

Reducing Energy Consumption of
 Wireless Sensor Networks through

Processor Optimizations

Gürhan Küçük and Can Başaran
Department of Computer Engineering,

Yeditepe University, 34755 Istanbul, Turkey
{gkucuk, cbasaran}@cse.yeditepe.edu.tr

Abstract- When the environmental conditions are
stable, a typical Wireless Sensor Network (WSN)
application may sense and process very similar or
constant data values for long durations. This is a
common behavior of WSN nodes that can be exploited
for reducing their power consumption. This study
combines two orthogonal techniques to reduce the
energy dissipation of the processor component of the
sensor nodes. First, we briefly discuss silent-store
filtering MoteCache. Second, we utilize Content-
Aware Data MAnagement (CADMA) on top of Mote-
Cache architecture to achieve further energy savings
and possible performance improvements. The com-
plexity increase introduced by CADMA is also com-
pensated by further complexity reduction in Mote-
Cache architecture. Our optimal configuration reduc-
es the total node energy, and hence increases the node
lifetime, by 19.4% on the average across a wide varie-
ty of simulated sensor benchmarks. Our complexity-
aware configuration with a minimum MoteCache size
with only four entries not only achieves energy sav-
ings up to 16.2% but also performance improvements
up to 14%, on the average.

Index Terms- Computer Architecture, Sensor Networks

I. INTRODUCTION

Recent advances in process technologies and the
shrinking sizes of radio communication devices and sen-
sors allowed researchers to combine three operations (i.e.
sensing, communication and computation) into tiny de-
vices called wireless sensor nodes. Once these devices
are scattered through the environment, they can easily
construct data-oriented networks known as wireless sen-
sor networks (WSNs). Today, there are a vast number of
application scenarios involving WSNs in business, mili-
tary, medical and science domains.

The lifetime, scalability, response time and effective
sampling frequency are among the most critical parame-
ters of WSNs, and they are closely related to one crucial
resource constraint that is very hard to satisfy: the power

consumption. The WSN nodes are designed to be battery-
operated, since they may be utilized in any kind of envi-
ronment including thick forestry, volcanic mountains and
oceanbeds. Consequently, everything must be designed to
be power-aware in these networks.

Small-scale operating systems, such as TinyOS [1],
ambientRT [2], and computation-/communication-
intensive applications significantly increase the energy
consumption of the processor component of WSN nodes.
Today, new sensor platforms with 16- [3] and 32-bit [4]
processor architectures target more and more power-
hungry applications. In [5], the researchers show that the
processor itself dissipates 35% of the total energy budget
of the MICA2 platform while running Surge, a TinyOS
monitoring application. In [6], the authors claim similar
energy values when running a TinyDB query reporting
light and accelerometer readings once every minute. In
[7], the researchers find that the energy consumption of
the processor/memory component for raw data compres-
sion is higher than the energy consumption of raw data
transmission. Similarly, today most of the WSN applica-
tions avoid extensive computations and choose to transfer
raw data to server machines to increase the lifetime of the
sensor nodes. On the contrary, our proposed design en-
courages the WSN application developers to design less
centralized applications by distributing the computation
work and reducing the network traffic among the nodes.

After observations of the results from our departmen-
tal testbed and various simulations, we found two impor-
tant characteristics of WSN data:

1. Temporal and value locality: Sensor network ap-
plications have periodic behavior. Especially, monitoring
applications, such as Surge, may sense and work on con-
stant data and constant memory locations for long dura-
tions. In this study, first we show that we considerably
reduce the energy dissipation of the WSN processors by
caching commonly used data in a small number of latches
(MoteCache) [8]. Then, we also show that most of the
store instructions in WSN applications are silent (these
instructions write values that exactly match the values
that are already stored at the memory address that is be-

JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007 67

© 2007 ACADEMY PUBLISHER

ing written), and propose to filter them by extending the
MoteCache architecture.

2. Common data values: Further, we find that there
are some common data values flowing through the data-
path. In the second part of this study, we propose a tech-
nique called Content-Aware Data MAnagement
(CADMA) that exploits this behavior and boosts our
energy savings by reducing the read/write energy not
only in SRAM but also in register file and the Mote-
Cache. When combined with the silent-store filtering
MoteCache technique, we show that we can even in-
crease the performance of the processor as much as 14%.

