
Secure End-to-End Transport Over SCTP
Carsten Hohendorf, Erwin P. Rathgeb

University of Duisburg-Essen
Institute for Experimental Mathematics

Computer Networking Technology Group
45326 Essen, Germany

Phone: +49-201-183-7637
Email: {hohend, erwin.rathgeb}@iem.uni-due.de

Esbold Unurkhaan
Mongolian Science and Technological University

Computer Science and Management School
P.Box 313/49 Ulaanbaatar, Mongolia

Email:esbold@csms.edu.mn
Michael Tüxen

Münster University of Applied Sciences
Stegerwaldstr. 39

48565 Steinfurt, Germany
Phone: +49-2551-962-550

Email:tuexen@fh-muenster.de

Abstract— The Stream Control Transmission Protocol is a
new transport protocol initially developed to transport sig-
naling messages over IP networks. The new features of SCTP
make it also a suitable candidate for applications which
nowadays use the standard transport protocols TCP and
UDP. Many of these applications have strict requirements
with respect to end-to-end security. Providing end-to-end
security by using IPsec or the Transport Layer Security
(TLS) protocol in combination with SCTP is subject to
functional and performance related limitations. These can
be avoided by integrating security functions directly into
SCTP (S-SCTP). Although S-SCTP in principle solves all
limitations, some issues remain hindering broad deployment
of this solution. Therefore, we propose an alternative solution
which preserves the advantages of S-SCTP while avoiding
major modifications to existing standards and operating
systems.

Index Terms— End-to-End Security, SCTP, TLS, IPSec,
DTLS.

I. INTRODUCTION

The Stream Control Transmission Protocol (SCTP) is
a new transport protocol, which has been approved by
the IETF as a proposed Standard [5] in 2000. Originally
SCTP was developed to transport telephone signaling
messages over an IP network. The goal was to provide
a similar reliability and quality of service like an SS7
signaling network. The original framework for the SCTP
definition is described in [4].

Although SCTP has been developed to transport sig-
naling messages, it is a general purpose transport proto-
col with distinctive features which make it suitable for
many applications currently using the classical transport

This is a revised and extended version of a paper presented at
the International Conference on Emerging Trends in Information and
Communication Security (ETRICS), Freiburg, Germany, June 2006.

protocols TCP and UDP. The first protocol other than
signaling transport (SIGTRAN) - to standardize the use
of SCTP was Reliable Server Pooling (RSerPool, [7]).
The use of SCTP is also defined for the Authentication,
Authorization and Accounting (AAA) protocol [6] and the
IP Flow Information Export (IPFIX) protocol [30]. Due
to the fact that SCTP is already available in most of the
major operating systems (Linux, FreeBSD, Solaris, Cisco
IOS), it can be anticipated that other applications for
SCTP will follow soon. Most of these applications have
strict security requirements which are, e.g. for SIGTRAN
[12] and RSerPool [24], already specified in standards
documents. Therefore, it is crucial for the success of
SCTP to provide an efficient and flexible security solution
which supports all features of SCTP.

This paper shortly describes the already standardized
SCTP security solutions, namely SCTP over IPsec [10]
and TLS over SCTP [9] and identifies their limitations. It
will be shown that these functional and performance re-
lated limitations can be overcome by integrating security
functions directly into SCTP as proposed by us in earlier
publications under the name S-SCTP (see [26], [31] and
[32]). One problem remaining with S-SCTP is that a
full scale introduction would require these extensions of
SCTP to be included in future operating system kernels.
Therefore, and based on the discussions in the IETF [26],
we propose an alternative security solution for SCTP
which is based on the use of the newly defined Datagram
TLS protocol (see [37] and [18]) in combination with the
chunk authentication extension of SCTP [23] currently
under standardization in the IETF. We will describe the
concept of this ”SCTP aware DTLS” solution in detail
to substantiate its feasibility. In addition, we will discuss
some aspects of an implementation based on OpenSSL.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 31

© 2007 ACADEMY PUBLISHER

II. INTRODUCTION TO SCTP

In this section we shortly review some new features of
SCTP which are relevant to end-to-end security. A more
detailed SCTP description can be found e.g. in [8], [33]
and [35].

