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Abstract- When the environmental conditions are 
stable, a typical Wireless Sensor Network (WSN) 
application may sense and process very similar or 
constant data values for long durations. This is a 
common behavior of WSN nodes that can be exploited 
for reducing their power consumption. This study 
combines two orthogonal techniques to reduce the 
energy dissipation of the processor component of the 
sensor nodes. First, we briefly discuss silent-store 
filtering MoteCache. Second, we utilize Content-
Aware Data MAnagement (CADMA) on top of Mote-
Cache architecture to achieve further energy savings 
and possible performance improvements. The com-
plexity increase introduced by CADMA is also com-
pensated by further complexity reduction in Mote-
Cache architecture. Our optimal configuration reduc-
es the total node energy, and hence increases the node 
lifetime, by 19.4% on the average across a wide varie-
ty of simulated sensor benchmarks. Our complexity-
aware configuration with a minimum MoteCache size 
with only four entries not only achieves energy sav-
ings up to 16.2% but also performance improvements 
up to 14%, on the average. 

 
Index Terms- Computer Architecture, Sensor Networks 
 

I.  INTRODUCTION 

Recent advances in process technologies and the 
shrinking sizes of radio communication devices and sen-
sors allowed researchers to combine three operations (i.e. 
sensing, communication and computation) into tiny de-
vices called wireless sensor nodes. Once these devices 
are scattered through the environment, they can easily 
construct data-oriented networks known as wireless sen-
sor networks (WSNs). Today, there are a vast number of 
application scenarios involving WSNs in business, mili-
tary, medical and science domains.  

The lifetime, scalability, response time and effective 
sampling frequency are among the most critical parame-
ters of WSNs, and they are closely related to one crucial 
resource constraint that is very hard to satisfy: the power 

consumption. The WSN nodes are designed to be battery-
operated, since they may be utilized in any kind of envi-
ronment including thick forestry, volcanic mountains and 
oceanbeds. Consequently, everything must be designed to 
be power-aware in these networks.  

Small-scale operating systems, such as TinyOS [1], 
ambientRT [2], and computation-/communication-
intensive applications significantly increase the energy 
consumption of the processor component of WSN nodes. 
Today, new sensor platforms with 16- [3] and 32-bit [4] 
processor architectures target more and more power-
hungry applications. In [5], the researchers show that the 
processor itself dissipates 35% of the total energy budget 
of the MICA2 platform while running Surge, a TinyOS 
monitoring application. In [6], the authors claim similar 
energy values when running a TinyDB query reporting 
light and accelerometer readings once every minute. In 
[7], the researchers find that the energy consumption of 
the processor/memory component for raw data compres-
sion is higher than the energy consumption of raw data 
transmission. Similarly, today most of the WSN applica-
tions avoid extensive computations and choose to transfer 
raw data to server machines to increase the lifetime of the 
sensor nodes. On the contrary, our proposed design en-
courages the WSN application developers to design less 
centralized applications by distributing the computation 
work and reducing the network traffic among the nodes. 

After observations of the results from our departmen-
tal testbed and various simulations, we found two impor-
tant characteristics of WSN data:  

1. Temporal and value locality: Sensor network ap-
plications have periodic behavior. Especially, monitoring 
applications, such as Surge, may sense and work on con-
stant data and constant memory locations for long dura-
tions. In this study, first we show that we considerably 
reduce the energy dissipation of the WSN processors by 
caching commonly used data in a small number of latches 
(MoteCache) [8]. Then, we also show that most of the 
store instructions in WSN applications are silent (these 
instructions write values that exactly match the values 
that are already stored at the memory address that is be-
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ing written), and propose to filter them by extending the 
MoteCache architecture. 

2. Common data values: Further, we find that there 
are some common data values flowing through the data-
path. In the second part of this study, we propose a tech-
nique called Content-Aware Data MAnagement 
(CADMA) that exploits this behavior and boosts our 
energy savings by reducing the read/write energy not 
only in SRAM but also in register file and the Mote-
Cache. When combined with the silent-store filtering 
MoteCache technique, we show that we can even in-
crease the performance of the processor as much as 14%. 