We begin by presenting a brief summary related work
and current state of the art of processors used in wireless
sensor networks in Section II and III. Following that, in
Section IV, we present the design of MoteCache. Next,
CADMA design is presented in Section V. The simula-
tion methodology is given in Section VI, and our results
are presented in Section VII. Finally, we conclude our
study in Section VIII.

II. RELATED WORK

In the literature, there are various studies that target
energy-efficient microprocessors for wireless sensor
nodes [9, 10, 11]. However, to our best knowledge, this
is a unique study that proposes architecture-independent
extensions to the existing commercially available, gener-
al-purpose microprocessors that are used by sensor
nodes.

In [9], the authors present SNAP/LE, an event-driven
microprocessor for sensor networks. They avoid the
TinyOS overhead by their asynchronous, event-driven
approach. In [10], the authors seek to fully leverage the
event-driven nature of applications. They study the appli-
cation domain of sensor networks and they seek to re-
place the basic functionality of a general-purpose micro-
controller with a modularized, event-driven system.

In [12], the authors reveal that significant benefits can
be gained by detecting and removing silent store instruc-
tions. They propose free silent store squashing and suc-
cessfully increase the processor performance by 11%, on
the average. In this study, on the other hand, we choose
to move to a completely different direction, and utilize a
similar mechanism to reduce the energy consumption of
the microcontrollers that are used in wireless sensor de-
vices.

In [13], the authors study partial value locality, which
is defined as occurrence of multiple live value instances
identical in a subset of their bits. This study targets integ-
er register files in a 8-way superscalar processor.

III. CURRENT STATE OF THE ART

In this paper, we study the MICA2 platform manufac-
tured by Crossbow Inc. [14]. The platform includes an

AVR-RISC processor, ATmega128L. The AVR architec-
ture implements the Harvard architecture with two main
memory spaces, 4Kx8 bytes of SRAM data memory and
64Kx16 bytes of flash program memory space. Addition-
ally, the Atmega128 features an EEPROM memory for
data storage. All three memory spaces are linear and
regular [15]. In this study, we mainly focus on the energy
reduction of SRAM storage component.

Figure 1 shows the timing diagram of memory
read/write operations for the SRAM structure of the
AVR. Each memory read/write operation takes two
cycles to complete. In the first clock cycle, T1, the mem-
ory address is computed, and in the second clock cycle,
T2, the actual memory access takes place.

Fig. 1. On-chip Data SRAM access cycles for ATmega128L.

The AVR architecture does not contain a cache struc-

ture. The reason behind this cacheless architecture be-
comes very clear, when we examine the timing diagram
in Figure 1, in detail. The main idea to include a cache
structure in any design is to increase the processor per-
formance, and it is clear that no cache structure may
improve the performance of a 1-cycle-access SRAM. On
the other hand, a cache structure may be beneficial from
the energy/power point of view. A tiny cache structure
may reduce the memory access energy by filtering most
of the accesses to the main memory. In the first part of
this study, we propose such cache structure, called Mo-
teCache, for the same purpose. Moreover, we show that
with a very small, additional complexity we can also use
this cache structure to filter silent-store instructions [12].

It is also important to emphasize that our techniques
are platform-independent and can be easily applied to
other sensor platforms such as moteiv [3], EYES [16] and
imote2 [4] sensor nodes. Moreover, these platforms util-
ize 16- and 32-bit microprocessors (compared to 8-bit
microprocessor of the MICA2 platform). Thus, our tech-
niques will achieve much better energy savings in these
new platforms.

IV. MOTECACHE

We now explain the design of MoteCache (hereafter
MC) which is a tiny buffer structure that exploits tempor-
al locality of data in WSN applications. In MC, each row
consists of data buffers and an associative content-
addressable memory (CAM) for holding the tags corres-

68 JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007

© 2007 ACADEMY PUBLISHER

ponding to the contents of these buffers. The idea is to
cache data values of the N most recently accessed ad-
dresses in an N-byte MC [17, 18].

