
A Language to Enable Distributed Simulation of
Extended Queueing Networks∗

Daniele Gianni and Andrea D’Ambrogio
University of Rome TorVergata, Dept. of Computer Science, Rome, Italy

{gianni, dambro}@info.uniroma2.it

∗ Work partially supported by funds from the FIRB project “Performance Evaluation of Complex Systems: Techniques Methodologies and Tools” and
by the University of Rome TorVergata CERTIA Research Center.

Abstract — Distributed simulators are increasingly being
used for their intrinsic advantages in terms of reusability,
fault tolerance, performance, and geographic distribution.
The development of a distributed simulator, however,
requires significant investments in terms of effort if
compared to the development of traditional local simulators.
This paper introduces jEQN, a Java-based language that
significantly reduces the extra effort needed to develop a
distributed simulator of extended queueing networks
(EQNs), by enabling simulator developers to build
distributed simulators as they were to be locally executed.
By use of jEQN, simulator developers are enabled to easily
switch from a local to a distributed version of an EQN
simulator by only modifying few statements of the given
local simulator. Moreover, these statements can be easily
inferred by a very intuitive graphical procedure. The paper
illustrates both the jEQN architecture, based on a layered
approach, and the implementation details that contribute to
achieve the above mentioned advantages.
Index Terms — Software Architecture, Simulation
Language, Distributed Simulation, High Level Architecture,
Queueing Networks

I. INTRODUCTION
The development of a distributed simulation (DS)

program is generally harder to carry out with respect to
the development of a local simulator [1], because it is
necessary to explicitly deal with communication,
concurrency and synchronization issues [2], both between
(i) the local and the distributed environment and among
(ii) the distributed simulators that are part of the same DS
program.

This paper specifically addresses simulation programs
that represent and analyze system models specified by
use of the extended queueing network (EQN) formalism
[3].

Example simulation environments that can be used to
build local simulation programs of EQNs are illustrated
in [4] and [5]. On the other hand, currently available
standards that give the necessary support to build DS
programs (see, e.g., DIS [6] and HLA [7]) only deal with
distributed infrastructures, in other words with the item
(ii) previously mentioned, without addressing EQN
simulation. Similarly, contributions that extend such
standards to deal with both items (i) and (ii) can be found

in [8], [9], [10] and [11]; but they still fail to provide
support in the EQN domain.

The main contribution of this paper is thus to provide
an effective solution to such a lack of support. To achieve
this objective, the paper introduces a language that can be
transparently used to build local and distributed
simulators of EQNs.

The proposed language, called jEQN, is Java-based
and enables the developer of traditional (local) EQN
simulators to easily build distributed simulators of EQNs.
jEQN makes transparent use of the HLA DS standard,
thus reducing both the level of required expertise in
distributed simulation and the burden of learning how to
use complex libraries that implement existing DS
standards. It has been verified that the use of jEQN yields
an effort saving of around 30% for developers with
average HLA expertise, and up to 60% for HLA
beginners [1].

This paper builds on a previous description of jEQN
[1] and aims first to introduce a restyling of the jEQN
architecture, by further reducing layer coupling, and
second to provide the implementation details that
contribute to achieve the above mentioned effort savings.

The paper is organized as follows: Section 2 briefly
describes the overall jEQN layered architecture, while
Section 3 illustrates the architecture details with the
services provided at each layer and the relevant
implementation details. For the sake of conciseness no
description is given of the HLA standard, whose details
can be found in [7].

II. JEQN LAYERED ARCHITECTURE

The jEQN architecture consists of four layers [1] that
separate the jEQN program from the HLA-based DS
infrastructure (denoted as layer 0), and a set of data
interfaces that defines the common format of the data
exchanged between the layers.

Layer numbering proceeds bottom-up, from layer 1 to
layer 4 as follows:

Layer 4: the jEQN program
Layer 3: the jEQN simulation language (i.e., the

EQN primitives)
Layer 2: the execution container (i.e., the

simulation engines)

76 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

Layer 1: the DES (discrete event simulation)
abstraction

Layer 0: the DS infrastructure (HLA in the paper
case)

The jEQN architecture makes use of the concepts of
simulation element and simulation engine. The simulation
elements represent the building blocks of a simulation,
which can be grouped into entities, events exchanged by
such entities and ports/links through which events flow.
The simulation engine is instead responsible of the
simulation initialization and execution.

III. DETAILS OF JEQN LAYERS
This section provides a detailed description of both the

data interfaces between layers and of layers 1 through 4.

A. DATA INTERFACES

The data exchanged between the layers are:
• ComponentLevelEntity: defines the access

methods to local simulation entities
• Event: defines the access methods to the events,

which are scheduled between layers
• GeneralEntity: defines the interface for local and

remote simulation entities
• InputPort: defines the interface for input ports
• Link: defines the interface for links
• Name: defines the interface for names
• OutputPort: defines the interface for output

ports
• Port: defines the interface for ports
• RemoteEntity: defines the interface for remote

simulation entities
• Time: defines the interface for the time.

