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Abstract — Distributed simulators are increasingly being 
used for their intrinsic advantages in terms of reusability, 
fault tolerance, performance, and geographic distribution. 
The development of a distributed simulator, however, 
requires significant investments in terms of effort if 
compared to the development of traditional local simulators. 
This paper introduces jEQN, a Java-based language that 
significantly reduces the extra effort needed to develop a 
distributed simulator of extended queueing networks 
(EQNs), by enabling simulator developers to build 
distributed simulators as they were to be locally executed. 
By use of jEQN, simulator developers are enabled to easily 
switch from a local to a distributed version of an EQN 
simulator by only modifying few statements of the given 
local simulator. Moreover, these statements can be easily 
inferred by a very intuitive graphical procedure. The paper 
illustrates both the jEQN architecture, based on a layered 
approach, and the implementation details that contribute to 
achieve the above mentioned advantages. 
Index Terms — Software Architecture, Simulation 
Language, Distributed Simulation, High Level Architecture, 
Queueing Networks 

I.  INTRODUCTION 
The development of a distributed simulation (DS) 

program is generally harder to carry out with respect to 
the development of a local simulator [1], because it is 
necessary to explicitly deal with communication, 
concurrency and synchronization issues [2], both between 
(i) the local and the distributed environment and among 
(ii) the distributed simulators that are part of the same DS 
program. 

This paper specifically addresses simulation programs 
that represent and analyze system models specified by 
use of the extended queueing network (EQN) formalism 
[3]. 

Example simulation environments that can be used to 
build local simulation programs of EQNs are illustrated 
in [4] and [5]. On the other hand, currently available 
standards that give the necessary support to build DS 
programs (see, e.g., DIS [6] and HLA [7]) only deal with 
distributed infrastructures, in other words with the item 
(ii) previously mentioned, without addressing EQN 
simulation. Similarly, contributions that extend such 
standards to deal with both items (i) and (ii) can be found 

in [8], [9], [10] and [11]; but they still fail to provide 
support in the EQN domain. 

The main contribution of this paper is thus to provide 
an effective solution to such a lack of support. To achieve 
this objective, the paper introduces a language that can be 
transparently used to build local and distributed 
simulators of EQNs. 

The proposed language, called jEQN, is Java-based 
and enables the developer of traditional (local) EQN 
simulators to easily build distributed simulators of EQNs. 
jEQN makes transparent use of the HLA DS standard, 
thus reducing both the level of required expertise in 
distributed simulation and the burden of learning how to 
use complex libraries that implement existing DS 
standards. It has been verified that the use of jEQN yields 
an effort saving of around 30% for developers with 
average HLA expertise, and up to 60% for HLA 
beginners [1]. 

This paper builds on a previous description of jEQN 
[1] and aims first to introduce a restyling of the jEQN 
architecture, by further reducing layer coupling, and 
second to provide the implementation details that 
contribute to achieve the above mentioned effort savings. 

The paper is organized as follows: Section 2 briefly 
describes the overall jEQN layered architecture, while 
Section 3 illustrates the architecture details with the 
services provided at each layer and the relevant 
implementation details. For the sake of conciseness no 
description is given of the HLA standard, whose details 
can be found in [7]. 

 
II.  JEQN LAYERED ARCHITECTURE 

 

The jEQN architecture consists of four layers [1] that 
separate the jEQN program from the HLA-based DS 
infrastructure (denoted as layer 0), and a set of data 
interfaces that defines the common format of the data 
exchanged between the layers.  

Layer numbering proceeds bottom-up, from layer 1 to 
layer 4 as follows: 

 

Layer 4:  the jEQN program 
Layer 3:  the jEQN simulation language (i.e., the 

EQN primitives)  
Layer 2:  the execution container (i.e., the 

simulation engines) 
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Layer 1:  the DES (discrete event simulation) 
abstraction 

Layer 0:  the DS infrastructure (HLA in the paper 
case) 

 

The jEQN architecture makes use of the concepts of 
simulation element and simulation engine. The simulation 
elements represent the building blocks of a simulation, 
which can be grouped into entities, events exchanged by 
such entities and ports/links through which events flow. 
The simulation engine is instead responsible of the 
simulation initialization and execution. 

III.  DETAILS OF JEQN LAYERS 
This section provides a detailed description of both the 

data interfaces between layers and of layers 1 through 4. 
 

A.  DATA INTERFACES 
 

The data exchanged between the layers are: 
• ComponentLevelEntity: defines the access 

methods to local simulation entities 
• Event: defines the access methods to the events, 

which are scheduled between layers 
• GeneralEntity: defines the interface for local and 

remote simulation entities 
• InputPort: defines the interface for input ports 
• Link: defines the interface for links 
• Name: defines the interface for names 
• OutputPort: defines the interface for output 

ports 
• Port: defines the interface for ports 
• RemoteEntity: defines the interface for remote 

simulation entities 
• Time: defines the interface for the time. 