An SCTP connection called ”association” is established
by using a 4-way handshake protected by a cookie mech-
anism which makes it less susceptible to blind denial-of-
service attacks. SCTP packets consist of a common header
followed by a sequence of data units called ”chunks”. The
association is managed by using specific control chunks
while user messages are transported in data chunks. Mul-
tiple chunks can be bundled into one SCTP packet, so that
the resulting SCTP packet best uses the Path Maximum
Transmission Unit (PMTU). SCTP is message oriented
and provides a more flexible data delivery than current
transport protocols. An important feature to achieve this
flexible data delivery is the streaming function of SCTP.
With this function several message streams can be mul-
tiplexed into one association. Only the messages within
one stream are delivered in sequence, so a message lost
in one stream will not affect the delivery of messages in
another stream. This eliminates the head-of-line blocking
known from TCP. It is optionally also possible to deliver
data out of order within a stream.

Another distinctive core feature of SCTP is multi-
homing, i.e. the ability for a single SCTP endpoint to
support multiple IP addresses. So an SCTP endpoint can
maintain several network paths to its peer. Only one path,
the primary path, is used for normal data transmission.
The other paths are only used in the case of transmission
failures. The benefit of multi-homing is a better protection
of the association against network failures.

In addition to these standard features of SCTP, two
extensions have been proposed which also have to be dealt
with when providing end-to-end security for SCTP. These
extensions are the Partial Reliability SCTP [11] and the
ADD-IP extension [20].

The Partial Reliability extension (PR-SCTP) describes
a mechanism to stop an SCTP endpoint from retrans-
mitting specific data chunks which have not been ac-
knowledged. A control chunk, called FORWARD-TSN
(Forward Transport Sequence Number), is sent to the
receiving side indicating that all chunks with lower se-
quence numbers will not be retransmitted, and that the
receiver does not have to wait for them any more. The
decision when to stop retransmitting the data is taken
locally at the sender and is application specific. Therefore,
only the signaling procedure is fully specified in [11] but
not all possible methods (policies) describing when to
abandon a data chunk. One obvious policy is based on
a limited lifetime of a user message. This means that a
data chunk is not (re)transmitted once its time-to-live has
expired. Another policy can be to limit the number of
retransmissions. These policies are particularly useful to
transport real time traffic, where out of date data is useless
anyway. A third possible policy is based on send buffer
limits and different priorities for the user messages. If

the send buffer is full and a new high priority message
arrives, a message with lower priority gets deleted. This
policy is e.g. used for IPFIX as described in [30].

The ADD-IP extension allows to dynamically recon-
figure IP addresses of an existing SCTP association.
Therefore, it becomes possible that the available paths be-
tween the endpoints change during an association lifetime.
ADD-IP also allows to change the primary path of an
active association. This extension was proposed to support
long-lived associations, where it is sometimes necessary
to change some network connections. In addition to that,
also a new application for SCTP was presented on the ba-
sis of this extension, called Mobile SCTP [21]. Although
the development of the ADD-IP extension already started
at the end of 2000, it has not yet become an RFC. The
main reason for this is that a security mechanism was
missing allowing to solve the additional security issues
introduced by the ADD-IP option. Such a mechanism
providing authentication for specific SCTP control chunks
has now been developed and is described in [23]. Its usage
for the ADD-IP extension is mandatory.

The standard API for using transport protocols is the
socket API, described for example in [34]. Since SCTP
provides more features than UDP or TCP it was necessary
to extend the socket API to support all features of SCTP.
These extensions are described in [28] and the sections
covering SCTP in [34]. With this extended socket API it is
possible to write applications using SCTP which compile
and run on a variety of Unix operating systems.

The SCTP implementations which are included in
Solaris 10, Linux with 2.6 kernels and in the FreeBSD 7
source tree all support the basic protocol defined in [5]
and [19] with the extensions PR-SCTP defined in [11] and
ADD-IP defined in [20]. They all provide the socket API
and the source code is available under different licenses.