The role of these data interfaces is to further reduce
dependencies between layers by providing an abstract
format for data exchange.

Data interfaces GeneralEntity, Event, InputPort,
OutputPort and Link are logically related, as already
shown in [1].

Although [1] defines Ports, Links and Events as layer 2
internal components and not as cross-layer interfaces,
their role and structure are similar and thus are not
discussed further.

A.1 GeneralEntity
GeneralEntity is the interface for a logical process,

which is the building block of discrete event simulations
carried out by use of the process interaction (PI)
paradigm [12]. It is specialized into
ComponentLevelEntity and RemoteEntity; where the
former is used for a local process and the latter refers to a
remote process. Both interfaces are to be implemented by
Layer 2 developers.

It is worth remarking that the interfaces only define the
data exchange format. The logical process has to be
defined by the simulation language (layer 3) developers.
They can thus define proper entities that will fit their
application domain, e.g.: air traffic, computer network,

etc.; by implementing the interface
ComponentLevelEntity.

The interface ComponentLevelEntity is also the layer
2’s access point to layer 3 services, which means
ComponentLevelEntity implementations will provide the
actual implementation of Layer2ToLayer3 services.

The interface RemoteEntity is independent of the
simulation domain as it does not include any simulation
logic. In fact, its role is in proving a local reference to a
remote simulation entity.

B. LAYER 1

The purpose of this layer is to provide an abstract view
of DES mechanisms to layer 2.

In fact, by use of this layer, layer 2 does not deal with
technology-specific issues and can thus be ported on
several layer 0 technologies. In this case, the IEEE HLA
technology [7] is used.

B.1 Layer 1 interface to layer 2

This interface consists of the implementation of five
DES services as illustrated in Fig 1.

The service initDistributedSimulationInfrastructure
initializes the underlying distributed simulation
environment and therefore it must be invoked before
starting the execution of upper layers’ components.
Although no parameter is reported in the signature of this
service in Fig. 1, a configuration file parameter can also
be included without significantly affect the current
interface specification.

Analogously, the service postProcessingDistributed-
SimulationInfrastructure performs the post processing on
the underlying infrastructure in order to restore the initial
state.

The service sendEvent allows to send events to remote
entities, while the service waitNextDistributedEvent is
used to block the process execution until a distributed
event is received.

Similarly, the service waitNextDistributedEventBefore-
Time blocks until either a distributed event is received or
the time specified in the parameter has been reached by
the distributed simulation.

 Figure 1 Layer 2 to 1 interface

B.2 The 1-to-0 and 0-to-1 interfaces

The layer 1 to layer 0 and the opposite direction
interfaces are defined according to the specific DS
infrastructure used at layer 0. In the paper case, the HLA
standard is used and thus the interfaces consist of subsets
of the FederateAmbassador and RTIambassador services,
with the former taking care of the 0-to-1 direction and the
latter of the 1-to-0 one [7].

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 77

© 2007 ACADEMY PUBLISHER

B.3 Layer 1 Implementation

The implementation of Layer 1 includes the following
components:

- DDESOverHLAEngine
- DDESOverHLAEngineAmbassador
- FederationManager
- HLAEvent.

The purpose of the component DDESOverHLAEngine
(see Fig. 2) is twofold. First, it implements distributed
DES services by use of the standard services provided by
HLA (e.g., Time Management, Data Distribution,
Federation Management, etc.). Second, it maintains the
consistency between the local environment and the
distributed one, for example, by disallowing the upper
layer to process unsafe events and by scheduling instead
the appropriate distributed events.

The purpose of the component DDESOverHLAEngine-
Ambassador (see Fig. 2) is to properly implement the
HLA interface FederateAmbassador, which represents
the federate access point for all notifications of the HLA
run time infrastructure (RTI)1. The implementation
forwards to the federate the RTI callbacks of interest and
discards the others. For example, object attribute updates
are ignored since no HLA object is being used in the
system. On the contrary, specific HLA interactions are
conditionally forwarded to the federate.

The component FederationManager [13] manages
the simulation execution in order to ensure simulation
reproducibility and causality. In particular, it regulates

1 In order to give a brief summary of HLA terminology, a HLA
simulation consists of a set of federates, each representing a unit of
simulation, a federation, that identifies the overall simulation consisting
of the set of remote federates and a run-time infrastructure (RTI), which
is a simulation oriented middleware that provides services for
communication and coordination among federates, time synchronization
and simulation management.

and synchronizes the life cycles of all federates and
guarantees that a new state begins iff all federates are
ready for it.

Differently from the other components, the component
FederationManager is run in a separate process (that
can also be remotely executed).

The auxiliary component HLAEvent masks the
conversion between the internal event format and the
corresponding HLA data structure. It provides methods to
send events, to convert internal events to HLA events and
vice versa, etc. Since it does not play an active role, it is
not discussed further in this paper.