A. The MoteCache Configurations
In this paper, we study three types of MoteCache con-

figuration:
1) Direct-Mapped MoteCache (DMMC): This con-

figuration mimics the behavior of an ordinary direct-
mapped cache. Since the SRAM of the MICA2 platform
contains a single byte at each line, the direct-mapped
cache is organized to contain a single byte at each of its
sets. The DMMC configuration has the smallest latency
among all, since we can read data in parallel with the tag
comparison as soon as the address is available.

2) Set-Associative MoteCache (SAMC): In order to
reduce the possible conflict misses of the DMMC confi-
guration; we also decided to try the set-associative cache
configuration. This configuration is similar to a standard
set-associative cache configuration, and requires the
activation of more comparators in a single access.

3) Fully-Associative MoteCache (FAMC): This con-
figuration activates all the tag/address comparators for
each memory access. Therefore, it dissipates more power
compared to other configurations, and its latency is not
better than the DMMC configuration since it has addi-
tional multiplexer delay.

B. Access to MoteCache
A read access in the MC structure proceeds as follows:
Cycle 1. MoteCache Tag Comparison: As soon as

the address is computed, its tag part is compared associa-
tively with the tag numbers associated with the contents
of the MC. If there is a match (MC-hit), the scheduled
readout of the memory is cancelled, potentially saving
energy wasted in reading out the row from the memory.
Again, the tag comparison and data retrieval from the
MC may be overlapped to decrease the access latency in
the DMMC configuration.

Cycle 2. Data Steering: In case of a MC-hit, data is
read from the corresponding MC entry1. When the asso-
ciative match, using the CAM, fails (MC-miss), the
memory access continues in this cycle and the data is
read out into a MC entry selected as a victim, based on
the least recently used (LRU) replacement policy.

Writing to a MC entry has analogous steps, followed
by a step that installs the update into the tag and data part
of the corresponding MC entry. We study the writeback
policy, since it is more suitable for our power-aware
design.

Figure 2 shows the modified timing diagram for the
proposed architecture. Notice that, at the end of the first
clock cycle, T1, there is a comparison latency that com-
pares the tag (or tags, depending on the MC configura-

1 To increase processor performance, data can be read from the

MC at the end of the first cycle.

tion) of the MC set with the computed address2. Accord-
ing to the outcome of the tag comparison process, either
MC or SRAM is accessed.

Fig. 2. Modified On-chip Data SRAM and MC access cycles

As locality of reference guarantees that there is a good

chance of producing a MC-hit. Figure 3 shows that MC-
hit rate is more than 89%, on the average, for the SAMC
configuration with maximum size (8x8). The lowest hit
rate is observed in the smallest DMMC configuration
(4x1) as 18.4%. Please refer to Table 1 in Section VI for
the details of the simulated WSN benchmarks.

C. Silent-Store Filtering MoteCache
When a store instruction writes a value that actually

matches the value already stored at the memory address
being written, that store instruction is called a silent store
[12]. These instructions have no effect on machine state,
and we show that detection and removal of these instruc-
tions may considerably improve the lifetime of WSNs.
Figure 4 shows the percentages of silent store instruc-
tions. Across all WSN benchmarks, the average percen-
tage of silent stores is 81.6%.

We increase the functionality of the dirty-bit in our
writeback MC for detecting and removing silent store
instructions. Therefore, the dirty-bit is renamed to dir-
ty&noisy-bit (DN). A data value is written back to SRAM
only when it is dirty (i.e. it is modified) and also noisy
(i.e. not silent: if the new data value is different than the
one stored before.) A write access in the silent-store fil-
tering MC structure proceeds as follows:

2 Notice that, we assume that the address computation process

may be completed a little earlier than the original design.
This is possible, since the microprocessors used by the sensor
nodes have very low frequency (approx. 7 MHz). Therefore,
we assume large clock cycle periods provided by these pro-
cessors make small tasks such as tag comparison possible in
the same clock cycle. However, this is not a strict require-
ment for the success of our solution. Actually, WSNs may
easily tolerate a small increase in processor cycle time for
serializing address computation and MoteCache tag compari-
son in cycle T1, since performance is not their major concern,
anyways.

JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007 69

© 2007 ACADEMY PUBLISHER

1. MC-hit and Silent Store Detection: After a MC-
hit, the data value to be written is compared with
the data value of the corresponding MC line. If
there is no match, the DN-bit of that MC line is set
to indicate that the store instruction is noisy

2. MC-miss and Writeback: After a MC-miss, we
select a victim line. If the DN-bit of the victim line
is set, the standard MC write-back procedure is fol-
lowed. Otherwise, we just replace the MC line and
cancel the rest of the writeback process, since the
MC and SRAM data are already in sync.

V. CONTENT-AWARE DATA MANAGEMENT (CADMA)

In this section, we describe the details of our second
technique in this study: Content-Aware Data MAnage-
ment (CADMA.)

During our simulations, we observed that there are
some common data values (specifically, 0, 1, 2 and 3)
flowing in the datapath. Figure 5 shows that, across all
simulated benchmarks, 48.4% of the SRAM data and

56.7% of the register file data are composed of these
common data values.

The idea behind CADMA is to exploit this phenome-
non to reduce energy dissipation of the SRAM, the Mo
teCache and the register file. For this purpose, we intro-
duce an additional bit, common data (CD), to each line of
these structures. The CD bit is very similar to zero-byte
indicator in [19]. Figure 6 depicts the circuitry needed to
derive the CD bit for a byte. The CD operations are as
follows:

1. Data Write + CD Reset: The CD bit is reset to ze-
ro when there is a register/memory write operation trying
to store a common data value. In that case, CADMA only
writes 3 bits (one CD bit + the two least significant bits
of the common data value) for that byte. Note that, for all
of the common data values (0, 1, 2 and 3), there is no
need for any encoding/decoding process, since they al-
ready fit into the least significant 2 bits.

 FAMC DMMC SAMC

Fig. 3. Hit ratios to various MC configurations (s x a, s: set no, a: associativity)

Fig.4. Percentages of silent stores in WSN benchmarks

a) SRAM b) Register File

Fig. 5. Average occurrence percentages of data values in SRAM and register file

70 JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007

© 2007 ACADEMY PUBLISHER

Fig. 6. Encoding logic for the Common Data (CD) bit

Fig. 7. The CD bit and associated logic common to six most signifi-

cant bitcells within byte

When the data value is not one of the four common

data values, on the other hand, CADMA writes 9 bits
(one CD bit + the eight bits of data value) dissipating
slightly more power compared to the baseline case.

2. Data Read + CD Probe: A read operation with
CADMA starts by probing the CD bit. When it is reset,
CADMA only activates the read operation for the two
least significant bitlines. By canceling the read from the
other six bitlines, CADMA achieves significant power
savings in all three structures. In this case, the rest of the
byte is constructed by setting the six most significant bits
to logic-0. The logic used to disable the readout of six
most significant bits of a byte is shown in Figure 7. P-
transistor Q1 and n-transistor Q2 are used to connect the
read line of the corresponding six most significant bits of
a byte to the word select line if the value stored in the CD
is one. Otherwise, the local read line is grounded and the
six most significant bits of the byte is not read out.

If CD bit is set, slightly more power is dissipated
(reading 9 bits: one CD bit + the eight bits of data value)
compared to the baseline case.

In this study, we integrated CADMA within MC,
SRAM, and register file structures. In our experiments,
across all simulated benchmarks, we observed that
CADMA boosts our processor energy savings as much as
10% and sensor node’s total energy savings by 5% com-
pared to the bare MC.

VI. SIMULATION METHODOLOGY

The most important requirement of this study was us-
ing a simulator that accurately models ATmega128L
processor of MICA2 platform in a cycle-accurate man-
ner, and simulates sensor networks in various topologies.
We found Avrora, the AVR Simulation and Analysis
Framework [20], quite suitable to our needs. For all si-

mulated benchmarks, a three-node network topology is
used.

A. Wireless Sensor Networks Benchmarks
Table 1 gives the details of the benchmarks used in

this study. The detailed descriptions of the studied
benchmarks are given below:

• CRC implements a CRC32 algorithm continuous-
ly running on 448 bytes of data. CRC can be uti-
lized in sensor networks for error detection and is
heavy on CPU. We have added packet transfers in
between calculations as to simulate a sensor net-
work operation.

