
Optimizing a Rete-based Inference Engine using
a Hybrid Heuristic and Pyramid based Indexes

on Ontological Data
Tuğba Özacar, Övünç Öztürk, Murat Osman Ünalır

Department of Computer Engineering,
Ege University

Bornova, 35100, Izmir, Turkey
Email: {tugba.ozacar,ovunc.ozturk,murat.osman.unalir}@ege.edu.tr

Abstract— This paper describes indexing of ontological data
to reduce the memory consumption of a Rete-based reasoner
whose time performance is increased using a hybrid opti-
mization heuristic. The aforementioned indexing mechanism
is known as the Pyramid Technique. Our work organizes
three dimensional ontological data in a way that works
efficiently with this indexing mechanism and it constructs
a subset of the querying scheme of the Pyramid Technique
that supports querying ontological data. This work also im-
plements an optimization on the Pyramid Technique. Finally,
it represents the progress in the memory consumption of the
reasoner.

Index Terms— scalability, reasoning, ontology, pyramid tech-
nique, optimization heuristic

I. INTRODUCTION

Handling large and combined ontologies is essential for
many semantic web tools including reasoners. Although
there are a number of rule based reasoners, that can
manage medium sized ontologies with fairly good per-
formances, it is hard to say the same for large ontologies
[1]. Since reasoning is a time and memory consuming
process, many of the reasoners can not manage with large
ontologies. Especially in the case of dynamically updated
data, we use algorithms that are immune to changes, such
as Rete.

Although Rete is an optimized forward chaining al-
gorithm, it lacks memory while dealing with large on-
tologies. This work introduces a solution for reducing
memory consumption of an optimized Rete reasoner by
adapting an indexing method to ontological data. This
method is known as the Pyramid Technique [2]. Next sec-
tion represents the Rete algorithm in detail. Section three
introduces the hybrid optimization that we implement on
the reasoner. Section four describes mapping Semantic
Web resources to numerical values in order to support the
input format required by the Pyramid Technique. Section
five represents adaptation of the Pyramid Technique for
indexing three dimensional ontological data. This section
also has two subsections. The first one represents a subset
of the querying scheme of the Pyramid Technique that
supports querying ontological data. The second one de-
scribes an optimization on the Pyramid Technique in order

to get better query response times. Section six represents
the effect of the hybrid optimization and compares the
memory consumptions and query performances of our
reasoner with and without implementation of the Pyramid
Technique. Finally section seven concludes this paper
with an outline of some potential future research.

II. RETE ALGORITHM

Rete [3] [4] is an optimized forward chaining algo-
rithm. An inefficient forward chaining algorithm applies
rules for finding new facts and whenever a new fact is
added to or removed from ontology, algorithm starts again
to produce facts that are mostly same as the facts produced
in the previous cycle. Rete is an optimized algorithm
that remembers the previously found results and does not
compute them again. Rete only tests the newly added or
deleted facts against rules and increases the performance
dramatically. Rete algorithm is based on the reasoning
process of Rete network. Following definitions give a
formal representation of the concepts in a Rete network.

Let O = (W ,R) be an ontology whereW = {w | w =
(s, p, o)∧s, p, o ∈ U} is the set of all facts in the ontology
andR is the set of all rules related with the ontology, then
every fact w ∈ W consists of a subject s, a predicate p
and an object o and U denotes the set of constants. Given
a r ∈ R, r = (lhs, rhs) where both lhs and rhs are lists
of atoms. An atom at = (a, i, v) consists of an attribute
a, an identifier i and a variable v where a,i,v ∈ T and
T = U ∪ V where V denotes the set of variables. A lhs
atom is called a condition. C is the set of all conditions
of all rules r ∈ R. Given a Rete network of the ontology
Ω(O) = (α, β), we denote by α the alpha network and
by β the beta network. α = {δ(c) | c ∈ C} and δ : C → D
is a function where D = {x | x ⊆ W}. δ(c) returns the
set {w | w = (s, p, o) ∧ c = (a, i, v) ∧ ((s = a) ∨ (a ∈
V)) ∧ ((p = i) ∨ (i ∈ V)) ∧ ((o = v) ∨ (v ∈ V))}
denoting all matching facts with condition c. β network
consists of beta memories and join nodes where beta
memories store partial instantiations of rules, which are
called tokens, and join nodes perform tests for consistency
of variable bindings between conditions of rules. Figure

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 41

© 2007 ACADEMY PUBLISHER

Figure 1. An example RETE Network.