 

The role of these data interfaces is to further reduce 
dependencies between layers by providing an abstract 
format for data exchange. 

Data interfaces GeneralEntity, Event, InputPort, 
OutputPort and Link are logically related, as already 
shown in [1]. 

Although [1] defines Ports, Links and Events as layer 2 
internal components and not as cross-layer interfaces, 
their role and structure are similar and thus are not 
discussed further. 
 

A.1  GeneralEntity 
GeneralEntity is the interface for a logical process, 

which is the building block of discrete event simulations 
carried out by use of the process interaction (PI) 
paradigm [12]. It is specialized into 
ComponentLevelEntity and RemoteEntity; where the 
former is used for a local process and the latter refers to a 
remote process. Both interfaces are to be implemented by 
Layer 2 developers. 

It is worth remarking that the interfaces only define the 
data exchange format. The logical process has to be 
defined by the simulation language (layer 3) developers. 
They can thus define proper entities that will fit their 
application domain, e.g.: air traffic, computer network, 

etc.; by implementing the interface 
ComponentLevelEntity. 

The interface ComponentLevelEntity is also the layer 
2’s access point to layer 3 services, which means 
ComponentLevelEntity implementations will provide the 
actual implementation of Layer2ToLayer3 services. 

The interface RemoteEntity is independent of the 
simulation domain as it does not include any simulation 
logic. In fact, its role is in proving a local reference to a 
remote simulation entity. 

 

B.  LAYER 1  
 

The purpose of this layer is to provide an abstract view 
of DES mechanisms to layer 2. 

In fact, by use of this layer, layer 2 does not deal with 
technology-specific issues and can thus be ported on 
several layer 0 technologies. In this case, the IEEE HLA 
technology [7] is used.  

 

B.1  Layer 1 interface to layer 2 
 

This interface consists of the implementation of five 
DES services as illustrated in Fig 1. 

The service initDistributedSimulationInfrastructure 
initializes the underlying distributed simulation 
environment and therefore it must be invoked before 
starting the execution of upper layers’ components. 
Although no parameter is reported in the signature of this 
service in Fig. 1, a configuration file parameter can also 
be included without significantly affect the current 
interface specification. 

Analogously, the service postProcessingDistributed-
SimulationInfrastructure performs the post processing on 
the underlying infrastructure in order to restore the initial 
state. 

The service sendEvent allows to send events to remote 
entities, while the service waitNextDistributedEvent is 
used to block the process execution until a distributed 
event is received. 

Similarly, the service waitNextDistributedEventBefore-
Time blocks until either a distributed event is received or 
the time specified in the parameter has been reached by 
the distributed simulation. 

 

 
 Figure 1 Layer 2 to 1 interface 

 

B.2 The 1-to-0 and 0-to-1 interfaces 
 

The layer 1 to layer 0 and the opposite direction 
interfaces are defined according to the specific DS 
infrastructure used at layer 0. In the paper case, the HLA 
standard is used and thus the interfaces consist of subsets 
of the FederateAmbassador and RTIambassador services, 
with the former taking care of the 0-to-1 direction and the 
latter of the 1-to-0 one [7]. 
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B.3 Layer 1 Implementation 
 

The implementation of Layer 1 includes the following 
components: 

 

- DDESOverHLAEngine 
- DDESOverHLAEngineAmbassador 
- FederationManager  
- HLAEvent. 

 

The purpose of the component DDESOverHLAEngine 
(see Fig. 2) is twofold. First, it implements distributed 
DES services by use of the standard services provided by 
HLA (e.g., Time Management, Data Distribution, 
Federation Management, etc.). Second, it maintains the 
consistency between the local environment and the 
distributed one, for example, by disallowing the upper 
layer to process unsafe events and by scheduling instead 
the appropriate distributed events. 

 

The purpose of the component DDESOverHLAEngine-
Ambassador (see Fig. 2) is to properly implement the 
HLA interface FederateAmbassador, which represents 
the federate access point for all notifications of the HLA 
run time infrastructure (RTI)1. The implementation 
forwards to the federate the RTI callbacks of interest and 
discards the others. For example, object attribute updates 
are ignored since no HLA object is being used in the 
system. On the contrary, specific HLA interactions are 
conditionally forwarded to the federate. 

The component FederationManager [13] manages 
the simulation execution in order to ensure simulation 
reproducibility and causality. In particular, it regulates 

                                                           
1 In order to give a brief summary of HLA terminology, a HLA 
simulation consists of a set of federates, each representing a unit of 
simulation, a federation, that identifies the overall simulation consisting 
of the set of remote federates and a run-time infrastructure (RTI), which 
is a simulation oriented middleware that provides services for 
communication and coordination among federates, time synchronization 
and simulation management. 

and synchronizes the life cycles of all federates and 
guarantees that a new state begins iff all federates are 
ready for it. 