We begin by presenting a brief summary related work 
and current state of the art of processors used in wireless 
sensor networks in Section II and III. Following that, in 
Section IV, we present the design of MoteCache. Next, 
CADMA design is presented in Section V. The simula-
tion methodology is given in Section VI, and our results 
are presented in Section VII. Finally, we conclude our 
study in Section VIII. 

 

II.  RELATED WORK 

In the literature, there are various studies that target 
energy-efficient microprocessors for wireless sensor 
nodes [9, 10, 11]. However, to our best knowledge, this 
is a unique study that proposes architecture-independent 
extensions to the existing commercially available, gener-
al-purpose microprocessors that are used by sensor 
nodes. 

In [9], the authors present SNAP/LE, an event-driven 
microprocessor for sensor networks. They avoid the 
TinyOS overhead by their asynchronous, event-driven 
approach. In [10], the authors seek to fully leverage the 
event-driven nature of applications. They study the appli-
cation domain of sensor networks and they seek to re-
place the basic functionality of a general-purpose micro-
controller with a modularized, event-driven system. 

In [12], the authors reveal that significant benefits can 
be gained by detecting and removing silent store instruc-
tions. They propose free silent store squashing and suc-
cessfully increase the processor performance by 11%, on 
the average. In this study, on the other hand, we choose 
to move to a completely different direction, and utilize a 
similar mechanism to reduce the energy consumption of 
the microcontrollers that are used in wireless sensor de-
vices. 

In [13], the authors study partial value locality, which 
is defined as occurrence of multiple live value instances 
identical in a subset of their bits. This study targets integ-
er register files in a 8-way superscalar processor.  

 

III.  CURRENT STATE OF THE ART 

In this paper, we study the MICA2 platform manufac-
tured by Crossbow Inc. [14]. The platform includes an 

AVR-RISC processor, ATmega128L. The AVR architec-
ture implements the Harvard architecture with two main 
memory spaces, 4Kx8 bytes of SRAM data memory and 
64Kx16 bytes of flash program memory space. Addition-
ally, the Atmega128 features an EEPROM memory for 
data storage. All three memory spaces are linear and 
regular [15]. In this study, we mainly focus on the energy 
reduction of SRAM storage component. 

Figure 1 shows the timing diagram of memory 
read/write operations for the SRAM structure of the 
AVR. Each memory read/write operation takes two 
cycles to complete. In the first clock cycle, T1, the mem-
ory address is computed, and in the second clock cycle, 
T2, the actual memory access takes place. 

 
Fig. 1. On-chip Data SRAM access cycles for ATmega128L. 
 
The AVR architecture does not contain a cache struc-

ture. The reason behind this cacheless architecture be-
comes very clear, when we examine the timing diagram 
in Figure 1, in detail. The main idea to include a cache 
structure in any design is to increase the processor per-
formance, and it is clear that no cache structure may 
improve the performance of a 1-cycle-access SRAM. On 
the other hand, a cache structure may be beneficial from 
the energy/power point of view. A tiny cache structure 
may reduce the memory access energy by filtering most 
of the accesses to the main memory. In the first part of 
this study, we propose such cache structure, called Mo-
teCache, for the same purpose. Moreover, we show that 
with a very small, additional complexity we can also use 
this cache structure to filter silent-store instructions [12].  

It is also important to emphasize that our techniques 
are platform-independent and can be easily applied to 
other sensor platforms such as moteiv [3], EYES [16] and 
imote2 [4] sensor nodes. Moreover, these platforms util-
ize 16- and 32-bit microprocessors (compared to 8-bit 
microprocessor of the MICA2 platform). Thus, our tech-
niques will achieve much better energy savings in these 
new platforms. 

IV.  MOTECACHE 

We now explain the design of MoteCache (hereafter 
MC) which is a tiny buffer structure that exploits tempor-
al locality of data in WSN applications. In MC, each row 
consists of data buffers and an associative content-
addressable memory (CAM) for holding the tags corres-

68 JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007

© 2007 ACADEMY PUBLISHER



  

ponding to the contents of these buffers. The idea is to 
cache data values of the N most recently accessed ad-
dresses in an N-byte MC [17, 18].  