1 explains the relationships among the formal definitions
with the help of an illustration existing in [4]. In this
figure rectangles show beta memory nodes, ovals show
alpha memories and circles show join nodes.

The set of all beta memories is PI = {φ(s) | s ∈ S}
where S = {x | x = (c1∧...∧cn)∧r = (lhs, rhs)∧lhs =
(c1, ..., ct) ∧ (1 ≤ n ≤ t) ∧ r ∈ R} and φ : S → I
is a function where I = {x | x is a conjunctive set of
w ∈ W}. φ(s) returns the conjunctive sets of facts that are
matching with s. The instantiations at the end of the Rete
network are handled as production nodes, abbreviated as
p-nodes. P = {φ(s) | s = (c1∧ ...∧ct)∧r = (lhs, rhs)∧
lhs = (c1, ..., ct) ∧ r ∈ R}. Whenever a propagation
reaches the end of the Rete network in other words a p-
node gets activated, it indicates that a rule’s conditions
are completely matched and the right handside atoms of
the rule produces a new fact that will be added to the
ontology. Adding a new fact to the ontology triggers Rete
network and new facts are inferred by these newly added
facts without recomputing the previously found facts.

Our Rete based reasoner uses the syntax and semantics
described in OWL Rules Language for rules, which is a
special case of axiom-based approach [5]. The reasoner is
optimized with a hybrid usage of some heuristics, which
are introduced in the following section.

III. HEURISTICS AND THEIR HYBRID USAGE

Although Rete is an optimized forward chaining algo-
rithm, we use a hybrid heuristic to gain extra performance.
This hybrid heuristic [6] optimizes Rete algorithm by
mixing and modifying some well known optimization
heuristics [7]. This section introduces these heuristics and
their hybrid usage.

Heuristic 1: Place Restrictive Conditions First

This optimization reduces the intermediate data by
joining restrictive conditions first. Rete tests a rule against
ontology triples finding all partial instantiations of the
rule. Given an ordered list L ((c1), (c1∧c2), ..., (c1∧ ...∧

cn−1), (c1 ∧ ...cn)) where left hand side of the rule r is
a set {c1, ..., cn}, all partial instantiations of r is a set K
= {k1, ..., kn} and kx is the set of matches for the xth

element of L. Let kn be the nth element of K and E(kn)
be the size of kn then;
E(k0)=1
E(kn) ⊆ E(kn−1) X δ(cn)

Thus ordering conditions with minimum alpha mem-
ory(restrictive) first will also decreases the size of the
following instantiations. The following three methods are
used in order to find the more restrictive conditions:

• Method 1: This method sorts the conditions ascend-
ing based on the number of edges matching with the
condition. It finds the condition with minimum alpha
memory m at time t, but it does not guarantee m will
be the conditon with minimum alpha memory after
a series of addition and deletion.

• Method 2: This heuristic assumes the conditions with
more variables have alpha memories big in size so it
sorts the conditions ascending based on the number
of variables.

• Method 3: The usage of complex predicates is at
minimum in semantic web ontologies [8]. Ontologies
mainly consist of facts describing subsumption and
assertion relations. Besides, the subsumption predi-
cates in the ontologies give rise to cyclic repetitive1

calculation and the number of facts with these pred-
icates gets even more at the end of the inference
[9]. This heuristic assumes that the number of alpha
memories for conditions with complex predicates
will be much smaller than the conditions with asser-
tion or subsumption predicates. Thus the conditions
with frequently used predicates are placed at the
end of the conditions of the rule. This heuristic also
improves the performance of additions and removals.
The conditions with a frequently used predicate have
more possibility to change and if one of these con-
ditions is at the end of n conditions then whenever
it matches with a newly created(or deleted) fact,
only one join operation would be invoked. If this
condition was the first then n − 1 join operations
would be invoked subsequently [7].