Differently from the other components, the component 
FederationManager is run in a separate process (that 
can also be remotely executed). 

 

The auxiliary component HLAEvent masks the 
conversion between the internal event format and the 
corresponding HLA data structure. It provides methods to 
send events, to convert internal events to HLA events and 
vice versa, etc. Since it does not play an active role, it is 
not discussed further in this paper. 
 

DDESOverHLAEngine 
Fig. 3 illustrates the lifecycle of the component 

DDESOverHLAEngine, with the set of component states 
(rounded rectangles) and events (labels on arrows) 
enabling transitions (arrows) from the initial state (solid 
circle) to the final state (circle surrounding a solid circe). 

The initialization starts with the federate joining in the 
federation, then proceeds with setting up the time 
management configuration (i.e, constrained and 
constraining [13]) to eventually notify the RTI about the 
interest in receiving and sending HLAEvent interaction 
objects.  

 

Afterwards, it notifies the RTI that synchronization 
points readyToPopulate, first, and readyToRun, then, are 
reached. 

Once in the execution state, it waits for its services to 
be invoked by the upper or lower layer. The needed 
coherence between the local time and the distributed one 
is maintained by use of upper layer, whereas the lower 
layer is in charge of notifying events and time grants for 
the HLA service request previously submitted. 

 

This component DDESOverHLAEngine consists of: 

Layer2ToLayer1 Interface

Layer1ToLayer2 Interface

RTIAmbassador

FederateAmbassador

HLA Run Time Infrastructure

Engine DIS-
coordination 

and DIS-
synchronization 

logic RTI 
Callback 

Filter

DDESOverHLAEngine

DDESOverHLAEngineAmbassador
Callback 
Queue

Barriers

 
Figure 2 Layer 1 breakthrough view 
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1. A synchronization and coordination logic that 
operates between the local and the distributed 
environment, with the mechanism to block local 
execution until proper HLA notifications are 
received through the ambassador. 

2. An implementation of distributed DES (DDES) 
services on top of HLA services. 

 

For the sake of brevity no description is given of point 
1. The interested reader is sent to [13] and [14] for a 
detailed description of synchronization and coordination 
aspects. 

 

DDES service implementation 
The DDES service implementation provides the 

following services, which are in turn based on HLA 
services: 

 

- initDistributedSimulationInfrastructure() 
- postProcessingDistributedSimulationInfrastructure() 
- sendEvent(in event: Event) 
- waitNextDistributedEvent() 
- waitNextDistributedEventBeforeTime(in t: time) 

 

The initDistributedSimulationInfrastructure() service 
is implemented as follows: 

 

initDistributedSimulationInfrastructure():  
publish(HLAEventClass);  
subscribe(HLAEventClass); 
enableTimeConstrained();  
enableTimeRegulated(); 

  registerSynchronizationPoint(readyToPopulate); 
registerSynchronizationPoint(readyToRun); 
registerSynchronizationPoint(readyToResign); 

  synchronizationPointAchieved(readyToPopulate); 
  wait(readyToPopulate); 
  synchronizationPointAchieved(readyToRun); 
  wait(readyToRun); 

 

where publish and subscribe statements enable the 
federate to send and receive HLA events, i.e., instances of 
the HLAEvent class that defines the HLA structure for 
distributed events in the DDES system, while the 
enableTimeConstrained and enableTime-
Regulating statements enable the federate to operate in 
a time conservative modality by, respectively, 

constraining the federate time advancement to the whole 
federation time as well as constraining the whole 
federation time advancement to the federate time. 

The enableTimeConstrained and enableTime-
Regulating operations are asynchronous. The above 
pseudo-code includes synchronizations through Barriers 
(see [14]) and the corresponding notification of 
successful processing from RTI through the ambassador 
component. The notifications are, respectively, 
timeConstrainedEnabled and timeRegulating-
Enabled. 

 

After that, the synchronization points 
readyToPopulate, readyToRun and readyToResign, 
which denote the states in the federate life cycle (see Fig. 
3), are registered into the system by means of the 
registerSynchronizationPoint asynchronous 
statements. In analogy to the previous case, the above 
pseudo-code includes synchronization through Barriers 
and the relative notification of successful processing. 

 

The synchronizationPointAchieved(ready-
ToPopulate) statement then informs the distributed 
environment that the processing for the ReadyToPopulate 
state has been completed and the federate is ready to pass 
to the next state. At this point the RTI notifies the 
achievement of global synchronization by use of the 
synchronizationPointAchieved (readyToPopu-
late) statement that uses the ambassador component to 
unlock the wait(readyToPopulate) statement upon 
which the federate has been locked on. 