A.   The MoteCache Configurations 
In this paper, we study three types of MoteCache con-

figuration:  
1) Direct-Mapped MoteCache (DMMC): This con-

figuration mimics the behavior of an ordinary direct-
mapped cache. Since the SRAM of the MICA2 platform 
contains a single byte at each line, the direct-mapped 
cache is organized to contain a single byte at each of its 
sets. The DMMC configuration has the smallest latency 
among all, since we can read data in parallel with the tag 
comparison as soon as the address is available. 

2) Set-Associative MoteCache (SAMC): In order to 
reduce the possible conflict misses of the DMMC confi-
guration; we also decided to try the set-associative cache 
configuration. This configuration is similar to a standard 
set-associative cache configuration, and requires the 
activation of more comparators in a single access. 

3) Fully-Associative MoteCache (FAMC): This con-
figuration activates all the tag/address comparators for 
each memory access. Therefore, it dissipates more power 
compared to other configurations, and its latency is not 
better than the DMMC configuration since it has addi-
tional multiplexer delay. 

B. Access to MoteCache 
A read access in the MC structure proceeds as follows: 
Cycle 1. MoteCache Tag Comparison: As soon as 

the address is computed, its tag part is compared associa-
tively with the tag numbers associated with the contents 
of the MC. If there is a match (MC-hit), the scheduled 
readout of the memory is cancelled, potentially saving 
energy wasted in reading out the row from the memory. 
Again, the tag comparison and data retrieval from the 
MC may be overlapped to decrease the access latency in 
the DMMC configuration. 

Cycle 2. Data Steering: In case of a MC-hit, data is 
read from the corresponding MC entry1. When the asso-
ciative match, using the CAM, fails (MC-miss), the 
memory access continues in this cycle and the data is 
read out into a MC entry selected as a victim, based on 
the least recently used (LRU) replacement policy.  

Writing to a MC entry has analogous steps, followed 
by a step that installs the update into the tag and data part 
of the corresponding MC entry. We study the writeback 
policy, since it is more suitable for our power-aware 
design. 

Figure 2 shows the modified timing diagram for the 
proposed architecture. Notice that, at the end of the first 
clock cycle, T1, there is a comparison latency that com-
pares the tag (or tags, depending on the MC configura-

                                                           
1  To increase processor performance, data can be read from the 

MC at the end of the first cycle. 
 

tion) of the MC set with the computed address2. Accord-
ing to the outcome of the tag comparison process, either 
MC or SRAM is accessed. 

 
 

Fig. 2. Modified On-chip Data SRAM and MC access cycles 
 
As locality of reference guarantees that there is a good 

chance of producing a MC-hit. Figure 3 shows that MC-
hit rate is more than 89%, on the average, for the SAMC 
configuration with maximum size (8x8). The lowest hit 
rate is observed in the smallest DMMC configuration 
(4x1) as 18.4%. Please refer to Table 1 in Section VI for 
the details of the simulated WSN benchmarks.  

C.  Silent-Store Filtering MoteCache 
When a store instruction writes a value that actually 

matches the value already stored at the memory address 
being written, that store instruction is called a silent store 
[12]. These instructions have no effect on machine state, 
and we show that detection and removal of these instruc-
tions may considerably improve the lifetime of WSNs. 
Figure 4 shows the percentages of silent store instruc-
tions. Across all WSN benchmarks, the average percen-
tage of silent stores is 81.6%. 

We increase the functionality of the dirty-bit in our 
writeback MC for detecting and removing silent store 
instructions. Therefore, the dirty-bit is renamed to dir-
ty&noisy-bit (DN). A data value is written back to SRAM 
only when it is dirty (i.e. it is modified) and also noisy 
(i.e. not silent: if the new data value is different than the 
one stored before.) A write access in the silent-store fil-
tering MC structure proceeds as follows: 

                                                           
2  Notice that, we assume that the address computation process 

may be completed a little earlier than the original design. 
This is possible, since the microprocessors used by the sensor 
nodes have very low frequency (approx. 7 MHz). Therefore, 
we assume large clock cycle periods provided by these pro-
cessors make small tasks such as tag comparison possible in 
the same clock cycle. However, this is not a strict require-
ment for the success of our solution. Actually, WSNs may 
easily tolerate a small increase in processor cycle time for 
serializing address computation and MoteCache tag compari-
son in cycle T1, since performance is not their major concern, 
anyways. 
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1. MC-hit and Silent Store Detection: After a MC-
hit, the data value to be written is compared with 
the data value of the corresponding MC line. If 
there is no match, the DN-bit of that MC line is set 
to indicate that the store instruction is noisy 

2. MC-miss and Writeback: After a MC-miss, we 
select a victim line. If the DN-bit of the victim line 
is set, the standard MC write-back procedure is fol-
lowed. Otherwise, we just replace the MC line and 
cancel the rest of the writeback process, since the 
MC and SRAM data are already in sync. 