DDESOverHLAEngine
Fig. 3 illustrates the lifecycle of the component

DDESOverHLAEngine, with the set of component states
(rounded rectangles) and events (labels on arrows)
enabling transitions (arrows) from the initial state (solid
circle) to the final state (circle surrounding a solid circe).

The initialization starts with the federate joining in the
federation, then proceeds with setting up the time
management configuration (i.e, constrained and
constraining [13]) to eventually notify the RTI about the
interest in receiving and sending HLAEvent interaction
objects.

Afterwards, it notifies the RTI that synchronization
points readyToPopulate, first, and readyToRun, then, are
reached.

Once in the execution state, it waits for its services to
be invoked by the upper or lower layer. The needed
coherence between the local time and the distributed one
is maintained by use of upper layer, whereas the lower
layer is in charge of notifying events and time grants for
the HLA service request previously submitted.

This component DDESOverHLAEngine consists of:

Layer2ToLayer1 Interface

Layer1ToLayer2 Interface

RTIAmbassador

FederateAmbassador

HLA Run Time Infrastructure

Engine DIS-
coordination

and DIS-
synchronization

logic RTI
Callback

Filter

DDESOverHLAEngine

DDESOverHLAEngineAmbassador
Callback
Queue

Barriers

Figure 2 Layer 1 breakthrough view

78 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

1. A synchronization and coordination logic that
operates between the local and the distributed
environment, with the mechanism to block local
execution until proper HLA notifications are
received through the ambassador.

2. An implementation of distributed DES (DDES)
services on top of HLA services.

For the sake of brevity no description is given of point
1. The interested reader is sent to [13] and [14] for a
detailed description of synchronization and coordination
aspects.

DDES service implementation
The DDES service implementation provides the

following services, which are in turn based on HLA
services:

- initDistributedSimulationInfrastructure()
- postProcessingDistributedSimulationInfrastructure()
- sendEvent(in event: Event)
- waitNextDistributedEvent()
- waitNextDistributedEventBeforeTime(in t: time)

The initDistributedSimulationInfrastructure() service
is implemented as follows:

initDistributedSimulationInfrastructure():
publish(HLAEventClass);
subscribe(HLAEventClass);
enableTimeConstrained();
enableTimeRegulated();

 registerSynchronizationPoint(readyToPopulate);
registerSynchronizationPoint(readyToRun);
registerSynchronizationPoint(readyToResign);

 synchronizationPointAchieved(readyToPopulate);
 wait(readyToPopulate);
 synchronizationPointAchieved(readyToRun);
 wait(readyToRun);

where publish and subscribe statements enable the
federate to send and receive HLA events, i.e., instances of
the HLAEvent class that defines the HLA structure for
distributed events in the DDES system, while the
enableTimeConstrained and enableTime-
Regulating statements enable the federate to operate in
a time conservative modality by, respectively,

constraining the federate time advancement to the whole
federation time as well as constraining the whole
federation time advancement to the federate time.

The enableTimeConstrained and enableTime-
Regulating operations are asynchronous. The above
pseudo-code includes synchronizations through Barriers
(see [14]) and the corresponding notification of
successful processing from RTI through the ambassador
component. The notifications are, respectively,
timeConstrainedEnabled and timeRegulating-
Enabled.

After that, the synchronization points
readyToPopulate, readyToRun and readyToResign,
which denote the states in the federate life cycle (see Fig.
3), are registered into the system by means of the
registerSynchronizationPoint asynchronous
statements. In analogy to the previous case, the above
pseudo-code includes synchronization through Barriers
and the relative notification of successful processing.

The synchronizationPointAchieved(ready-
ToPopulate) statement then informs the distributed
environment that the processing for the ReadyToPopulate
state has been completed and the federate is ready to pass
to the next state. At this point the RTI notifies the
achievement of global synchronization by use of the
synchronizationPointAchieved (readyToPopu-
late) statement that uses the ambassador component to
unlock the wait(readyToPopulate) statement upon
which the federate has been locked on.

Since there is no processing in the readyToPopulate
state, the service implementation proceeds by signalling
that the federate has reached the readyToRun
synchronization point and entered in a blocking waiting
for a global readyToRun signal, as for the
readyToPopulate synchronization point.

The postProcessingDistributedSimulation-
Infrastructure() service is implemented as follows:

postProcessingDistributedSimulation-
Infrastructure():

 synchronizationPointAchieved(readyToResign);
 wait(readyToResign);
 resignFederationExecution(
 ResignAction.DELETE_OBJECTS);

This service first signals the achievement of the
readyToResign synchronization point, through the
synchronizationPointAchieved(readyToResign)
statement, and then uses the wait(readyToResign)
statement to wait for a global achievement of the same
point.