Since there is no processing in the readyToPopulate 
state, the service implementation proceeds by signalling 
that the federate has reached the readyToRun 
synchronization point and entered in a blocking waiting 
for a global readyToRun signal, as for the 
readyToPopulate synchronization point. 

 

The postProcessingDistributedSimulation-
Infrastructure() service is implemented as follows: 

 

postProcessingDistributedSimulation- 
Infrastructure(): 

 

  synchronizationPointAchieved(readyToResign);              
  wait(readyToResign);                    
  resignFederationExecution(
 ResignAction.DELETE_OBJECTS); 

 

This service first signals the achievement of the 
readyToResign synchronization point, through the 
synchronizationPointAchieved(readyToResign) 
statement, and then uses the wait(readyToResign) 
statement to wait for a global achievement of the same 
point. 

Once the readyToResign signal is received, it proceeds 
by quitting the federation through the 
resignFederationExecution statement and 
performing the resign action. This action is 
conventionally chosen as no HLA objects are used in the 
distributed simulation. 

 

The sendEvent(in event: Event) service is implemented 
as follows: 

 

sendEvent(in event: Event): 
  toSend = HLAEvent.buildFrom(event); 

 

Figure 3 DDESOverHLAEngine lifecycle 
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  toSend.send(); 
 

The implementation is based on the availability of the 
the HLAEvent component that performs the conversion 
between the internal event and the HLA data, and vice 
versa. Basing on it, the service merely consists of two 
HLAEvent service invocations: a first one to convert the 
Event object to a HLAEvent object, and a second one to 
send it out to the HLA environment. 

The send statement is based on the homologous HLA 
service sendInteraction(). The service serializes 
local data to the HLA format according to the rules that 
map each HLA attribute id to a field name coded into the 
HLAEvent class. The serialization is carried out by 
converting each of the local data from their local format 
to an equivalent array-of-bytes format. 

 

The waitNextDistributedEvent() service is 
implemented as follows: 

 

waitNextDistributedEvent():  
  do 

  tfuture = tcurrent + tadvancingStep; 
  timeAdvanceRequest(tfuture); 
  wait(timeGrant);  

  while not (eventReceived); 
  sendReceivedEventToUpperLayer(); 

 

This service consists of a do-while cycle that performs 
time advance requests to a future time until an event is 
received from the distributed system. 

The future time is computed by adding the current time 
to the system parameter advancement step. 

The timeAdvanceRequest statement is used to 
request a time advancement at the specified time and the 
wait(timeGrant) statement blocks the current process 
until a timeGrant RTI callback is received. While 
waiting, the engine automatically processes incoming 
callbacks. The expected types of callbacks are of the 
following types: 

- timeAdvanceGrant 
- receivedEvent. 

 

The timeAdvanceGrant callback is dispatched by 
updating the internal clock time to the one the callback 
carries on. 

The receivedEvent callback is dispatched by updating 
the flag eventReceived to true and by storing the just-
received event in a temporary buffer. According to the 
HLA standard, with the current time settings, an 
interaction received notification is always followed by a 
time grant notification that grants the interaction time at 
least.  

The sendReceivedEventToUpperLayer statement 
follows the do-while cycle and invokes the layer 2 service 
schedule(). 

 

Finally, the waitNextDistributedEventBeforeTime(in t: 
time) service is implemented as follows: 

 

waitNextDistributedEventBeforeTime(in t: time): 
  do 

  t = tcurrent + tadvancingStep; 
  timeAdvanceRequest(tfuture); 
wait(timeGrant); 

  while (not eventReceived) or (tcurrent<t));        
   if(eventReceived) 
   sendReceivedEventToUpperLayer(); 

This service behaves similarly to the 
waitNextDistributedEvent() service. The only change is in 
the exit condition of the do-while cycle: the sequence of 
time advance requests terminates once either a new event 
has been received or the given time has been reached. 

 

DDESOverHLAEngineAmbassador 
The component DDESOverHLAEngine implements the 

HLA interface FederateAmbassador in order to 
synchronize and manage the RTI callbacks to 
DDESOverHLAEngine. 

The main DDESOverHLAEngine functionalities are:  
 

1. notification of successful HLA service 
processing, for example: 
enableTimeConstrained, enableTimeRegulating, 
etc. 

2. notification of synchronization point 
achievement (synchronizationPointSucceed) 

3. notification of time grant (timeAdvanceGrant) 
4. HLA event delivery to DDESOverHLAEngine 

for those events that have a local recipient. 
 