III. EXISTING SECURITY SOLUTIONS

In this section we will present the three security so-
lutions already proposed, namely SCTP over IPsec, TLS
over SCTP and S-SCTP. All of these solutions can use the
same cipher suites and Hash MAC (HMAC) algorithms,
so there is no difference in the provided security, as far
as the algorithms are concerned. All of them provide
similar mechanisms for key exchange and security session
management. Therefore, the major difference with respect
to security is that TLS over SCTP – residing on top
of SCTP – cannot protect SCTP control information.
However, there exist several functional and performance
related differences and issues which will be discussed in
the remainder of this section.

A. SCTP over IPsec

SCTP is typically used in IP based networks. If secure
transfer is required, SCTP can utilize the IP security
protocol suite [13], [14], [15] for integrity, authentication
and confidentiality. To establish IPsec Security Associ-
ations (SAs), a key negotiation such as IKE [16] may
be used. The management and handling of IPsec security

32 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

associations is complex even when TCP is used. Since
SCTP has some features, like multi-homing, which are not
well supported by IPsec, the management and handling of
the SAs is even more complicated. The use of SCTP with
IPsec is defined in [10]. This RFC identifies the problems
of SCTP over IPsec, i.e. the management of IPsec SAs
in the case of multi-homing and the support of the ADD-
IP extension of SCTP. The proposed solution to these
problems is to use a list of IP addresses in the security
policy database instead of single IP addresses. However,
there are no implementations available to date which fully
support this RFC.

If the Authentication Header (AH) or the Encapsula-
tion Security Payload (ESP) is used to provide security
services for SCTP frames, SCTP is treated as just another
transport layer protocol on top of IP (such as TCP,
UDP, etc.). Without the proposed modifications to IPsec
introduced in [10], this solution requires the configuration
of multiple IPsec Security Associations (SA) to support a
multi-homed SCTP association. In the OSI model IPsec
is one layer beneath SCTP, so it is not capable of differ-
entiating between application data that must be secured
and data that does not need to be secured. As a result,
IPsec secures all data traffic resulting in an increased
computational effort. Another disadvantage of this is that
each SCTP packet is secured separately by IPsec. So in
the case of long messages which must be fragmented by
SCTP the overhead increases since two or more SCTP
packets per message have to be secured.

B. TLS over SCTP

RFC3436 [9] describes the usage of the Transport
Layer Security (TLS, [2]) protocol over SCTP. TLS is
designed to operate on top of a byte-stream oriented
transport protocol providing a reliable, in-sequence de-
livery. Thus, TLS is currently mainly used on top of the
Transmission Control Protocol [1].

TLS over SCTP uses one TLS session per stream.
This potentially leads to performance problems when the
association needs many secured streams. Every message
is secured by TLS before it is sent over SCTP. If the
application sends many small messages, each message is
secured separately. This results in an increased overhead
compared to a solution securing a complete SCTP packet
including several bundled messages. Since each TLS
record depends on the state of the previous record, the
unordered delivery service of SCTP is not supported. For
the same reason, the PR-SCTP extension cannot be used.
In the OSI model, TLS is located above the transport
layer, so it cannot protect SCTP control chunks or the
SCTP common header as they are added after TLS passes
the data to SCTP.

An advantage of TLS over SCTP compared to SCTP
over IPsec is that this solution can mix secured and
unsecured traffic within one SCTP association efficiently.
The TLS user can also take full advantage of the multi-
homing feature and the proposed Add-IP extension of
SCTP without modification of TLS.

C. Secure SCTP (S-SCTP)

The usage of SCTP together with standard security
protocols (TLS or IPsec) leads to significant limitations
and potential inefficiencies as discussed above. Neither
TLS nor IPsec support all SCTP features and due to
multi-streaming at the upper service access point and
multi-homing at the lower service access point, non-
integrated solutions are always potentially inefficient in
some scenarios. Therefore, the security extension S-SCTP
was proposed by us in some earlier work [26], [31], [32].
S-SCTP integrates crypto functions into SCTP itself in an
efficient and user-friendly way. This extension is designed
to avoid the drawbacks of the non-integrated solutions,
whilst still providing full compatibility with the original
SCTP protocol when no protection is being used.