Heuristic 2: Order Conditions with Common Variables
Sequentially

This optimization reduces the intermediate data by order-
ing conditions having common variables sequentially. If
the nth condition of the rule has a common variable x
with n − 1th condition then E(kn) gets smaller because
of the restrictions have been made on x at n − 1 th

instantiation.

The Hybrid Heuristic

These two heuristics can be used in a hybrid way without
conflicting each other while preserving the claim that the

1In this work only the subsumption relationship is handled, in addition
to subsumption the other transitive properties giving rise to cyclic
repetitive calculation can be handled as frequently used predicates.

42 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

performance of the hybrid usage will generally be better
than the performance of using every heuristic separately.
The heuristic works in the following order, where r is
the rule to be optimized, C (r) is the ordered list of all
conditions of r, r′ is the result of the optimization and l
is the last element of C (r′) :

Step 1:

• C (r′) ← null
• Find the most restrictive condition2 x in C

(r), remove x from C (r) and append x to
C (r′)

Step 2:

• if C (r)
= ∅
– Find x ∈ C (r) and x is the most restric-

tive condition having maximum number
of common variables with l, remove x
from C (r) and append x to C (r ′)

– Step 2

• else

– return r′

Determination of the most restrictive condition differs for
the rules and the queries. Although Method 1 guarantees
to find the facts with minimum alpha memory in the ontol-
ogy while optimizing queries, it is useless for optimizing
rules. Because the Rete network has not been created, the
number of matching edges with a condition can not be ob-
tained during the optimization of the rules. To determine
the most restrictive condition in the rules two methods
are used according to the following priorities: Method
2, Method 3. This means that the first condition with a
complex predicate among the conditions having minimum
number of variables is the most restrictive one. Method 2
has a higher priority than Method 3 because there are a
great number of conditions in rules having three variables
and returning all of the edges in the ontology. These
conditions have the biggest alpha memory and Method
2 guarantees to place them at the end of the conditions.

In addition to using the hybrid heuristic, we also used
indexes on ontological data to improve the performance.
Ontological data consists of facts where each fact is a
triple containing a subject, a predicate and an object.
Queries on ontological data are based on these three parts
of the triple, in other words ontological data has three
dimensions. Our analysis proved that the indexes, that
we created on these dimensions, in order to reduce time
consumption, make up a big percentage of the memory
consumption. In order to reduce memory consumption
by sacrificing a reasonable amount of performance, we
decided to implement a new indexing mechanism that is
known as the Pyramid Technique.

IV. MAPPING SEMANTIC WEB RESOURCES TO

NUMERICAL VALUES

The Pyramid Technique indexes d-dimensional data
using d-dimensional points as input. Ontological data has

2If the result contains more than one condition pick the first one

TABLE I.
EXAMPLE URIS.

No URI
0 http://www.w3.org/wine#Wine
1 http://www.w3.org/wine#Winery
2 http://www.w3.org/wine#madeFromGrape
3 http://www.w3.org/food#PotableLiquid
4 http://www.w3.org/food#Grape
5 http://www.w3.org/owl#Class

three dimensions (these dimensions are subject, predicate
and object) where every dimension is a Semantic Web
resource represented by an URI3. Thus, it is required
to map the three dimensional ontological data to a
three dimensional point in order to support the input
format required by the Pyramid Technique. Originally
the Pyramid Technique has numerical dimension values
between 0-1 but we mapped every URI to a 16-digit
long number because of the inadequacy when dealing
with rational numbers. The cause of this inadequacy is
that in computational environment rational numbers are
represented using a floating point encoding with limited
precision smaller than 16.