All such functionalities are implemented by defining 
the proper statements in the respective HLA 
FederateAmbassador service. The implementation 
makes also use of:  

- parallel programming primitives, like Barrier 
and CallbackQueue, to synchronize the 
DDESOverHLAEngine – DDESOverHLA-
EngineAmbassador components,  

- HLAEvent component to load a HLA format 
event in a local HLAEvent class, in order to 
determine whether the recipient is running in the 
local system or not.  

This component runs in a separate thread with respect 
to the DDESOverHLAEngine components. 

 

C.  LAYER 2  
 

This layer is the execution container for layer 3 
components. 

The interfaces to lower and upper layers are shown in 
Fig. 4 and 5, respectively. The Layer3ToLayer2 interface 
consists of two sub-interfaces: a first named 
Layer3ToLayer2UserInterface, which is used by 
language users, and a second named 
Layer3ToLayer2DeveloperInterface used by language 
developers. 
The 1-to-2 interface consists of the scheduleEvent and 
scheduleSimulationEndEvent services. The former inserts 
the generic event into the list of events, while the latter 
signals that a distributed simulation end event has been 
received.  
 
 

 
Figure 4 Layer 1 to layer 2 interface 
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Figure 5 Layer 3 to Layer 2 interface 

 

The Layer3ToLayer2UserInterface is shown in Fig. 6. 
It provides services to configure and manage the system. 
It consists of a registerEntity service to configure which 
entities will be running in the simulator and a startEngine 
service to start the components. 

The Layer3ToLayer2DeveloperInterface is shown in 
Fig. 7. It provides services to define entities and consists 
of the following services: 

 

- a getClock service for utility purposes 
- a waitNextEvent service that blocks the entity 

until an event is received 
- a hold service that blocks the entity until the 

specified time is reached 
- a holdUnlessIncomingEvent that blocks the 

entity until either the specified time is reached or 
an event is received 

- three send-type services that allow an entity to 
interact with other entities, either local or 
remote. 

 

  
Figure 6 Layer 3 to layer 2 user interface 

 

Figure 7 Layer 3 to layer 2 developer interface 
 

C.1 Implementation 
 

This implementation includes the following 
components: 

- Engine: coordinates the execution of the 
simulation components implemented at layer 3 

- Entity: provides a layer 2 reference to layer 3 
entities 

- Event: provides a mechanism to implement 
coordination among entities. 

 

Engine 
The simulation engine is responsible for the simulation 

initialization and execution according to the PI paradigm. 
The hierarchy that introduces simulation engines for local 
execution and engines for distributed execution is already 
discussed in [15]. 

 

Local Simulation Engine 
This engine introduces the basic support for the PI 

paradigm. 
It provides the implementation of services send, wait 

and hold through the scheduling of specific type of 
events, below described; and a set of synchronization 

primitives to manage the execution of the entities (i.e., 
the logical processes in the PI paradigm). 

The engine’s core method is the start method, which is 
implemented as follows: 

 

start(): 
isRunning = true; 
startAllEntities(); 
                       
while (isRunning) {             
  for each LocalEntity e {                 
    if (e.isRunnable()) { 
      e.restart(); 
      setOneEntityInRunState(); 
    } 
  }           
  if (eventList.size() > 0) {                 
    getNextEvent().process(); 
  } else { 
    isRunning = false; 
  }             
}         
 

First, the flag that denotes the engine running is set. 
Then all entities are started through the Thread’s method 
start [14].The entities then are blocked while waiting 
for the engine to allow them to run. 

At this point the engine enters the processing cycle that 
is composed of two blocks: the first in which all the 
runnable entities are activated (they compete to be run by 
the engine); and the second in which either the next event 
is processed, if present, or the simulation end condition is 
determined, if there are no future events. 

 

Distributed simulation engine  
The distributed engine extends the local engine by 

redefining the start method and by implementing event 
scheduling services for remote recipients. 

The start method is redefined as follows: 
 

start(): 
ddes.initDistributedSimulationInfrastructure()  
isRunning = true; 
startAllEntities(); 
  while (isRunning) {             
    for each LocalEntity e {                 
      if (e.isRunnable()) { 
        e.restart(); 
        setOneEntityInRunState(); 
      } 
    }             
  if (eventsList().size() > 0) { 
    Time nextEventT=seeNextEvent().getTime(); 
    ddes.waitNextDistributedEventBeforeTime 
            (nextEventTime);  
  } else { 
    ddes.waitNextDistributedEvent(); 
  } 
  getNextEvent().process();                 
 } 
ddes.postProcessDistributedSimulation-  
     Infrastructure(); 
 

The method begins with the initialization of the lower 
layer and then proceeds on as in the case of the local 
engine. The difference between the two implementations 
is in the second block of the while cycle. In the 
distributed version, there are two differences, each for 
each branch of the if block. In the then block, it is needed 
to check, by performing a time advancement to the next 
event’s time, that no next distributed events will be 
received after processing the next event. 
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In the else block, the simulation condition can not be 
inferred only from the empty status of the local event list, 
since of the presence of other remote simulators. 