The secure session of S-SCTP is initialized after the
normal SCTP association is established. If one endpoint
does not support the S-SCTP extension or the setup of
the secure session fails, e.g. due to wrong certificates, the
application can decide if it wants to use the unsecured
association or if it shuts down the association.

The basic concept of the S-SCTP solution is that an
association has only one Common secure session for
all data streams in a multi-streaming case and for all
addresses in a multi-homing scenario. In order to achieve
this, the security mechanism is integrated between the
upper functional block of SCTP which performs grouping
of SCTP chunks to SCTP packets (bundling) and the
lower functional block which performs the selection of
network paths by choosing a destination address to send
the SCTP packet as shown in Fig. 1.

Figure 1. S-SCTP concept

S-SCTP provides the same security features as the two
standardized security solutions, namely authentication,
integrity and confidentiality. For that, S-SCTP uses the
same standard cipher and HMAC algorithms as IPsec
and TLS. To keep the protocol overhead of S-SCTP as
small as possible it supports a flexible mix of secured and
unsecured data, not only on a per-stream basis as TLS
over SCTP, but even on a per chunk basis. To further
reduce the overhead, chunks marked for encryption are
grouped together and encrypted into one cipher text block.
The HMAC is calculated per packet and not per chunk for
the same reason. S-SCTP also offers a set of predefined

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 33

© 2007 ACADEMY PUBLISHER

security levels, which are easy to select and, furthermore,
can be changed during a secure session lifetime.

To avoid the complexity of secure session management
known from IPsec S-SCTP provides the user with a
simple API for configuration:

• simple initialisation, re-keying and termination of
secure sessions,

• flexible choice of standard cipher suites,
• easy integration of newly defined cipher suites if

required and
• simple selection and modification of security levels.
S-SCTP’s only performance disadvantage compared to

TLS over SCTP occurs when long messages have to be
fragmented at the SCTP layer. In that case S-SCTP has
to secure two or more packets separately, so the overhead
is bigger compared to TLS where the message is first
secured and then fragmented. With respect to all other
criteria S-SCTP performs as good as or better than any
of the other two security solutions.

The following table provides a summary of the quali-
tative comparison of the security solutions with respect to
usability, overhead, management cost and performance. In
the table ”+” indicates that the feature is well supported
by the solution, ”-” denotes disadvantages of the solution
with respect to the feature and ”no” indicates that this
feature is not supported at all. The ”(-)” for the multi-
homing support of IPsec indicates that this problem is
theoretically solved, however there are no implementa-
tions of this solution to date.

TABLE I.
COMPARISON OF SECURITY SOLUTIONS

Criteria TLS IPsec S-SCTP
Scalability for multiple streams - + +
Support for SCTP multihoming + (-) +
Overhead for small messages - + +
Overhead for long messages + - -
Protection of unordered delivery
service

no + +

Protection of SCTP control chunks no + +
Flexible multiplexing of secure and
insecure streams

+ no +

Management of security sessions
(handling, automation)

+ - +

Partial Reliable Transport (SCTP
extension)

no + +

Dynamic Address Reconfiguration
(SCTP extension)

+ - +

IV. QUANTITATIVE COMPARISON OF THE EXISTING
SECURITY SOLUTIONS

In order to quantify the effect of the issues identified in
Sect. III, a testbed has been set up and configured with the
three security solutions. All three security solutions used
the same crypto algorithm, namely the 3DES-SHA cipher.
The testbed consisted of 2 Linux PCs (multi-homed) and
a FreeBSD PC used as a router. The endpoint PCs had
an Athlon AMD 2000 MHz processor and 512 MB of
RAM, the router had a 64-bit AMD 3,0 GHz processor

and 1 GB of RAM. All PCs were equipped with 1 Gbps
Ethernet cards.