We slightly modified the mapping scheme in [10], in
needs of semantic web resources. The mapping mecha-
nism will assign a unique 16-digit long number for every
semantic web resource residing in the ontology. The first
six digits of this number represent the namespace and
the remaining ten digits represent the reference name.
In other words, mapping scheme supports an ontology
having namespaces up to 106, and reference names up to
1010.

In this mapping algorithm, every namespace is num-
bered sequentially from 0 to 106 and every reference
name is numbered sequentially from 0 to 1010. Given
an URI to be mapped u, let n be the number assigned
to the namespace of u, r be the number assigned to
the reference name of u and x be the 16-digit long
number that is the result of the mapping procedure, then
x = (n× 1010) + r.

The following example maps the example URIs4 in
Table I to numerical resources, where xi is the number
assigned to the ith URI, ni is the number assigned to
the namespace of the URI and ri is the number assigned
to the reference name of the URI;

x0 = (0× 1010) + 0 x1 = (0× 1010) + 1
x2 = (0× 1010) + 2 x3 = (1× 1010) + 3
x4 = (1× 1010) + 4 x5 = (2× 1010) + 5

Mapping semantic web resources to long values comes
with an additional benefit beyond supporting the input
format required by the Pyramid Technique. During the
reasoning process we deal with long values instead of

3Anonymous nodes and literals in ontologies are handled by assigning
unique numbers to each of them programmatically.

4Fragment identifier (#) seperates the namespace and the reference
name of a URI.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 43

© 2007 ACADEMY PUBLISHER

Figure 2. Indexing a 3-dimensional ontological data using The Pyramid
Technique.

strings. Comparison and evaluation of long values are
not as time and memory consuming as strings. Since
there are huge numbers of comparison and evaluation
of semantic web resources, representing these resources
as long values makes a significant impact on time and
memory performance of the reasoner.

V. ADAPTING THE PYRAMID TECHNIQUE FOR

INDEXING ONTOLOGICAL DATA

The basic idea of the Pyramid Technique is to transform
the d-dimensional data points into one dimensional values
and then store and access the values using an efficient
index structure such as the B+ − tree. In our case, this
technique transforms a three dimensional point into a one
dimensional value. The Pyramid Technique partitions the
data space into 2d (in our case 6) pyramids having
the center point of the data space as their top. Then
each of six pyramids is divided into several partitions
each corresponding to one data page of the B + − tree.
The Pyramid Technique transforms a three dimensional
ontological data into a one dimensional value (i + hv)
where i is the index of the according pyramid p i and hv

is the height of v within pi (Figure 2).
Whenever we need to access ontological data, we first

compute the pyramid value and query the B +−tree using
this value as a key. The resulting data pages of the B+−
tree contain points which constitute the answer of the
query. Thus it is necessary to sequentially search these
data pages in order to find the exact points corresponding
to the query answer. The following formulas calculates the
pyramid value and the height of a 3-dimensional point v:

Pyramid value(i) of v:

i =

{
jmax if (vjmax < 0.5)
(jmax + 3) if (vjmax ≤ 0.5)

, where
jmax = (j|(∀k, 0 ≤ (j, k) < 3, j �= k : |0.5 − vj | ≥ |0.5 − vk|))

Height(hv) of v:

hv = |0.5 − viMOD3|

TABLE II.
ALL POSSIBLE FORMS OF RANGE QUERIES.

Ontological Query Transformed Range Query
∗, ∗, ∗ [0, 1010][0, 1010][0, 1010]
pvs, ∗, ∗ [pvs, pvs][0, 1010][0, 1010]
∗, pvp, ∗ [0, 1010][pvp, pvp][0, 1010]
∗, ∗, pvo [0, 1010][0, 1010][pvo, pvo]
pvs, pvp, ∗ [pvs, pvs][pvp, pvp][0,1010]
pvs, ∗, pvo [pvs, pvs][0, 1010][pvo, pvo]
∗, pvp, pvo [0, 1010][pvp, pvp][pvo, pvo]

The Pyramid Technique is an index structure for man-
aging high-dimensional data. Our motivation to choose
this index mechanism for indexing relatively low dimen-
sional data (three dimensions) is to support potential index
requirements. The Pyramid Technique allows to increment
the dimension size in a flexible way and without sacrific-
ing the performance.