Once the readyToResign signal is received, it proceeds
by quitting the federation through the
resignFederationExecution statement and
performing the resign action. This action is
conventionally chosen as no HLA objects are used in the
distributed simulation.

The sendEvent(in event: Event) service is implemented
as follows:

sendEvent(in event: Event):
 toSend = HLAEvent.buildFrom(event);

Figure 3 DDESOverHLAEngine lifecycle

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 79

© 2007 ACADEMY PUBLISHER

 toSend.send();

The implementation is based on the availability of the
the HLAEvent component that performs the conversion
between the internal event and the HLA data, and vice
versa. Basing on it, the service merely consists of two
HLAEvent service invocations: a first one to convert the
Event object to a HLAEvent object, and a second one to
send it out to the HLA environment.

The send statement is based on the homologous HLA
service sendInteraction(). The service serializes
local data to the HLA format according to the rules that
map each HLA attribute id to a field name coded into the
HLAEvent class. The serialization is carried out by
converting each of the local data from their local format
to an equivalent array-of-bytes format.

The waitNextDistributedEvent() service is
implemented as follows:

waitNextDistributedEvent():
 do

 tfuture = tcurrent + tadvancingStep;
 timeAdvanceRequest(tfuture);
 wait(timeGrant);

 while not (eventReceived);
 sendReceivedEventToUpperLayer();

This service consists of a do-while cycle that performs
time advance requests to a future time until an event is
received from the distributed system.

The future time is computed by adding the current time
to the system parameter advancement step.

The timeAdvanceRequest statement is used to
request a time advancement at the specified time and the
wait(timeGrant) statement blocks the current process
until a timeGrant RTI callback is received. While
waiting, the engine automatically processes incoming
callbacks. The expected types of callbacks are of the
following types:

- timeAdvanceGrant
- receivedEvent.

The timeAdvanceGrant callback is dispatched by
updating the internal clock time to the one the callback
carries on.

The receivedEvent callback is dispatched by updating
the flag eventReceived to true and by storing the just-
received event in a temporary buffer. According to the
HLA standard, with the current time settings, an
interaction received notification is always followed by a
time grant notification that grants the interaction time at
least.

The sendReceivedEventToUpperLayer statement
follows the do-while cycle and invokes the layer 2 service
schedule().

Finally, the waitNextDistributedEventBeforeTime(in t:
time) service is implemented as follows:

waitNextDistributedEventBeforeTime(in t: time):
 do

 t = tcurrent + tadvancingStep;
 timeAdvanceRequest(tfuture);
wait(timeGrant);

 while (not eventReceived) or (tcurrent<t));
 if(eventReceived)
 sendReceivedEventToUpperLayer();

This service behaves similarly to the
waitNextDistributedEvent() service. The only change is in
the exit condition of the do-while cycle: the sequence of
time advance requests terminates once either a new event
has been received or the given time has been reached.

DDESOverHLAEngineAmbassador
The component DDESOverHLAEngine implements the

HLA interface FederateAmbassador in order to
synchronize and manage the RTI callbacks to
DDESOverHLAEngine.

The main DDESOverHLAEngine functionalities are:

1. notification of successful HLA service
processing, for example:
enableTimeConstrained, enableTimeRegulating,
etc.

2. notification of synchronization point
achievement (synchronizationPointSucceed)

3. notification of time grant (timeAdvanceGrant)
4. HLA event delivery to DDESOverHLAEngine

for those events that have a local recipient.

All such functionalities are implemented by defining
the proper statements in the respective HLA
FederateAmbassador service. The implementation
makes also use of:

- parallel programming primitives, like Barrier
and CallbackQueue, to synchronize the
DDESOverHLAEngine – DDESOverHLA-
EngineAmbassador components,

- HLAEvent component to load a HLA format
event in a local HLAEvent class, in order to
determine whether the recipient is running in the
local system or not.

This component runs in a separate thread with respect
to the DDESOverHLAEngine components.

C. LAYER 2

This layer is the execution container for layer 3
components.

The interfaces to lower and upper layers are shown in
Fig. 4 and 5, respectively. The Layer3ToLayer2 interface
consists of two sub-interfaces: a first named
Layer3ToLayer2UserInterface, which is used by
language users, and a second named
Layer3ToLayer2DeveloperInterface used by language
developers.
The 1-to-2 interface consists of the scheduleEvent and
scheduleSimulationEndEvent services. The former inserts
the generic event into the list of events, while the latter
signals that a distributed simulation end event has been
received.

Figure 4 Layer 1 to layer 2 interface

80 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

Figure 5 Layer 3 to Layer 2 interface

The Layer3ToLayer2UserInterface is shown in Fig. 6.
It provides services to configure and manage the system.
It consists of a registerEntity service to configure which
entities will be running in the simulator and a startEngine
service to start the components.