V.  CONTENT-AWARE DATA MANAGEMENT (CADMA)  

In this section, we describe the details of our second 
technique in this study: Content-Aware Data MAnage-
ment (CADMA.) 

During our simulations, we observed that there are 
some common data values (specifically, 0, 1, 2 and 3) 
flowing in the datapath. Figure 5 shows that, across all 
simulated benchmarks, 48.4% of the SRAM data and 

56.7% of the register file data are composed of these 
common data values.   

The idea behind CADMA is to exploit this phenome-
non to reduce energy dissipation of the SRAM, the Mo 
teCache and the register file. For this purpose, we intro-
duce an additional bit, common data (CD), to each line of 
these structures. The CD bit is very similar to zero-byte 
indicator in [19]. Figure 6 depicts the circuitry needed to 
derive the CD bit for a byte. The CD operations are as 
follows: 

1. Data Write + CD Reset: The CD bit is reset to ze-
ro when there is a register/memory write operation trying 
to store a common data value. In that case, CADMA only 
writes 3 bits (one CD bit + the two least significant bits 
of the common data value) for that byte. Note that, for all 
of the common data values (0, 1, 2 and 3), there is no 
need for any encoding/decoding process, since they al-
ready fit into the least significant 2 bits.  

 

 
       FAMC                              DMMC                            SAMC 

Fig. 3. Hit ratios to various MC configurations (s x a, s: set no, a: associativity) 

 
Fig.4. Percentages of silent stores in WSN benchmarks 

  

 
a) SRAM                             b) Register File 

Fig. 5. Average occurrence percentages of data values in SRAM and register file 
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Fig. 6. Encoding logic for the Common Data (CD) bit 

 
 

 
Fig. 7. The CD bit and associated logic common to six most signifi-

cant bitcells within byte 
 
When the data value is not one of the four common 

data values, on the other hand, CADMA writes 9 bits 
(one CD bit + the eight bits of data value) dissipating 
slightly more power compared to the baseline case. 

2. Data Read + CD Probe: A read operation with 
CADMA starts by probing the CD bit. When it is reset, 
CADMA only activates the read operation for the two 
least significant bitlines. By canceling the read from the 
other six bitlines, CADMA achieves significant power 
savings in all three structures. In this case, the rest of the 
byte is constructed by setting the six most significant bits 
to logic-0. The logic used to disable the readout of six 
most significant bits of a byte is shown in Figure 7. P-
transistor Q1 and n-transistor Q2 are used to connect the 
read line of the corresponding six most significant bits of 
a byte to the word select line if the value stored in the CD 
is one. Otherwise, the local read line is grounded and the 
six most significant bits of the byte is not read out. 

If CD bit is set, slightly more power is dissipated 
(reading 9 bits: one CD bit + the eight bits of data value) 
compared to the baseline case.  

In this study, we integrated CADMA within MC, 
SRAM, and register file structures. In our experiments, 
across all simulated benchmarks, we observed that 
CADMA boosts our processor energy savings as much as 
10% and sensor node’s total energy savings by 5% com-
pared to the bare MC. 

VI.  SIMULATION METHODOLOGY 

The most important requirement of this study was us-
ing a simulator that accurately models ATmega128L 
processor of MICA2 platform in a cycle-accurate man-
ner, and simulates sensor networks in various topologies. 
We found Avrora, the AVR Simulation and Analysis 
Framework [20], quite suitable to our needs. For all si-

mulated benchmarks, a three-node network topology is 
used.  

