. 

Figure 2: The performance index with respect to   and   of the 

JADE algorithm.

Within the region of   15 ,45 , 0.5,2    
  , it 

can be seen that both the MSE and cross correlation 
performance of the linear algorithm under normal 
nonlinear mixtures are high and we conclude that the 
linear algorithm fails to extract the original source signals 
within this region. Nonlinear BSS solution is required 
under typical nonlinear environment. It can be concluded 
that in linear mixtures performances of linear algorithms 
are unaffected by the degree of mixing whereas in 
nonlinear mixtures performance of linear algorithms rely 
on both the degree of nonlinearity and the degree of 
mixing.

B. Experiment 2

Five subgaussian signals are generated synthetically as 
the original sources and expressed as ( ) [Binary signal;t s

 sin (1600 );  sin 600 6 cos(120 ) ; sin(180 );t t t t   

Uniform-distributed signal]T . The source signals are 
then mixed according to (3) where M is a 5 5  random 
mixing matrix and 

1 -1diag tanh sinh tanh sinh tanh   fD . The learning rates

for the weights and the coefficients ma  are set to 

0.001 W and 0.00003
m

 a , respectively. In order to 

assess the performance of the proposed algorithms, we 
compare the proposed method with existing algorithms 
(Linear ICA [1], RBF [4] and FMLP Network [7]) based 
on the MSE performance index.

Figure 3:  (a) Original sources.
              (b) Recovered signals via Linear ICA method.

(c) Recovered signals via the proposed network.
(d) MSE Performance index of the tested algorithms.
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The source signals, signals recovered by Linear ICA
method and the proposed network, the performance index 
of the tested algorithms are shown in Figure 3. We have 
also simulated the RBF and FMLP demixers with 
different number of hidden neurons respectively but no 
substantial improvement of results has been obtained. A 
Monte-Carlo experiment of 100 trials has been conducted 
for the RBF and FMLP demixer and in each simulation, 
the convergence of the RBF and the MLP demixers have
been monitored to ensure that both demixers do not 
converge to local minima. In Figure 2(d), the proposed 
approach has demonstrated its efficacy in separating 
signals under the nonlinear mixture. The success is 
consecutively followed by the MLP and RBF but the 
separation results achieved by the linear method falls far 
from optimal and this further indicates the crucial need 
for nonlinear separation techniques.

C. Experiment 3

To further investigate the efficacy of the proposed 
scheme in practical scenario, the third experiment is 
conducted for separating real data which are obtained 
from the ICA’99 datasets [8]. Three speech signals are 
used as the original source signals. Similar mixing model 
is applied to the sources where M is changed to an 
unknown 3 3  random mixing matrix and 

 -1

-1 3 3
1 2 3 3diag tanh ( ) 0.8

f
D s s s s s   . The mixing 

system is expected to represent the combined recording 
amplifier [10] and the nonlinearity due to the carbon-
button microphones [14] working in the saturation region 
whose characteristics can be approximated by the 
hyperbolic function. The parameter settings used here 
remains identical to the first experiment except the 
learning rates are now changed to 0.0005W   and 

51 10λm
   . Furthermore, different orders of the 

Weierstrass series are applied to this experiment to 
investigate the influence induced by the truncation. Both 
the forward and the reverse series will be truncated to the 
5th, 7th and 9th orders, respectively. The original sources, 
the nonlinearly mixed signals and the restored signals via 
the proposed 7th order Weierstrass Network are displayed 
in Figure 4(a)-(c). Figure 4(d) shows the performance 
evaluated in term of convergence and accuracy of the 
proposed algorithm with different orders of polynomials.

Similar to the previous experiment, the analysis shows 
that the proposed method has successfully recovered the 
real-life recorded signals. Since the nonlinear layers are 
updated from linear functions and W λm

  , the initial 

convergence (0-25 iteration) is mainly dominated by the 
linear demixing matrix, which leads to the similarity of 
all three curves. The adaptation of the nonlinear functions 
contributes primarily after 30 iterations. It is also 
observed that the low-order coefficients in the 
Weierstrass series are firstly updated since they determine
the shape and tendency of the nonlinear function. The 
effect of the high-order items in the Weierstrass series is 
shown clearly when the system tends to be stable. It is

seen that the 9th-order Weierstrass Network outperforms 
others in term of accuracy. Concurrently, the 
convergences of the performance index for the 5th, 7th and 
9th order Weierstrass Network are almost identical but 
only differ in terms of steady-state values. The 
improvement achieved from the 5th order to the 7th is 
significant whereas from the 7th to the 9th order, the 
decrement is only 0.012. This result shows that the low-
order items in the Weierstrass series dominate the 
performance of the approximation. 
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Figure 4: (a) Real-life speech source signals.
             (b) Nonlinear mixed signals.

(c) Recovered signals by the 7th-order Weierstrass Network.
(d) MSE performance index of the Weierstrass Network with 
different orders.

IV.  CONCLUSION

In summary, we proposed a new algorithm for the 
polynomial neural network nonlinear ICA demixer based 
on the extension of the mono-nonlinearity mixing model. 
Unlike the MLP-based network, a set of finite order 
polynomials are used as the activation function of the 
hidden neurons to approximate the true nonlinear 
distortions in the channel. This is primarily to reduce the 
size of the network by providing flexible and adjustable 
degree of nonlinearity. According to the structural 
requirement of the demixing system, the inverse function 
is calculated as a truncated polynomial according to the 
theory of reversion which further provides the 
relationship between the coefficients of the forward and 
the reverse series. The parameter learning algorithm is 
therefore derived and takes this relationship into 
consideration to provide optimal performance. Finally, 
based on the simulation results carried out, we show that 
the proposed method outperformed other linear and 
nonlinear algorithms in terms of accuracy and dynamic 
convergence speed.
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