The Layer3ToLayer2DeveloperInterface is shown in
Fig. 7. It provides services to define entities and consists
of the following services:

- a getClock service for utility purposes
- a waitNextEvent service that blocks the entity

until an event is received
- a hold service that blocks the entity until the

specified time is reached
- a holdUnlessIncomingEvent that blocks the

entity until either the specified time is reached or
an event is received

- three send-type services that allow an entity to
interact with other entities, either local or
remote.

Figure 6 Layer 3 to layer 2 user interface

Figure 7 Layer 3 to layer 2 developer interface

C.1 Implementation

This implementation includes the following
components:

- Engine: coordinates the execution of the
simulation components implemented at layer 3

- Entity: provides a layer 2 reference to layer 3
entities

- Event: provides a mechanism to implement
coordination among entities.

Engine
The simulation engine is responsible for the simulation

initialization and execution according to the PI paradigm.
The hierarchy that introduces simulation engines for local
execution and engines for distributed execution is already
discussed in [15].

Local Simulation Engine
This engine introduces the basic support for the PI

paradigm.
It provides the implementation of services send, wait

and hold through the scheduling of specific type of
events, below described; and a set of synchronization

primitives to manage the execution of the entities (i.e.,
the logical processes in the PI paradigm).

The engine’s core method is the start method, which is
implemented as follows:

start():
isRunning = true;
startAllEntities();

while (isRunning) {
 for each LocalEntity e {
 if (e.isRunnable()) {
 e.restart();
 setOneEntityInRunState();
 }
 }
 if (eventList.size() > 0) {
 getNextEvent().process();
 } else {
 isRunning = false;
 }
}

First, the flag that denotes the engine running is set.
Then all entities are started through the Thread’s method
start [14].The entities then are blocked while waiting
for the engine to allow them to run.

At this point the engine enters the processing cycle that
is composed of two blocks: the first in which all the
runnable entities are activated (they compete to be run by
the engine); and the second in which either the next event
is processed, if present, or the simulation end condition is
determined, if there are no future events.

Distributed simulation engine
The distributed engine extends the local engine by

redefining the start method and by implementing event
scheduling services for remote recipients.

The start method is redefined as follows:

start():
ddes.initDistributedSimulationInfrastructure()
isRunning = true;
startAllEntities();
 while (isRunning) {
 for each LocalEntity e {
 if (e.isRunnable()) {
 e.restart();
 setOneEntityInRunState();
 }
 }
 if (eventsList().size() > 0) {
 Time nextEventT=seeNextEvent().getTime();
 ddes.waitNextDistributedEventBeforeTime
 (nextEventTime);
 } else {
 ddes.waitNextDistributedEvent();
 }
 getNextEvent().process();
 }
ddes.postProcessDistributedSimulation-
 Infrastructure();

The method begins with the initialization of the lower
layer and then proceeds on as in the case of the local
engine. The difference between the two implementations
is in the second block of the while cycle. In the
distributed version, there are two differences, each for
each branch of the if block. In the then block, it is needed
to check, by performing a time advancement to the next
event’s time, that no next distributed events will be
received after processing the next event.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 81

© 2007 ACADEMY PUBLISHER

In the else block, the simulation condition can not be
inferred only from the empty status of the local event list,
since of the presence of other remote simulators.

The schedule service introduces a test to find out
whether the recipient is local or remote. If it is local the
LocalEngine service is invoked, otherwise the layer 1
send event is invoked on the given event.

This engine also implements the Layer1ToLayer2
services scheduleEvent and scheduleSimulationEndEvent.
The former is implemented by scheduling a local
PDistributedToLocalEvent (see further on) version for
the received Event. The latter is simply implemented by
scheduling an internal layer 2 SimulationEndEvent at the
specified time.

Entity
SimJEntity is the layer 2 component that

encapsulates the layer 3 logic process.
The entities are structured as shown in Fig. 8.

Figure 8 SimJ Entity Class Diagram

The interface SimJEntity is only in charge of
marking the interface for layer 2 entities. SimjEntity is
implemented by LocalEntity and RemoteEntity
components.

The LocalEntity component implements the
services provided to layer 3 developers. It plays an
intermediary role between layer 3 logical processes,
which invoke layer 3 to layer 2 services, and the engine,
which actually implements the send, wait, etc., services.

The life cycle of the LocalEntity component
evolves among four states, as shown in Fig. 9:

1. RUNNING: state in which the component
performs layer 3 component’s logic

2. HOLD: state in which the component sleeps for
a given time

3. WAITING: state in which the components
sleeps until an event is received

4. HOLD_UNLESS_INCOMING_EVENT: state
in which the component sleeps until either a
given time has passed or an event is received.

The Engine – LocalEntity synchronization is achieved
through two semaphores: OneEntityIn and RighToRun
defined in the Engine and LocalEntity components,
respectively.
OneEntityIn guarantees that only one entity at time,

and thus logical process, is running in the engine. The

execution of one entity at time is needed to ensure
simulation reproducibility.
RightToRun is the semaphore that the wait-like

service requests use to block the LocalEntity while
waiting for the proper event to be processed.
RemoteEntity is the layer 2 component used to refer

to an entity running on a remote system. It does not play
any active role.