 

The schedule service introduces a test to find out 
whether the recipient is local or remote. If it is local the 
LocalEngine service is invoked, otherwise the layer 1 
send event is invoked on the given event. 

 

This engine also implements the Layer1ToLayer2 
services scheduleEvent and scheduleSimulationEndEvent. 
The former is implemented by scheduling a local 
PDistributedToLocalEvent (see further on) version for 
the received Event. The latter is simply implemented by 
scheduling an internal layer 2 SimulationEndEvent at the 
specified time. 

 

Entity 
SimJEntity is the layer 2 component that 

encapsulates the layer 3 logic process. 
The entities are structured as shown in Fig. 8. 
 

 
Figure 8 SimJ Entity Class Diagram 

 

The interface SimJEntity is only in charge of 
marking the interface for layer 2 entities. SimjEntity is 
implemented by LocalEntity and RemoteEntity 
components. 

The LocalEntity component implements the 
services provided to layer 3 developers. It plays an 
intermediary role between layer 3 logical processes, 
which invoke layer 3 to layer 2 services, and the engine, 
which actually implements the send, wait, etc., services.  

 

The life cycle of the LocalEntity component 
evolves among four states, as shown in Fig. 9:  

1. RUNNING: state in which the component 
performs layer 3 component’s logic  

2. HOLD: state in which the component sleeps for 
a given time 

3. WAITING: state in which the components 
sleeps until an event is received 

4. HOLD_UNLESS_INCOMING_EVENT: state 
in which the component sleeps until either a 
given time has passed or an event is received. 

 

The Engine – LocalEntity synchronization is achieved 
through two semaphores: OneEntityIn and RighToRun 
defined in the Engine and LocalEntity components, 
respectively. 
OneEntityIn guarantees that only one entity at time, 

and thus logical process, is running in the engine. The 

execution of one entity at time is needed to ensure 
simulation reproducibility. 
RightToRun is the semaphore that the wait-like 

service requests use to block the LocalEntity while 
waiting for the proper event to be processed. 
RemoteEntity is the layer 2 component used to refer 

to an entity running on a remote system. It does not play 
any active role.  

Figure 9 LocalEntity State Diagram 
 

Events 
Events are organized according to the component 

hierarchy shown in Fig. 10. 
 

«interface»
Event

PEvent

PLocalEventPLocalToDistributedEvent PDistributedToLocalEvent

SimulationEndEvent

WakeUpEvent ConditionalWakeUpEvent

+process()

SimJEvent

«interface»
Comparable

  
Figure 10 SimJEvent hierarchy 

 

The base component SimjEvent introduces the 
abstract operation process(), which embodies the action 
to be taken when the respective event class is processed.  

The abstract component PEvent introduces the events 
for the PI simulation paradigm. PLocalEvent defines 
the base notification event for the PI paradigm in a local 
environment. Special PI local events (e.g. WakeUpEvent 
and ConditionalWakeUpEvent) are defined by 
specializing the component PLocalEvent and by 
overriding the process method, and similarly for remote 
recipient and remote sender PI events. 

The definition of the process() operation is defined in 
the following subsections, one for each class of event. 

 

PLocalEvent 
This event is scheduled when a local entity sends a 

message to another local entity. 
The actions taken when this event is processed are: 

send a signal to the recipient entity in order to make it 
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pass from the WAITING state to the RUNNING state, 
and deliver it. 

The action also checks whether the recipient is waiting 
for an event. If not, the above action is ignored. No 
deferred event list is currently available in this layer 2 
implementation. 

 

WakeUpEvent 
This event is scheduled when a local entity invokes the 

hold() operation. The action taken when this event is 
processed is: send a signal to the associated entity in 
order to make it pass from the HOLD state to the 
RUNNING state. 

 

ConditionalWakeUpEvent 
This even is scheduled when the entity invokes the 

holdUnlessIncomingEvent() operation. 
The actions taken when this event is processed are: 

check whether the entity has already received an event 
and, if not, send a signal to the entity in order to make it 
pass from the WAITING state to the RUNNING state and 
deliver the event itself. 

The check makes use of information related to the 
request ordinal number and the current entity state in 
order to determine whether an event has already been 
delivered to the entity. 

 

SimulationEndEvent 
Since this event is shared by all discrete event 

simulation paradigms, it is defined straight from the base 
interface SimJEvent. 

The processing of this event is to stop the engine by 
use of the homonym engine service. 

 

PLocalToDistributedEvent 
This event represents local sender to remote recipient 

events. When scheduled it is immediately processed in 
order to optimize the execution of the distributed 
simulation. Its processing involves the invocation of 
lower level services to send it out to the distributed 
environment, which is in charge of delivering it. 