The tests were performed using a traffic generator
sending random data to a traffic analyzer which calculated
the throughput in 1 second intervals. Each point in the
diagrams represents the average of a 5 minute measure-
ment period which was repeated five times. The different
link speeds used in the measurements were simulated by
Dummynet [36] which was installed on the router. The

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

user data length [byte]

th
ro

ug
hp

ut
 [M

bi
t/s

]
0 200 400 600 800 1000

80

100

120

140

160

180

200

user data length [byte]

th
ro

ug
hp

ut
 [k

bi
t/s

]

SCTP
SCTP over IPsec
S!SCTP
TLS over SCTP

SCTP
SCTP over IPsec
S!SCTP
TLS over SCTP

Figure 2. Throughput of security solutions over different links

measurements in Fig. 2 represent scenarios where the link
is the bottleneck for the transmission which is typically
the case for WAN connections. The left figure shows the
throughput of the three security solutions over a T1-link
with 1,544 Mbps and the right one over a DSL-uplink
with 192 kbps (note the different scale on the y-axis).
In such a scenario the throughput penalty for the three
security solutions depends only on the overhead added
to secure the data. As TLS secures each user message
separately, the overhead added for small messages is
higher than for the other two security solutions where
small messages are first bundled and then secured as a
whole. This is the reason why the throughput of the TLS
solution is significantly lower in this case compared to
the other solutions allowing bundling. Considering the
typically small size of signaling messages, this result is
of particular interest if a security solution for signaling
transport – the genuine SCTP application – has to be
selected.

Figure 3 shows a scenario where the link is not the
bottleneck of the transmission, so the throughput of the
security solutions depends on the protocol, its implemen-
tation and the performance of the CPU. Such a scenario
can be found in LANs, especially in todays 1 Gbps
Ethernets. In this scenario where the host performance is
the bottleneck, the cryptographic functions, in particular
encryption, introduce a significant throughput penalty.
This can be clearly seen by comparing the solutions
to plain standard SCTP. Therefore, the ability to mix
secured and unsecured data in one association is highly
beneficial – favouring TLS over SCTP and S-SCTP. The
measurement results show that the TLS solution achieves
the highest throughput of all three security solutions
for most packet sizes. The throughput of IPsec and S-
SCTP is lower because the encryption of the data and

34 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

user data length [byte]

th
ro

ug
hp

ut
 [M

bi
t/s

]

SCTP
SCTP over IPsec
S!SCTP
TLS over SCTP

Figure 3. Throughput of security solutions in a 1Gbps Ethernet

the transmission occur in the same process. If the send
queue of this process is full, the send call blocks and
waits until new packets can be transmitted. During this
time the process runs idle. In the case when bundling
cannot be used any more (around 700 bytes of user data
length) or when long messages have to be fragmented
(1400 bytes of user data length) the throughput drops
because there is more overhead contained in packets and
the process cannot send more packets due to the blocking
send call. When using TLS, encryption and transmission
are handled by different processes. In this case, even if
the send call blocks and waits until new packets can
be transmitted, TLS can still encrypt data for future
transmission.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

700

800

numer of streams [1]

du
ra

tio
n

[s
ec

]

1Gbps Ethernet
T1!Link
DSL!uplink

Figure 4. Duration to complete TLS handshakes

The last figure (Fig. 4) shows the time needed to
establish TLS sessions over the given number of streams.
As mentioned before, TLS has to establish a new secure
session for each stream and as the measurements show,
this can be very time consuming if many streams have
to be secured or the link bandwidth is limited. Simi-
lar problems arise when TLS regularly performs a re-
keying using an abbreviated handshake. This abbreviated

handshake does not take as long as the inital handshake
because there is no need to exchange certificates, but for a
high number of streams this can also take several seconds
to minutes, depending on the link.

From the measurements presented in this section and
previous measurements [32] we can identify some limita-
tions for the three security solutions. Over high bandwidth
links, the throughput of IPsec is lower compared to the
other solutions. If only a small portion of the transmitted
data has to be secured, the disadvantage of IPsec is more
severe because it can not differentiate between data that
has to be secured and data that can be send unsecured.
TLS over SCTP’s major performance limitation is linked
to the number of streams which have to be secured. With
an increasing number of streams the memory usage and
the time to establish the secure sessions for all streams
also increase. A throughput degradation occurs when TLS
has to secure small messages which can be bundled in the
other solutions. S-SCTP was designed to overcome the
performance limitations of SCTP over IPsec and TLS over
IPsec, so we only identified some performance limitations
using high bandwidth links. The main reason for this is the
use of a prototype S-SCTP implementation developed to
validate the design decisions which was not yet optimized
for performance.