A. Querying Indexed Ontological Data

Transformed ontological queries construct a sub-
set of the queries described in the Pyramid Tech-
nique. The queries of the Pyramid Technique con-
sist of point queries and range queries that are a
set of d-dimensional intervals represented by r where
r = [q0min , q0max], . . . , [qd−1min , qd−1max]. Ontolog-
ical queries consists of point queries and a sub-
set of the range queries which is also a set of d-
dimensional intervals represented by r ′ where r′ =
[q0min , q0max], . . . , [qd−1min , qd−1max] and ((qxmin =
qxmax) or (qxmin = 0 and qxmax = 1010)) and 0 ≤ x ≤
d− 1.

The two types of the ontological queries are defined
below and all possible cases of range queries on ontolog-
ical data with their transformations are presented in Table
II :

• Point Queries: The query answer is a simple yes/no.
This type of queries is used in searching or editing
ontological data. In this case, a point is given and
the answer specifies whether the given point is in
the data space. Every dimension of the point is
specified in the query. This problem is solved by
first computing the pyramid value of the point, then
querying the B+ − tree using this value as a key.

• Range Queries: This kind of queries returns a group
of ontological data. The answer set is a range in
the data space rather than a point. In this case, a
three dimensional interval is given and the result
is a data region that includes the answer set. This
data region is searched sequentially for obtaining the
exact answer set.

B. Optimizing the Pyramid Technique

In [11], it is proven that the Pyramid Technique may be
worse than sequential scan in some cases. Figure 3 shows
the difference between querying a data range near the
center of the pyramid and near the corner of the pyramid.

44 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

Figure 3. The difference between querying a data range near the center
of the pyramid and near the corner of the pyramid.

Figure 4. Data Distribution using the modified namespace numbering
scheme.

When queries return a data range near the corner, the
answer set make up a small percentage of this range. Con-
sequently data accessed is much more than the answer set
and sequential search for the answer set in this data makes
the Pyramid Technique quite inefficient. Thus it makes
sense to shift our data near the center point of the data
space. This shifting can be done modifying the mapping
scheme slightly. In the modified mapping algorithm,every
reference name is numbered sequentially from 0 to 10 10

and every namespace numbered proceeding through the
following way :

Let si be the number assigned to the ith namespace,
s0=5× 105 and sx+1 = δ(sx) then;

δ(sx) =
{

5× 105− | 5× 105 − si | si < 5× 105

5× 105+ | 5× 105 − si | +1 otherwise

Given a URI to be mapped u, let n be the number
assigned to the namespace of u, r be the number assigned
to the reference name of u and x be the 16-digit long
number that is the result of mapping procedure, then
x = (n× 1010) + r. Figure 4 depicts the effect of this
new scheme on data distribution.

VI. PERFORMANCE ANALYSIS

We use Lehigh University Benchmark [1] in order to
evaluate the performance of the inference engine and to
see the effects of the Pyramid Technique on performance
and scalability. Lehigh University Benchmark is devel-
oped to evaluate the querying performance of Semantic

Web repositories over a large data set. The data set is
generated according to one ontology, named univ-bench,
using the synthetic data generation tool provided with
the benchmark. The performance of the repositories is
evaluated through a set of metrics including data loading
time, repository size, query response time, and query com-
pleteness and soundness. Benchmark suite also includes
14 example queries that cover a range of types.