 

PDistributedToLocalEvent 
This event is scheduled when a distributed event for a 

local recipient is received by the lower layer. 
The action taken when this event is processed is the 

same as for PLocalEvent. What changes between the 
two classes is that the remote sender can not be directly 
referenced. 

 

D.  Layer 3 
 

The purpose of this layer is to provide the domain 
dependent components that implement the layer 4 
language. 

Layer 3 offers a domain-independent interface to layer 
2 to make its components available for the layer 2 
synchronization procedures (see Fig. 11). 

The interface is composed of eight services, among 
which the following four services are of primary interest: 

- body: to encode the component behaviour, i.e. 
the sequence of state updates and layer 2 service 
calls 

- printStatistics: to print the private statistics 
collected throughout the simulation 

- setEventReceived: to inform that an event has 
been received 

- setRecevedEvent: to pass the just-received event. 
 

The system is provided with a facility component that 
implements the basic operations to allow interaction with 
layer 2. This component can be specialized to implement 
custom logic or can be replaced in case of different layer 
3 implementations. 

 

According to the autonomous component paradigm, 
the design of custom components includes decisions 
related to: 

- the number of input and output ports 
- the type of events to be sent and received on 

each port 
- the component behaviour 
- the statistics to be collected. 

 

 
Figure. 11 Layer 2 to layer 3 interface 

 

D.1  Implementation  
 

An implementation is provided for the specific domain 
of interest, i.e., EQN simulation. 

The simulation components are designed to exploit 
component reusability by using all state-of-art Java and 
object-oriented techniques. In particular, the following 
design guidelines have been adopted: 

- decoupling functionalities by introducing 
flexible parameter configuration for those 
parameters that do not affect the component 
behavior (e.g., decision policies like FIFO, etc.) 

- using inheritance for those parameters that affect 
component behavior (e.g., preemption, etc.). 

 

The simulation component groups are: the typical EQN 
component (users, waiting systems, service centers, 
routers and special nodes), a set of support components 
and a policy modeling framework. 

The support components, for example User, Service 
Request, Probability, etc.; do not play an active role in the 
simulation but provide facilities for model configuration 
and data exchange information. 
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    The policy modeling framework is a general 
framework within which every policy has to be 
implemented. The framework is based on a generic 
hierarchy that includes parameters such as: 

- the decision data type, 
- the decision object type (aka explicit input), 
- the implicit input type, 
- the state type. 

 

The hierarchy introduces a classification of policies, 
for example: input dependent policy, state dependent 
policy, implicit input dependent policy and so on. 

The design of a new policy is thus carried out by 
defining the parameter type of the policy and the policy 
class it fits best. 

 

The following subsections illustrate some of the jEQN 
components in terms of: purpose, ports, behaviour and 
parameters. 

 

Policy Modelling Framework 
 

jEQN policies are defined according to the meta-model 
shown in Fig. 12.  

The model considers four parameters for each of the 
factors that affects the policy decision, namely: 

• T, for the type of explicit input  
• I, for the type of implicit input 
• S, for the type of internal state 
• D, for the type of decision expected. 

 

The policies are defined, and their relationships 
established, as a function of the parameter combination 
(T, I, or S) they use. Thus, we have a policy that only 
depends from the explicit input T, one that depends on 
the implicit and explicit input (T and I), and so on. 

A MaskBasePolicy is introduced as a full 
parameterized policy in order to provide a common 
reference for jEQN components. 

The design of a new jEQN policy involves two basic 
steps: identify the meta-class and define the parameter’s 
type.  

The policy can thus be implemented by properly 
allocating the meta-class and then defining the decision 
method. 

 

Source 
 

The purpose of this group of components is to generate 
and insert new users into the system. 

 

The port of Source components is an output port 
through which users flow. 

 

The behaviour is as follows: 
1. check whether the termination condition has 

been reached or not 
2. if not, wait for the inter-arrival time 
3. generate a new user and send it through the 

output port 
4. go back to step 1. 

 

 
Figure 12 Policy hierarchy 
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The base component can be parameterized by 
specifying proper implementation of: 

- inter-arrival time sequence 
- termination policy 
- user generator. 

 

Routers 
 

The purpose of this group of components is to route 
users towards specific entities or ports. 

Currently, this group holds the component Router 
only. 

 

The ports of a Router component are: 
- an input port to receive users 
- a set of output ports to forward users 

 

The behaviour is as follows: 
1. wait for the next user to come in 
2. decide on which port to forward it 
3. send it out through that port 
4. go back to step 1. 

 

The Router component has a single parameter, i.e., the 
routing policy 

 

Waiting Systems 
 

The purpose of this group of components is to store 
users that can not be immediately processed by the 
service center. 