Figure 9 LocalEntity State Diagram

Events
Events are organized according to the component

hierarchy shown in Fig. 10.

«interface»
Event

PEvent

PLocalEventPLocalToDistributedEvent PDistributedToLocalEvent

SimulationEndEvent

WakeUpEvent ConditionalWakeUpEvent

+process()

SimJEvent

«interface»
Comparable

Figure 10 SimJEvent hierarchy

The base component SimjEvent introduces the
abstract operation process(), which embodies the action
to be taken when the respective event class is processed.

The abstract component PEvent introduces the events
for the PI simulation paradigm. PLocalEvent defines
the base notification event for the PI paradigm in a local
environment. Special PI local events (e.g. WakeUpEvent
and ConditionalWakeUpEvent) are defined by
specializing the component PLocalEvent and by
overriding the process method, and similarly for remote
recipient and remote sender PI events.

The definition of the process() operation is defined in
the following subsections, one for each class of event.

PLocalEvent
This event is scheduled when a local entity sends a

message to another local entity.
The actions taken when this event is processed are:

send a signal to the recipient entity in order to make it

82 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

pass from the WAITING state to the RUNNING state,
and deliver it.

The action also checks whether the recipient is waiting
for an event. If not, the above action is ignored. No
deferred event list is currently available in this layer 2
implementation.

WakeUpEvent
This event is scheduled when a local entity invokes the

hold() operation. The action taken when this event is
processed is: send a signal to the associated entity in
order to make it pass from the HOLD state to the
RUNNING state.

ConditionalWakeUpEvent
This even is scheduled when the entity invokes the

holdUnlessIncomingEvent() operation.
The actions taken when this event is processed are:

check whether the entity has already received an event
and, if not, send a signal to the entity in order to make it
pass from the WAITING state to the RUNNING state and
deliver the event itself.

The check makes use of information related to the
request ordinal number and the current entity state in
order to determine whether an event has already been
delivered to the entity.

SimulationEndEvent
Since this event is shared by all discrete event

simulation paradigms, it is defined straight from the base
interface SimJEvent.

The processing of this event is to stop the engine by
use of the homonym engine service.

PLocalToDistributedEvent
This event represents local sender to remote recipient

events. When scheduled it is immediately processed in
order to optimize the execution of the distributed
simulation. Its processing involves the invocation of
lower level services to send it out to the distributed
environment, which is in charge of delivering it.

PDistributedToLocalEvent
This event is scheduled when a distributed event for a

local recipient is received by the lower layer.
The action taken when this event is processed is the

same as for PLocalEvent. What changes between the
two classes is that the remote sender can not be directly
referenced.

D. Layer 3

The purpose of this layer is to provide the domain
dependent components that implement the layer 4
language.

Layer 3 offers a domain-independent interface to layer
2 to make its components available for the layer 2
synchronization procedures (see Fig. 11).

The interface is composed of eight services, among
which the following four services are of primary interest:

- body: to encode the component behaviour, i.e.
the sequence of state updates and layer 2 service
calls

- printStatistics: to print the private statistics
collected throughout the simulation

- setEventReceived: to inform that an event has
been received

- setRecevedEvent: to pass the just-received event.

The system is provided with a facility component that
implements the basic operations to allow interaction with
layer 2. This component can be specialized to implement
custom logic or can be replaced in case of different layer
3 implementations.

According to the autonomous component paradigm,
the design of custom components includes decisions
related to:

- the number of input and output ports
- the type of events to be sent and received on

each port
- the component behaviour
- the statistics to be collected.

Figure. 11 Layer 2 to layer 3 interface

D.1 Implementation

An implementation is provided for the specific domain
of interest, i.e., EQN simulation.

The simulation components are designed to exploit
component reusability by using all state-of-art Java and
object-oriented techniques. In particular, the following
design guidelines have been adopted:

- decoupling functionalities by introducing
flexible parameter configuration for those
parameters that do not affect the component
behavior (e.g., decision policies like FIFO, etc.)

- using inheritance for those parameters that affect
component behavior (e.g., preemption, etc.).

The simulation component groups are: the typical EQN
component (users, waiting systems, service centers,
routers and special nodes), a set of support components
and a policy modeling framework.

The support components, for example User, Service
Request, Probability, etc.; do not play an active role in the
simulation but provide facilities for model configuration
and data exchange information.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 83

© 2007 ACADEMY PUBLISHER

 The policy modeling framework is a general
framework within which every policy has to be
implemented. The framework is based on a generic
hierarchy that includes parameters such as:

- the decision data type,
- the decision object type (aka explicit input),
- the implicit input type,
- the state type.

The hierarchy introduces a classification of policies,
for example: input dependent policy, state dependent
policy, implicit input dependent policy and so on.