Our data set is generated using the synthetic data
generation tool. We use LUBM(1,0), LUBM(2,0) and
LUBM(3,0) data sets in our benchmark. The tests are
done on a desktop computer with the following speci-
fications:

• AMD Athlon 64 3500 2200 Ghz CPU; 2 GB of
RAM;320 GB of hard disk

• Windows XP Professional OS, .NET Framework 1.1
The evaluated inference engine, Aegont Inference En-

gine, is a part of the Aegean Ontology Environment
Project. The inference engine is developed to work in
correspondence with the Aegont Ontology Editor. Ontol-
ogy Editor is used to load and query ontologies, in other
words, ontology editor can be seen as a graphical user
interface to the ontology repository residing in memory.
Aegont inference engine is a forward chaining reasoner
like OWLJessKB [12], this means once it loads the
ontology, the ontology is complete and sound according
to the rules defined in the system and there is no need to
make inference while answering the queries.

In our system all queries are answered with full com-
pleteness and soundness, this results in a high F-measure
value, calculated according to the formula in [1]. The
system’s inference level is between OWL Lite and OWL
DL. This inference level is satisfied by approximately 30
rules, which are written according to the OWL entailment
tests [13]. In order to get more accurate query execution
times, they are measured ten times and then their average
is calculated.

Figure 5 represents the improvement in the query
execution times of the reasoner after implementing the
hybrid optimization heuristic.The optimizations suggested
and evaluated in this paper are mainly about decreasing
the size of partial instantiations, i.e. count of tokens,
created during the execution of the query. When we
have one condition, the answering process is trivial, all
constructed tokens are in the answer set. When we have
two conditions, we need to check the tokens in the second
condition with the tokens in the first condition in order
to see whether they are in the answers set or not. The
order of the conditions doesn’t make a difference in a
query with two conditions. So we need at least three
condition to see the effects of the optimization. Therefore,
we inspect queries with number 2, 4, 7, 8, 9 and 12, since
they have at least three or more conditions. During our
benchmark for all of these queries query execution time
is decreased. For queries 2, 7 and 95 the improvement
is more significant as can be seen from Figure 5. The

5The unoptimized query execution time is much bigger than one
second so it isn’t shown in the figure.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 45

© 2007 ACADEMY PUBLISHER

Figure 5. Performance improvements of the queries after implementing
the hybrid heuristic.

TABLE III.
CONDITIONS AND SIZE OF THEIR CORRESPONDING ALPHA

MEMORIES OF SECOND QUERY.

Number Condition Size
a ?x rdf:type ub:GraduateStudent 1874
b ?y rdf:type ub:University 979
c ?z rdf:type ub:Department 15
d ?x ub:memberOf ?z 8330
e ?z ub:subOrganizationOf ?y 463
f ?x ub:undergraduateDegreeFrom ?y 2414

reason for this improvement is the type of conditions
of the query. These queries have conditions with no
common variables and big alpha memories corresponding
to these conditions. When these conditions are computed
in a consecutive manner the possibilities to check in
successive nodes will increase dramatically. To give an
example lets inspect Query 2. Conditions of Query 2 can
be seen in Table III.

However, when we optimize the query we will change
the order of the conditions. The optimized query order
will be c, e, b, f, a, d. While optimizing the query we will
start with the most restrictive condition. Most restrictive
condition is the condition with the smallest alpha memory,
namely c. Then we will find the conditions with common
variables with c. These conditions are d and e. Condition
e is more restrictive than d, therefore e will be the second
condition. In third step, we will find the conditions with
common variables with e which are b, d and f . Condition
b is more restrictive than d and f therefore b will be
the third condition. Condition f is the only condition
remaining having common variables with b. f is the forth
condition. a and d are remaining conditions and both of
them have common variables with b, but a has a smaller
alpha memory so it is the fifth condition. Finally, d is the
last condition because there aren’t any other remaining
conditions except d. The number of tokens created during
the execution of the query both in optimized and in
unoptimized query pattern order is shown in Table IV.

When we compare the size of the partial instantiation

TABLE IV.
BETA MEMORIES AND COUNT OF CONSTRUCTED TOKENS.