The simulation components in this group are two: 
PreemptiveWaitingSystem and NonPreemptive-
WaitingSystem. 

 

The behavior of the component 
NonPreemptiveWaitingSystem is as follows: 

1. wait for an event 
2. if it is an incoming user, insert it in the waiting 

system 
3. if it is a request for the next user to be processed, 

then: 
a. if the waiting system is not empty, 

extract the next user and send it, 
b. else, wait for a new user to come in and 

then send it to the service center. 
 

The behavior of the component 
PreemptiveWaitingSystem is as follows: 

1. wait for an event 
2. if it is an incoming user, assess whether it has 

the right of preempt or not: 
a. if so, send it to the service center, 
b. else, insert it in the waiting system 

3. if it is a next user request, then: 
a. if the waiting system is not empty, 

extract the next user, 
b. else, wait for a new user to come in and 

then send it to the service center. 
The ports of the component NonPreemptive-

WaitingSystems are: 
- an input port for the incoming user 
- an output port for the user to be processed 
- an input port for the request of a new user 

 

The ports of the component PreemptiveWaiting-
System are: 

- an input port for the incoming user 
- an output port for the user to be processed 
- an input port for the partially-processed users 

 

The parameters of the component 
NonPreemptiveWaitingSystem are: 

- a UserQueue (data structure) where to store 
users, 

- a user service request generator, in order to 
allow the implementation of service-based 
queuing policies. 

 

The parameters of the component 
PreemptiveWaitingSystem are the same of the non 
preemptive one with the addiction of: 

- preemption policy. 
 

The UserQueue is an abstract component that offers 
user insertion and extraction methods. It is specialized 
into FiniteUserQueue, InfiniteUserQueue and 
MultiUserQueue as shown in Fig. 13. 

 

 
Figure 13 UserQueue hierarchy 

 

The component InfiniteUserQueue can be 
configured by specifying: 

- a concrete data structure to store user, e.g., 
ArrayList, etc., 

- an enqueueing policy. 
 

The component FiniteUserQueue can be configured 
by specifying: 

- the queue capacity, 
- a concrete UserQueue to bound. 

 

The component MultiUserQueue can be configured 
by specifying: 

- a list of UserQueue, 
- a user dispatching policy,  
- a queue selection policy. 

 

Service Centers 
 

The purpose of this group of components is to simulate 
the user processing. The components in this group are: 
NonPreemptiveServiceCenter, Preemptive-
ServiceCenter and InfiniteServer. 

 

The behavior of the component 
NonPreemptiveServiceCenter is as follows: 

1. request the next user to process 
2. wait for the next user 
3. process user request 
4. go back to step 1. 

 

The behavior of the component 
PreemptiveServiceCenter is as follows: 

1. request the next user to process, 
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2. wait for the next user, 
3. process user request, 
4. if interrupted, then send partially-processed user 

back to the waiting system, then go back step 3, 
5. else, go back step 1, 
6. go back to step 1. 

 

The behavior of the component InfiniteServer is 
as follows: 

1. wait for the next user to process, 
2. forward it to the next entity at a delayed time as 

much as the service request time, 
3. go back step 1.  

 

The ports of the component NonPreemptive-
ServiceCenter are: 

- an input port for the users to be processed, 
- an output port for the processed users, 
- an input port to request the users to be 

processed. 
 

The ports of the component Preemptive-
ServiceCenter are: 

- an input port for the users to be processed, 
- an output port for the processed users, 
- an output port to re-enqueue interrupted users 

 

The ports of the component InfiniteServer are: 
- an input one for the users to be processed, 
- an output one for the processed users. 

 

The components of this group do not have parameters. 
 

E.  Layer 4 
 

The jEQN language provides a restricted set of 
architecture services for building and configuring EQN 
simulation programs, and a set of domain-specific 
primitives. 

The services define the Layer4ToLayer3Interface, i.e. 
Layer3ToLayer2UserInterface above introduced. 

The primitives are identified by layer 3 EQN 
components. Interested readers are sent to [1] for an 
example use of jEQN. 

IV.  CONCLUSIONS 
This paper has illustrated jEQN, a Java-based language 

that significantly reduces the extra effort needed to 
develop distributed simulators of extended queueing 
networks (EQNs). jEQN enables simulator developers to 
build distributed simulators as they were to be locally 
executed. 

The language is based on a four-layered architecture 
whose services and data interfaces between the layers 
have been accurately described in this paper. 

The implementation details of each layer have been 
presented in terms of service interface implementation, 
main components and relationships with the upper and 
lower layers, when appropriate. 

The paper points out how the system takes into account 
the interaction with the distributed environment both 
within layer 1 (HLA) and within layer 2. 

A very schematic presentation has also been given for 
jEQN components at layer 3 and the language at layer 4. 
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