• FFT benchmark is a discrete Fast Fourier Trans-
form on 256 bytes of data. This transformation is
executed within an infinite loop [21]. Fast Fourier
Transform has many uses in sensor networks,
mainly for event detection. This is also a CPU in-
tensive benchmark. We have inserted radio trans-
mission every 2 seconds, so it acts like an event is
detected and propagated through the network.

• LZ77 compression is again enclosed in an infinite
loop and works on 448 bytes of data taken from
the header file of an excel file.

• LZ77 decompression is the decompression of the
compressed data obtained from the LZ77 com-
pression. This data is 330 bytes long3. Decom-
pression, along with the compression has also a
significant use in sensor networks. This is because
the data-send operation requires significantly
more energy than compressing or decompressing
that data.

• Surge is a TinyOS core application to demonstrate
multi-hop routing. This is a radio intensive
benchmark and represents a regular sensor net-
work application.

• TinyDB application is used to execute the query
“select light from sensors each second”. This
benchmark is again a radio intensive one. Most
applications in sensor networks require a database
framework. TinyDB is an important selection in
that sense. However, there are many algorithms
that reduce the need for radio transmission such as
predicting next reading or pruning the data to be
propagated. So, TinyDB does not represent an op-
timal WSN application and is highly communica-
tion-intensive.

• Maté (BombillaMica) is used with a script that
reads light sensor readings in every 10ms and
sends them through RF interface after 10 readings
[22]. Maté implements a scripting language with
data querying capabilities.

3 CRC, FFT and LZ77 applications trigger radio commu-
nication every 2 seconds to imitate typical WSN applica-
tions.

JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007 71

© 2007 ACADEMY PUBLISHER

• SeMA/SQS is a data querying framework devel-
oped in Yeditepe University. SQS creates a topol-
ogy tree, which is used both for error handling
and optimal radio usage purposes. SeMA/SQS is
used to execute the query “select temperature
from sensors each second” [23]. The query results
are sent to the base station after each reading.

B. Calculation of Energy Dissipation
We modified Avrora to record transitions at the level

of bits for the processor/memory components. We com-
bined the simulator results with energy per transition
measurements obtained from the SPICE simulations of
the actual component layouts for 0.35μ CMOS technolo-
gy. We modified the energy model of Avrora to accurate-
ly model very fine-grain, instruction-level energy dissipa-
tions of the processor. For accurate energy savings esti-
mations, we also considered detailed energy dissipations
of the additional CADMA logic.

VII. RESULTS AND DISCUSSIONS

Figure 8 shows our energy savings for selected silent-
store filtering MC configurations. Notice that, even the
smallest MC configuration (4x1) saves more than 57% of
the memory access energy, on the average. The optimum
configuration is found to be the 8x4 configuration, since
it gives similar savings compared to the MC configura-
tions twice of its size (80.6% of 8x4 vs. 81.4% of 8x8 –
not shown in the Figure.)

When we apply CADMA on top of these MC results,
the energy savings gap between the minimum (DMMC
4x1) and the maximum (SAMC 8x4) configurations
almost disappears (70% of 4x1 vs. 84% of 8x4). In Fig-
ure 9, we also show the percentage of improvement in the
energy savings compared to the bare MC case (the
rightmost bar.) Again, notice that the integration of
CADMA architecture with the previously proposed MC
makes the minimum MC configuration quite feasible.

Table 1. WSN benchmarks

Benchmark Size in ROM
(bytes)

Size in RAM
(bytes)

Execution Time
(mins)

CRC 1072 1492 5
FFT 3120 1332 5

LZ77 Compression 2700 486 5
LZ77 Decompression 1228 356 5

Surge 17120 1928 50
TinyDB 65050 3036 50

Maté 38974 3196 50
SeMA/SQS 22346 2175 50

DMMC SAMC

Fig. 8. Average savings on memory access energy dissipation for various MC configurations with the silent-store filter

(s x a, s: set no, a: associativity)

 DMMC SAMC

Fig. 9. Average savings on memory access energy dissipation for MC/CADMA

72 JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007

© 2007 ACADEMY PUBLISHER

 We then compute the effect of CADMA on total pro-
cessor energy savings. The rightmost bar in Figure 10
shows that 41% of total instructions are memory
read/write instructions, on the average. When we apply
these figures to our optimal configuration (SAMC 8x4),
we find that the total processor energy savings are 51.3%
(Figure 10). Note that CADMA extracts additional ener-
gy savings from register file (with bare MC, total proces-
sor energy savings stay at 46.5%, on the average).