Conditions # tokens Conditions # tokens
a 1874 c 15
a∧b 1834646 c∧e 15
a∧b∧c 27519690 c∧e∧b 15
a∧b∧c∧d 0 c∧e∧b∧f 0
a∧b∧c∧d∧e 0 c∧e∧b∧f∧a 0
a∧b∧c∧d∧e∧f 0 c∧e∧b∧f∧a∧d 0

Figure 6. Memory consumption of the reasoner with the Pyramid
Technique.

of first and second execution of the same query on
Table IV, we can see the reason of the difference in the
execution time. The main time consuming task in adding
a new query to the Rete network is constructing tokens
in corresponding nodes. When the possibilities grow we
will need to construct more tokens. When we execute the
Query 2 in the given order we get 27519690 different
possibilities to test with the alpha memory elements of
fourth condition. But if we optimize it we will have only
15 different possibilities to test with the alpha memory
elements of fourth condition. The cause of the difference
in the execution time is the difference in the number of
created tokens.

Another reason for the acceleration is the indexing
mechanisms we have used in Rete network. By using
these indexing mechanisms we eliminate the need for
comparison tests between tokens of the previous nodes
and alpha memory elements of the current node. But
these indexes increased the memory consumption of the
reasoner. So we decided to use a new indexing mechanism
that is based on the Pyramid Technique. As a result,
the memory consumption of the reasoner is reduced by
seventy percent by implementing the Pyramid Technique
(Figure 6). The first row in the figure shows the mem-
ory consumption of the reasoner without the Pyramid
Technique. The second, third and fourth rows show the
memory consumption of the reasoner with the Pyramid
Technique. By using the Pyramid technique the reasoner
can open a three times larger data set,LUBM(3,0), with
the same amount of memory. And finally, Table V rep-
resents the query execution times of the reasoner after

46 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

TABLE V.
QUERY EXECUTION TIMES WITH THE PYRAMID TECHNIQUE.

Query Metrics LUBM(1,0) LUBM(2,0) LUBM(3,0)
1 Time(ms) 762.0 540.0 440.2

Answers 4 4 4
Completeness 100 100 100

2 Time(ms) 705.8 434.0 433.8
Answers 0 0 2
Completeness 100 100 100

3 Time(ms) 868.6 340.2 421.6
Answers 6 6 6
Completeness 100 100 100

4 Time(ms) 40.0 646.4 105.6
Answers 34 34 34
Completeness 100 100 100

5 Time(ms) 121.8 502.6 665.2
Answers 719 719 719
Completeness 100 100 100

6 Time(ms) 315.0 499.6 596.6
Answers 7790 17878 26258
Completeness 100 100 100

7 Time(ms) 874.8 577.6 577.6
Answers 67 67 67
Completeness 100 100 100

8 Time(ms) 90.2 718.0 674.4
Answers 7790 7790 7790
Completeness 100 100 100

9 Time(ms) 705.8 693.4 634.0
Answers 208 449 692
Completeness 100 100 100

10 Time(ms) 462.0 634.0 374.6
Answers 4 4 4
Completeness 100 100 100

11 Time(ms) 899.6 765.0 655.4
Answers 224 224 224
Completeness 100 100 100

12 Time(ms) 727.6 868.4 340.0
Answers 15 15 15
Completeness 100 100 100

13 Time(ms) 687.2 530.8 777.6
Answers 1 4 8
Completeness 100 100 100

14 Time(ms) 537.0 280.6 633.6
Answers 5916 13559 19868
Completeness 100 100 100

implementing the Pyramid Technique.

VII. CONCLUSION AND FUTURE WORK

In order to reduce the time and memory consumptions
of the reasoner, we implement a hybrid optimization
technique that reorders rule patterns and an indexing
mechanism that is based on the Pyramid Technique. The
hybrid optimization increases the query performances as
expected. The Pyramid Technique reduces the memory
consumption of the reasoner by 70% and makes the
reasoner to be able to open larger data sets. The system is
still open to develop. The performance can be increased
by further optimizations. Since the Pyramid Technique
is not affected by the index count, more indexes can be
created on ontological data in order to increase query
performances. Although there are reasoners that can open
larger data sets with better performances, our reasoner
differs from them in that it is immune to changes in the
data set.