A.  Wireless Sensor Networks Benchmarks 
Table 1 gives the details of the benchmarks used in 

this study. The detailed descriptions of the studied 
benchmarks are given below: 

• CRC implements a CRC32 algorithm continuous-
ly running on 448 bytes of data. CRC can be uti-
lized in sensor networks for error detection and is 
heavy on CPU. We have added packet transfers in 
between calculations as to simulate a sensor net-
work operation. 

• FFT benchmark is a discrete Fast Fourier Trans-
form on 256 bytes of data. This transformation is 
executed within an infinite loop [21]. Fast Fourier 
Transform has many uses in sensor networks, 
mainly for event detection. This is also a CPU in-
tensive benchmark. We have inserted radio trans-
mission every 2 seconds, so it acts like an event is 
detected and propagated through the network. 

• LZ77 compression is again enclosed in an infinite 
loop and works on 448 bytes of data taken from 
the header file of an excel file. 

• LZ77 decompression is the decompression of the 
compressed data obtained from the LZ77 com-
pression. This data is 330 bytes long3. Decom-
pression, along with the compression has also a 
significant use in sensor networks. This is because 
the data-send operation requires significantly 
more energy than compressing or decompressing 
that data. 

• Surge is a TinyOS core application to demonstrate 
multi-hop routing. This is a radio intensive 
benchmark and represents a regular sensor net-
work application. 

• TinyDB application is used to execute the query 
“select light from sensors each second”. This 
benchmark is again a radio intensive one. Most 
applications in sensor networks require a database 
framework. TinyDB is an important selection in 
that sense. However, there are many algorithms 
that reduce the need for radio transmission such as 
predicting next reading or pruning the data to be 
propagated. So, TinyDB does not represent an op-
timal WSN application and is highly communica-
tion-intensive. 

• Maté (BombillaMica) is used with a script that 
reads light sensor readings in every 10ms and 
sends them through RF interface after 10 readings 
[22]. Maté implements a scripting language with 
data querying capabilities. 

                                                           
3 CRC, FFT and LZ77 applications trigger radio commu-
nication every 2 seconds to imitate typical WSN applica-
tions. 
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• SeMA/SQS is a data querying framework devel-
oped in Yeditepe University. SQS creates a topol-
ogy tree, which is used both for error handling 
and optimal radio usage purposes.  SeMA/SQS is 
used to execute the query “select temperature 
from sensors each second” [23]. The query results 
are sent to the base station after each reading. 

B.  Calculation of Energy Dissipation 
We modified Avrora to record transitions at the level 

of bits for the processor/memory components. We com-
bined the simulator results with energy per transition 
measurements obtained from the SPICE simulations of 
the actual component layouts for 0.35μ CMOS technolo-
gy. We modified the energy model of Avrora to accurate-
ly model very fine-grain, instruction-level energy dissipa-
tions of the processor. For accurate energy savings esti-
mations, we also considered detailed energy dissipations 
of the additional CADMA logic. 

VII.  RESULTS AND DISCUSSIONS 

Figure 8 shows our energy savings for selected silent-
store filtering MC configurations. Notice that, even the 
smallest MC configuration (4x1) saves more than 57% of 
the memory access energy, on the average. The optimum 
configuration is found to be the 8x4 configuration, since 
it gives similar savings compared to the MC configura-
tions twice of its size (80.6% of 8x4 vs. 81.4% of 8x8 – 
not shown in the Figure.) 

When we apply CADMA on top of these MC results, 
the energy savings gap between the minimum (DMMC 
4x1) and the maximum (SAMC 8x4) configurations 
almost disappears (70% of 4x1 vs. 84% of 8x4). In Fig-
ure 9, we also show the percentage of improvement in the 
energy savings compared to the bare MC case (the 
rightmost bar.) Again, notice that the integration of 
CADMA architecture with the previously proposed MC 
makes the minimum MC configuration quite feasible.