The design of a new policy is thus carried out by
defining the parameter type of the policy and the policy
class it fits best.

The following subsections illustrate some of the jEQN
components in terms of: purpose, ports, behaviour and
parameters.

Policy Modelling Framework

jEQN policies are defined according to the meta-model
shown in Fig. 12.

The model considers four parameters for each of the
factors that affects the policy decision, namely:

• T, for the type of explicit input
• I, for the type of implicit input
• S, for the type of internal state
• D, for the type of decision expected.

The policies are defined, and their relationships
established, as a function of the parameter combination
(T, I, or S) they use. Thus, we have a policy that only
depends from the explicit input T, one that depends on
the implicit and explicit input (T and I), and so on.

A MaskBasePolicy is introduced as a full
parameterized policy in order to provide a common
reference for jEQN components.

The design of a new jEQN policy involves two basic
steps: identify the meta-class and define the parameter’s
type.

The policy can thus be implemented by properly
allocating the meta-class and then defining the decision
method.

Source

The purpose of this group of components is to generate
and insert new users into the system.

The port of Source components is an output port
through which users flow.

The behaviour is as follows:
1. check whether the termination condition has

been reached or not
2. if not, wait for the inter-arrival time
3. generate a new user and send it through the

output port
4. go back to step 1.

Figure 12 Policy hierarchy

84 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

The base component can be parameterized by
specifying proper implementation of:

- inter-arrival time sequence
- termination policy
- user generator.

Routers

The purpose of this group of components is to route
users towards specific entities or ports.

Currently, this group holds the component Router
only.

The ports of a Router component are:
- an input port to receive users
- a set of output ports to forward users

The behaviour is as follows:
1. wait for the next user to come in
2. decide on which port to forward it
3. send it out through that port
4. go back to step 1.

The Router component has a single parameter, i.e., the
routing policy

Waiting Systems

The purpose of this group of components is to store
users that can not be immediately processed by the
service center.

The simulation components in this group are two:
PreemptiveWaitingSystem and NonPreemptive-
WaitingSystem.

The behavior of the component
NonPreemptiveWaitingSystem is as follows:

1. wait for an event
2. if it is an incoming user, insert it in the waiting

system
3. if it is a request for the next user to be processed,

then:
a. if the waiting system is not empty,

extract the next user and send it,
b. else, wait for a new user to come in and

then send it to the service center.

The behavior of the component
PreemptiveWaitingSystem is as follows:

1. wait for an event
2. if it is an incoming user, assess whether it has

the right of preempt or not:
a. if so, send it to the service center,
b. else, insert it in the waiting system

3. if it is a next user request, then:
a. if the waiting system is not empty,

extract the next user,
b. else, wait for a new user to come in and

then send it to the service center.
The ports of the component NonPreemptive-

WaitingSystems are:
- an input port for the incoming user
- an output port for the user to be processed
- an input port for the request of a new user

The ports of the component PreemptiveWaiting-
System are:

- an input port for the incoming user
- an output port for the user to be processed
- an input port for the partially-processed users

The parameters of the component
NonPreemptiveWaitingSystem are:

- a UserQueue (data structure) where to store
users,

- a user service request generator, in order to
allow the implementation of service-based
queuing policies.

The parameters of the component
PreemptiveWaitingSystem are the same of the non
preemptive one with the addiction of:

- preemption policy.

The UserQueue is an abstract component that offers
user insertion and extraction methods. It is specialized
into FiniteUserQueue, InfiniteUserQueue and
MultiUserQueue as shown in Fig. 13.

Figure 13 UserQueue hierarchy

The component InfiniteUserQueue can be
configured by specifying:

- a concrete data structure to store user, e.g.,
ArrayList, etc.,

- an enqueueing policy.

The component FiniteUserQueue can be configured
by specifying:

- the queue capacity,
- a concrete UserQueue to bound.

The component MultiUserQueue can be configured
by specifying:

- a list of UserQueue,
- a user dispatching policy,
- a queue selection policy.

Service Centers

The purpose of this group of components is to simulate
the user processing. The components in this group are:
NonPreemptiveServiceCenter, Preemptive-
ServiceCenter and InfiniteServer.

The behavior of the component
NonPreemptiveServiceCenter is as follows:

1. request the next user to process
2. wait for the next user
3. process user request
4. go back to step 1.

The behavior of the component
PreemptiveServiceCenter is as follows:

1. request the next user to process,

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 85

© 2007 ACADEMY PUBLISHER

2. wait for the next user,
3. process user request,
4. if interrupted, then send partially-processed user

back to the waiting system, then go back step 3,
5. else, go back step 1,
6. go back to step 1.

The behavior of the component InfiniteServer is
as follows:

1. wait for the next user to process,
2. forward it to the next entity at a delayed time as

much as the service request time,
3. go back step 1.