V. TWO NEW SECURITY SOLUTIONS: DTLS AND
SCTP-AUTH

A. DTLS

The new Datagram TLS (DTLS) is a modification of
TLS allowing to support unreliable transport. It is defined
in [18] and a good description is given in [37]. The main
differences to TLS, which requires a reliable transport,
are:

1) The DTLS messages not carrying user messages are
retransmitted by the DTLS layer in case of packet
loss.

2) The interdependence of successive TLS records is
removed such that each received DTLS segment can
be decrypted and handled independently.

These differences required changes in the packet format
and the procedures of the protocol. DTLS is designed
to secure UDP based communications but can also be
used on top of the Datagram Congestion Control Proto-
col (DCCP) being defined in [17]. This usage is described
in [22].

The simplest way of using DTLS in combination with
SCTP is to just run plain DTLS over SCTP. This is
currently done by IPFIX as described in [30]. It is
clear that this solution can provide confidentiality and
authentication of the user messages being transferred.
However, the reliability of SCTP can not be provided to
the user message transport. It is easy for an attacker to
remove data chunks from the wire without interrupting the
SCTP association. This stealing attack does not require
that PR-SCTP is used. An attacker could just replace the
user data of a data chunk with some older user data. The

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 35

© 2007 ACADEMY PUBLISHER

receiving DTLS layer would just discard this old user
message. It should be noted that this is not a problem in
the IPFIX scenario: the IPFIX protocol is designed to run
also on unreliable transport protocols like UDP.

Because of the strict separation of the layers all attacks
against the transport layer to bring down an association
like sending ABORT chunks, for example, are still pos-
sible. This is very similar to the TLS over TCP scenario.

B. SCTP-AUTH

The SCTP authentication mechanism described in [23]
has been developed to overcome the security problems
which were introduced to SCTP by the ADD-IP exten-
sion. These and other currently known attacks and their
countermeasures are described in [25]. To solve the issue
it was necessary for the receiver of ASCONF chunks used
for reconfiguration to make sure that the chunks have not
been modified and were sent by the SCTP endpoint which
started the association.

During the establishment of the SCTP association the
peers exchange 32-byte random numbers, a list of chunk
types which have to be authenticated and the list of
supported HMAC algorithms. It is possible that both sides
have endpoint pair shared keys. It is out of scope of the
SCTP-AUTH extension how these endpoint pair shared
keys are exchanged. From the data being exchanged
during the setup of the association and the endpoint pair
shared keys the association shared keys are generated.
These are then used to authenticate the chunks using the
HMAC algorithm. SCTP-AUTH defines a new control
chunk, called the AUTH chunk, which is used to transmit
the HMAC of all chunks after the AUTH chunk contained
in that packet.

If endpoint pair shared keys are used, an attacker can
not insert chunks which are authenticated. If no endpoint
pair shared keys are used, the attacker has to capture the
association setup messages to be able to construct the
association shared key.

Multiple endpoint based shared keys and therefore
association shared keys are supported and identified by
a key identifier. The endpoint based shared keys can be
added, deleted and modified during the lifetime of an
SCTP association by the application. In the socket API
these modifications are done by socket options. See [28]
for a detailed description.

The ADD-IP extension requires that the ADD-IP rel-
evant chunk types ASCONF and ASCONF-ACK are
always authenticated. But the SCTP-AUTH extension also
allows a receiver to require that almost all chunk types
have to be authenticated. This capability can be used
to protect an SCTP association against an attacker, who
wants to bring down an association. This usage is then
similar to the TCP-MD5 extension being defined in [3].

The SCTP-AUTH extension is already implemented in
the FreeBSD 7 source tree and there exist prototype im-
plementations for the Linux SCTP kernel implementation.