REFERENCES

[1] Y. Guo, Z. Pan, and J. Heflin, “An evaluation of knowledge
base systems for large owl datasets.” in International
Semantic Web Conference, 2004, pp. 274–288.

[2] S. Berchtold, C. Böhm, and H.-P. Kriegel, “The pyramid-
technique: Towards breaking the curse of dimensionality,”
in SIGMOD 1998, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA, L. M. Haas and A. Tiwary, Eds.
ACM Press, 1998, pp. 142–153.

[3] C. Forgy, “Rete: A fast algorithm for the many pat-
terns/many objects match problem.” Artif. Intell., vol. 19,
no. 1, pp. 17–37, 1982.

[4] R. B. Doorenbos, “Production matching for large learning
systems,” Pittsburgh, PA, USA, Tech. Rep., 2001.

[5] E. Franconi and S. Tessaris, “Rules and queries with
ontologies: A unified logical framework.” in PPSWR, 2004,
pp. 50–60.

[6] M. Ünalir, T. Özacar, and Ö. Öztürk, “Reordering query
and rule patterns for query answering in a rete-based
inference engine.” in WISE Workshops, 2005, pp. 255–265.

[7] T. Ishida, “Optimizing rules in production system
programs,” in National Conference on Artificial
Intelligence, 1988, pp. 699–704. [Online]. Available:
citeseer.ist.psu.edu/ishida88optimizing.html

[8] S. Staab, “Ontologies’ kisses in standardization,” IEEE
Intelligent Systems, vol. 17, no. 2, pp. 70–79, 2002.

[9] L. Zhang, Y. Yu, J. Lu, C. Lin, K. Tu, M. Guo, Z. Zhang,
G. Xie, Z. Su, and Y. Pan, “Orient: Integrate ontology
engineering into industry tooling environment.” in Inter-
national Semantic Web Conference, 2004, pp. 823–838.

[10] H. V. Jagadish, N. Koudas, and D. Srivastava, “On effective
multi-dimensional indexing for strings,” in SIGMOD ’00:
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data. New York, NY, USA:
ACM Press, 2000, pp. 403–414.

[11] R. Zhang, B. C. Ooi, and K.-L. Tan, “Making the pyramid
technique robust to query types and workloads.” in ICDE,
2004, pp. 313–324.

[12] J. Kopena and W. C. Regli, “Damljesskb: A tool for rea-
soning with the semantic web.” in International Semantic
Web Conference, 2003, pp. 628–643.

[13] J. J. Carroll and J. D. Roo, “Owl web ontology language
test cases,” 2004.

Tuğba Özacar was born in Izmir, Turkey, on February
03, 1980. She received the M.Sc. degree in Computer
Engineering from Ege University in 2004. She is currently
working toward the Ph.D. degree in computer engineering
at the same institution. Her main research interests include
(temporal) reasoning, scalability of reasoning, temporal and
knowledge engineering.

Övünç Öztürk was born in Izmir, Turkey, on November
13, 1978. He received the M.Sc. degree in Computer
Engineering from Ege University in 2004. He is currently
working toward the Ph.D. degree in computer and system
engineering at the same institution. His main research interests
include reasoning, scalability of reasoning and integration of
semantic web inference engines and databases.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 47

© 2007 ACADEMY PUBLISHER

Murat Osman Ünalır was born in Izmir, Turkey, on
April 15, 1971. He received the M.Sc. and the Ph.D. degree
in Computer Engineering from Ege University in 1995 and
2001 respectively. He is currently giving lectures on metadata
management and the semantic Web. His main research interests
include databases, semantic web and knowledge management.

48 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