The ports of the component NonPreemptive-
ServiceCenter are:

- an input port for the users to be processed,
- an output port for the processed users,
- an input port to request the users to be

processed.

The ports of the component Preemptive-
ServiceCenter are:

- an input port for the users to be processed,
- an output port for the processed users,
- an output port to re-enqueue interrupted users

The ports of the component InfiniteServer are:
- an input one for the users to be processed,
- an output one for the processed users.

The components of this group do not have parameters.

E. Layer 4

The jEQN language provides a restricted set of
architecture services for building and configuring EQN
simulation programs, and a set of domain-specific
primitives.

The services define the Layer4ToLayer3Interface, i.e.
Layer3ToLayer2UserInterface above introduced.

The primitives are identified by layer 3 EQN
components. Interested readers are sent to [1] for an
example use of jEQN.

IV. CONCLUSIONS
This paper has illustrated jEQN, a Java-based language

that significantly reduces the extra effort needed to
develop distributed simulators of extended queueing
networks (EQNs). jEQN enables simulator developers to
build distributed simulators as they were to be locally
executed.

The language is based on a four-layered architecture
whose services and data interfaces between the layers
have been accurately described in this paper.

The implementation details of each layer have been
presented in terms of service interface implementation,
main components and relationships with the upper and
lower layers, when appropriate.

The paper points out how the system takes into account
the interaction with the distributed environment both
within layer 1 (HLA) and within layer 2.

A very schematic presentation has also been given for
jEQN components at layer 3 and the language at layer 4.

ACKNOWLEDGMENT
The authors would like to express their sincere thanks

to Prof. G. Iazeolla for his insightful contribution.

REFERENCES
[1] A. D'Ambrogio, D. Gianni and G. Iazeolla, “jEQN: a Java-

based Language for the Distributed Simulation of
Queueing Networks”, LNCS vol. 4263/2006, Proceedings
of the 21st International Symposium on Computer and
Information Sciences (ISCIS'06), Istanbul, Turkey, Nov,
2006.

[2] R. Fujimoto, Parallel and Distributed Simulation Systems,
Wiley (2000).

[3] G. Bolch, S. Greiner, H. de Meer and K. Trivedi, Queueing
Networks and Markov Chains, Wiley (1998).

[4] M. Veran and D. Portier, “QNAP2: A Portable
Environment for Queueing Systems Modelling”, Raport de
Recherche 314, INRIA, Jun, 1984.

[5] C. Sauer, E. MacNair and S. Salza, A Language for
Extended Queuing Network Models, IBM Journal of
Research and Development, Vol. 24, n. 6, Nov, 1980.

[6] IEEE, Standard for Distributed Interactive Simulation -
Application protocols, Technical Report 1278.1A, IEEE
(1998).

[7] IEEE, Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) – framework and rules,
Technical Report 1516, IEEE (2000).

[8] G. Riley, M. Ammar, R. Fujimoto, A. Park, K. Perumalla
and D. Xu, “A Federated Approach to Distributed Network
Simulation”, ACM Transaction on Modeling and
Computer Simulation (TOMACS), Vol. 14, n. 2, Apr, 2004.

[9] E. Page, R. Moose and S. Griffin, “Web-based Simulation
in SimJava using Remote Method Invocation”,
Proceedings of the 1997 Winter Simulation Conference,
Atlanta, GA, Dec, 1997.

[10] P. Jacobs, N. Lang and A. Verbraeck, “D-SOL: A
Distributed Java Based Discrete Event Simulation
Architecture”, Proceedings of the 2002 Winter Simulation
Conference, San Diego, CA, Dec, 2002.

[11] K. Perumalla, “μsik: A Micro-kernel for
Parallel/Distributed Simulation Systems”, Proceedings of
the 19th Workshop on Parallel and Distributed Simulation
(PADS’05), Monterey, CA, Jun, 2005.

[12] R. Nance, “The time and state relationships in simulation
modeling”, Communications of the ACM, Vol. 24 n. 4,
Apr, 1981.

[13] F. Kuhl, R. Weatherly and J. Dahmann, Creating Computer
Simulation Systems: An Introduction to the High Level
Architecture, Prentice Hall (1999).

[14] D. Lea, Concurrent Programming in JavaTM: Design
Principles and Pattern, 2nd Edition, Prentice Hall (2000).

[15] A. D'Ambrogio, D. Gianni and G. Iazeolla, “SimJ: A
Framework to Develop Distributed Simulators”,
Proceedings of the 2006 Summer Computer Simulation
Conference, Calgary, Canada, Aug, 2006.

D. Gianni is a PhD candidate in Computer Engineering at the
University of Rome TorVergata, Italy. His research interests are
on distributed simulation, distributed systems, software
reusability and interoperability.

A. D’Ambrogio is associate professor of Software Engineering
at the University of Rome TorVergata, Italy. His research
interests are in the fields of software performance engineering
and distributed simulation.

86 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