Fig. 10. Processor energy savings and percentages of memory access

When we focus on the minimum MC configuration,

energy savings due to CADMA become much clearer.
Total processor savings of MC/CADMA combination are
44%, on the average. Notice that, these savings are very
close to the savings of bare optimum MC configuration.
The energy savings of bare minimum MC configuration
are as low as 34%, on the average. These results show
that CADMA is a very effective technique that boosts
savings of low complexity MC configurations.

Next, we identify the percentage of CPU energy dissi-
pation over total energy dissipation of a sensor node to
compute the possible lifetime increase with MC/CADMA
architecture. Figure 11 shows that, CPU energy consti-
tutes 49.6% of the total energy dissipation across the
simulated benchmarks, on the average. Using the percen-
tages given in this graph, we computed the percentages of
total energy savings of individual WSN nodes. Figure 12
shows that the total energy savings are 19.3% for opti-
mum MC/CADMA and 17% for bare optimum MC con-
figuration. Notice that, the gap between the bare mini-
mum MC and minimum MC/CADMA configurations in
Figure 10 is still preserved in Figure 12. Again, the ener-
gy savings with minimum MC/CADMA configuration
are 16.2% (very close to 17% of the bare optimum MC
configuration.) The energy savings for the bare minimum
MC configuration are 11.7%, on the average. These
energy savings are directly related to lifetime improve-
ment of the nodes.

Fig. 11. Energy dissipation of components in MICA2 platform

Fig. 12. Node-level energy savings and lifetime improvements

Fig. 13. Possible performance improvements in DMMC configura-

tions

Finally, we also studied the possible performance im-
provements when we assume that we can access to a MC
structure in the first cycle of a memory operation. In
Figure 13, we give these results for three DMMC confi-
gurations: 4x1, 8x1 and 16x1. The minimum configura-
tion improves the performance by 4.3%, on the average,
whereas 8x1 and 16x1 improve it by 8% and 14%, re-
spectively. These figures also indicate that when the
latency of our MC/CADMA architecture and address
computation cannot be squeezed into a single cycle pe-
riod, we can still increase the cycle time and tolerate
slight performance penalties.

VIII. CONCLUDING REMARKS

In this study, we proposed a platform-independent
MC/CADMA architecture for reducing the energy dissi-
pation of the processor component of wireless sensor
nodes. We studied various MC configurations and found
that 32-byte, 4-way, set-associative, silent-store-filtering
configuration shows the best energy/lifetime characteris-
tics. Combined with CADMA, this optimal configuration
reduces the node energy by 19.4%, on the average, across
a variety of simulated sensor benchmarks. We also found
that CADMA integration noticeably improves the results
of the minimum MC configuration (4-byte, direct-
mapped with silent-store filter.) We showed that this
configuration achieves not only energy savings up to
16.2%, but also performance improvements up to 4.3%,
on the average. We strongly believe that better results can
be observed once these platform-independent techniques
are implemented in newer platforms.

Additionally, benchmarks we have selected for this
study reflect general requirements of Wireless Sensor
Networks. We have included benchmarks, balancing

JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007 73

© 2007 ACADEMY PUBLISHER

CPU load and radio load. However, energy consumption
of radio is always the leading factor in the context of real
life WSN applications. So we believe that results we
gathered strongly applicable to any WSN application.

IX. ACKNOWLEDGMENTS

This work is supported by The Scientific and
Technical Research Council of Turkey (TUBITAK)
under the grant EEEAG/105E0158.