VI. AN ALTERNATIVE APPROACH TO SCTP
END-TO-END SECURITY

With S-SCTP, the major functional and performance
issues associated with end-to-end security solutions for
SCTP are – in principle – solved. However, broad accep-
tance and deployment would require full standardization
in the IETF followed by providing S-SCTP kernel imple-
mentations for the major operating systems. One concern
with respect to such kernel implementations is, that the
kernel would have to perform some operations, like
certificate verification and key establishment procedures,
which could block the operating system for significant
and unpredictable periods of time. Such a behaviour
could compromise the responsiveness of the operating
system and decrease its ability to handle real-time critical
applications.

To strictly avoid this while still preserving the advan-
tages of S-SCTP – in particular the capabilities to protect
SCTP control traffic and to efficiently mix secured and
unprotected traffic – we propose an alternative solution
where the security functionality is split up. Encryption
of data, data integrity and authentication are predictable
and hence they can in principle be integrated into SCTP
and implemented in the kernel. Session management,
key management and user authentication using certifi-
cates on the other hand depend on factors that are not
controllable by the operating system. For example user
authentication depends on the user who has to present
a valid certificate, additionally this certificate has to be
checked. As a consequence, these functions have to be
implemented in the user space and consequently above
SCTP. Taking advantage of two IETF standardization
efforts described above, namely DTLS and SCTP-AUTH,
such a hybrid solution can be designed with minimal
additional standardization impact.

DTLS can be used to support both the unordered
delivery mode of SCTP as well as the SCTP extension
for partial reliability. In addition, it also allows to use
one common DTLS session for multiple SCTP streams
avoiding the scalability problems with respect to the
number of concurrent streams. The other weakness of
TLS over SCTP, namely the inability to protect SCTP
control traffic, has to be avoided by combining DTLS
with the SCTP-AUTH extension.

There are two limitations of such a hybrid approach
compared to S-SCTP:

1) It cannot provide confidentiality (encryption) for
SCTP control chunks.

2) It does not allow a mixture of secure and insecure
streams.

However, this is outweighed by the fact that neither
additional changes to SCTP (which would be difficult to
standardize) nor operating system kernel modifications are
required.

With this combination of SCTP, DTLS and SCTP-
AUTH, some modifications to DTLS are necessary. In
addition, some functionality, e.g. replay protection and

36 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

reliable transport for secure session management infor-
mation, can be provided at different levels. Therefore,
the following section will describe the resulting solution
called ”SCTP aware DTLS” proposed by us in contrast
to the simple SCTP unaware DTLS described in V-A in
some more detail.

VII. CONCEPT OF SCTP AWARE DTLS

The functional block diagram of SCTP aware DTLS is
shown in Fig. 5.

Figure 5. Concept of SCTP aware DTLS

If an application requires a secure end-to-end ses-
sion, it first establishes an SCTP association. During the
handshake both peers have to exchange some parameters
regarding the SCTP-AUTH extension, including a list of
chunks that are only accepted in an authenticated way.
SCTP aware DTLS requires at least the authentication
of all DATA, SACK (Selective Acknowledgement) and
FORWARD-TSN chunks, the other chunk types (e.g.
HEARTBEAT) can also be authenticated if required by
the application using SCTP-AUTH. Initially an empty
endpoint pair secret is used with the key identifier 0, later
on the endpoint pair secret is derived from the master
secret of the DTLS session by using the method described
in [29]. Whenever DTLS changes the cipher spec a new
endpoint pair secret is derived from the master secret
using [29] and the key identifier is incremented.

When the application requests secure transport and
triggers the handshake of the SCTP aware DTLS session it
passes down the relevant details of the association which
has to be protected. The handshake messages for session
establishment and management are sent over stream 0,
which is reserved for management traffic and provides
reliable and ordered transport. Once a DTLS session is
established, application data is protected by the DTLS
security mechanisms and forwarded to the SCTP layer
together with the SCTP specific control information (e.g.
stream number).