 
Table 1. WSN benchmarks 

Benchmark Size in ROM 
(bytes) 

Size in RAM 
(bytes) 

Execution Time 
(mins) 

CRC 1072 1492 5 
FFT 3120 1332 5 

LZ77 Compression 2700 486 5 
LZ77 Decompression 1228 356 5 

Surge 17120 1928 50 
TinyDB 65050 3036 50 

Maté 38974 3196 50 
SeMA/SQS 22346 2175 50 

 

 
DMMC                                                                       SAMC 

 
Fig. 8. Average savings on memory access energy dissipation for various MC configurations with the silent-store filter  

(s x a, s: set no, a: associativity) 

 
         DMMC                                                     SAMC 

Fig. 9. Average savings on memory access energy dissipation for MC/CADMA
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 We then compute the effect of CADMA on total pro-
cessor energy savings. The rightmost bar in Figure 10 
shows that 41% of total instructions are memory 
read/write instructions, on the average. When we apply 
these figures to our optimal configuration (SAMC 8x4), 
we find that the total processor energy savings are 51.3% 
(Figure 10). Note that CADMA extracts additional ener-
gy savings from register file (with bare MC, total proces-
sor energy savings stay at 46.5%, on the average). 

 
Fig. 10. Processor energy savings and percentages of memory access 

 
When we focus on the minimum MC configuration, 

energy savings due to CADMA become much clearer. 
Total processor savings of MC/CADMA combination are 
44%, on the average. Notice that, these savings are very 
close to the savings of bare optimum MC configuration. 
The energy savings of bare minimum MC configuration 
are as low as 34%, on the average. These results show 
that CADMA is a very effective technique that boosts 
savings of low complexity MC configurations. 

Next, we identify the percentage of CPU energy dissi-
pation over total energy dissipation of a sensor node to 
compute the possible lifetime increase with MC/CADMA 
architecture. Figure 11 shows that, CPU energy consti-
tutes 49.6% of the total energy dissipation across the 
simulated benchmarks, on the average. Using the percen-
tages given in this graph, we computed the percentages of 
total energy savings of individual WSN nodes.  Figure 12 
shows that the total energy savings are 19.3% for opti-
mum MC/CADMA and 17% for bare optimum MC con-
figuration. Notice that, the gap between the bare mini-
mum MC and minimum MC/CADMA configurations in 
Figure 10 is still preserved in Figure 12. Again, the ener-
gy savings with minimum MC/CADMA configuration 
are 16.2% (very close to 17% of the bare optimum MC 
configuration.) The energy savings for the bare minimum 
MC configuration are 11.7%, on the average. These 
energy savings are directly related to lifetime improve-
ment of the nodes. 

Fig. 11. Energy dissipation of components in MICA2 platform 

 
Fig. 12. Node-level energy savings and lifetime improvements 

 
Fig. 13. Possible performance improvements in DMMC configura-

tions 
 

Finally, we also studied the possible performance im-
provements when we assume that we can access to a MC 
structure in the first cycle of a memory operation. In 
Figure 13, we give these results for three DMMC confi-
gurations: 4x1, 8x1 and 16x1. The minimum configura-
tion improves the performance by 4.3%, on the average, 
whereas 8x1 and 16x1 improve it by 8% and 14%, re-
spectively. These figures also indicate that when the 
latency of our MC/CADMA architecture and address 
computation cannot be squeezed into a single cycle pe-
riod, we can still increase the cycle time and tolerate 
slight performance penalties.   

VIII.  CONCLUDING REMARKS 

In this study, we proposed a platform-independent 
MC/CADMA architecture for reducing the energy dissi-
pation of the processor component of wireless sensor 
nodes. We studied various MC configurations and found 
that 32-byte, 4-way, set-associative, silent-store-filtering 
configuration shows the best energy/lifetime characteris-
tics. Combined with CADMA, this optimal configuration 
reduces the node energy by 19.4%, on the average, across 
a variety of simulated sensor benchmarks. We also found 
that CADMA integration noticeably improves the results 
of the minimum MC configuration (4-byte, direct-
mapped with silent-store filter.) We showed that this 
configuration achieves not only energy savings up to 
16.2%, but also performance improvements up to 4.3%, 
on the average. We strongly believe that better results can 
be observed once these platform-independent techniques 
are implemented in newer platforms. 

Additionally, benchmarks we have selected for this 
study reflect general requirements of Wireless Sensor 
Networks. We have included benchmarks, balancing 
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CPU load and radio load. However, energy consumption 
of radio is always the leading factor in the context of real 
life WSN applications. So we believe that results we 
gathered strongly applicable to any WSN application. 
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