REFERENCES

[1] Hill J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and
Pister, K., “System Architecture Directions for Networked
Sensors“, in Proc. of ASPLOS IX, 2000

[2] AmbientRT: Real-Time Operating System for embedded
devices, http://www.ambient-systems.net

[3] Tmote Sky wireless sensor device,http://www.moteiv.com
[4] imote2 sensor, http://www.intel.com/research/sensornets/
[5] Conner, W.S., Chhabra, J., Yarvis, M., Krishnamurthy, L.,

“Experimental Evaluation of Synchronization and Topol-
ogy Control for In-Building Sensor Network Applica-
tions”, in Proc. of WSNA’03, Sep. 2003

[6] Madden, S., Franklin, M.J., Hellerstein, J.M., and Hong,
W., “TinyDB: An Acquisitional Query Processing System
for Sensor Networks”, in ACM TODS, 2005

[7] Polastre, J.R., “Design and Implementation of Wireless
Sensor Networks for Habitat Monitoring”, Research
Project, University of California, Berkeley, 2003

[8] Kucuk, G., Basaran, C., “Reducing Energy Dissipation of
Wireless Sensor Processors Using Silent-Store Filtering
MoteCache”, in Proc. of PATMOS’06, France, 2006

[9] Ekanayake, V. et al., “An Ultra Low-Power Processor for
Sensor Networks”, in Proc. ASPLOS, Oct. 2004

[10] Hempstead, M. et al., “An Ultra Low Power System Ar-
chitecture for Sensor Network Applications”, in the Proc.
of 32nd ISCA’05, Wisconsin, USA, 2005

[11] Warneke, B.A. and Pister, K.S., “An Ultra-Low Energy
Microcontroller for Smart Dust Wireless Sensor Net-
works”, in Proc. ISSCC, Jan. 2005

[12] Lepak, K.M., Bell, G.B., and Lipasti, M.H., “Silent Stores
and Store Value Locality”, in IEEE Transactions on
Computers, (50)11, Nov. 2001

[13] Gonzalez, R., Cristal, A., Veidenbaum, A., and Valero,
M., “A Content Aware Register File Organization”, in
Proc. 31st International Symposium on Computer Archi-
tecture (ISCA04), Munich, Germany, June 2004.

[14] Crossbow Technology, Inc., http://www.xbow.com
[15] Atmel 8-bit AVR Microcontroller with 128K Bytes In-

System Programmable Flash, http://www.atmel.com/dyn/
resources/prod_documents/doc2467.pdf

[16] Dulman, S. and Havinga, P., “Operating System Funda-
mentals for the EYES Distributed Sensor Network”, in
Progress 2002, Utrecht, the Netherlands, October 2002

[17] Ghose, K. et al., “Reducing Power in Superscalar Proces-
sor Caches Using Subbanking, Multiple Line Buffers and
Bit-Line Segmentation”, in ISLPED'99, 1999

[18] Kucuk, G. et al., “Energy-Efficient Register Renaming”,
in Proc. of PATMOS'03, Torino, Italy, September 2003.
Published as LNCS 2799, pp.219-228

[19] Ponomarev, D., Kucuk, G., Ergin, O., Ghose, K., and
Kogge, P. M., “Energy-Efficient Issue Queue Design”, in
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 11, No.5, October 2003, pp.789-800

[20] Titzer, B. et al., “Avrora: Scalable Sensor Network Simu-
lation with Precise Timing”, In 4th Int’l. Conference on In-
formation Processing in Sensor Networks, 2005

[21] Numerical recipes in C,
http://www.library.cornell.edu/nr/cbookcpdf.html

[22] Levis, P., Culler, D. “Maté: A Tiny Virtual Machine for
Sensor Networks”, in Proc. of the ASPLOS X, 2002

[23] Baydere, S., Ergin, M.A., “An Architectural Approach to
Service Access in Wireless Ad Hoc Networks”, in Proc.
of Wireless and Optical Communications Conf., 2002

Gurhan Kucuk Received his BS degree in Computer

Engineering from Marmara University, Istanbul, Turkey,
in 1995, the MS degree in Computer Engineering from
Yeditepe University, Istanbul, Turkey, in 1999, and the
Ph.D. degree in Computer Science from the State Univer-
sity of New York at Binghamton in 2004. Since 2004, he
has been on the faculty of the Computer Engineering
department at the Yeditepe University, where he is an
Assistant Professor. His current research interests include
wireless sensor networks, energy-efficient/high-
performance processor design.

Can Basaran Received his BS degree in Computer

Engineering from Yeditepe University in 2005. He is
currently an MS student in Yeditepe University. His
research interests are Wireless Sensor Networks and
Embedded Systems

74 JOURNAL OF COMPUTERS, VOL. 2, NO. 5, JULY 2007

© 2007 ACADEMY PUBLISHER