If multiple applications (streams) require protection,
they use the same DTLS session. Thus the scaling
problem of TLS over SCTP is avoided. In the case an

application does not need security, it can directly pass its
data to SCTP. Even if no security is required, some chunks
of this application will be authenticated by SCTP-AUTH,
but this does not introduce any problems.

The usage of DTLS has one restriction regarding the
message size an application can send over SCTP aware
DTLS. A DTLS record only supports a maximum length
of 214 bytes of user data, all longer messages are rejected.
At the moment there are no SCTP applications known
which send longer messages, as long messages also
introduce head-of-line blocking to SCTP.

A new issue is introduced in the case of a re-keying at
the DTLS layer. The sender side DTLS has to buffer all
new data that should be sent until it receives a notification,
based on SCTP TSNs, that all data was received. Only
then the sender can start the re-keying process and both
sides can delete the old keying material. This method can
cause a blocking effect among different streams since no
new data is sent until the last message encrypted with the
old keys is successfully transported and the re-keying was
done. Since re-keying is not frequent, this is acceptable.
The other method would be to keep old keying material in
the case of a re-keying, but this would require a complex
key management.

There are some optional features of DTLS which are
unnecessary when DTLS is used over SCTP. First of
all, the retransmission of DTLS control messages in the
DTLS Handshake Layer is not necessary because they
are transported in reliable mode by SCTP. The replay
detection can be performed by SCTP in combination with
SCTP-AUTH and is therefore not necessary at the DTLS
layer. Since the replay detection at the DTLS layer might
even result in dropping user messages it must not be
used. The optional cookie exchange during DTLS session
setup within the DTLS layer is not necessary because
the SCTP association establishment procedure provides a
similar service and is performed first.

A. Implementation considerations for SCTP aware DTLS

The concept of SCTP aware DTLS tries to keep the
differences to standard DTLS as small as possible, in
order to reuse the existing protocol infrastructure and
implementation. This is beneficial when creating a se-
cure and stable (prototype) implementation. Additionally,
acceptance in the standardization process is easier if only
small changes have to be made.

The current reference implementation of DTLS is based
on the OpenSSL library. OpenSSL is an open source
implementation of TLS which runs on all major oper-
ating systems. Since our previous TLS over SCTP and
S-SCTP implementations are also based on OpenSSL,
we can benefit from this experience when developing a
prototype implementation. Figure 6 shows the structure
of the modules in the DTLS implementation including
the proposed modifications, the planned modifications are
marked dark.

SCTP aware DTLS requires modifications to DTLS.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 37

© 2007 ACADEMY PUBLISHER

Handshake
Change
Cipher
Spec . Alert Application

Data

Record
Layer

SCTP

Application

DTLS

Re-keying Key transfer

Interface

SCTP-AUTH

API Session start

Figure 6. Structure of SCTP aware DTLS

If an application needs security, it starts a DTLS session
and specifies the SCTP association which should be used
to transport the data. When the first DTLS session is
requested, the Handshake Layer starts the establishment
of the secure session. During the handshake, the Record
Layer binds the new session to the SCTP association
specified by the application. For subsequent requests of
other applications to open a secure session, DTLS can
skip the handshake and signal the application that the
session is ready for data transmission.

The Record Layer of DTLS is responsible for the
transmission of Application Data, Alert, Handshake and
Change Cipher Spec messages. If the Record Layer has
to send application data it encrypts the data and uses
the SCTP information provided by the application (e.g.
stream number) to send it. All other messages are control
messages and must be sent over stream 0 on the bound
association.

The Handshake Layer is responsible for re-keying.
However, before a re-keying can take place all outstanding
data must be acknowledged. This can be checked by
using a specific socket option of SCTP. Newly arriving
messages from the application have to be buffered at the
DTLS layer during this period. The additional buffering
mechanism and its communication with both SCTP and
the handshake module are some of the major adaptation
efforts for the scheme.

Also all optional features of DTLS which are unneces-
sary when used over SCTP, are located in the Handshake
Layer. Further analysis will show if it is beneficial to
remove them or not.

In the Change Cipher Spec module only one modifi-
cation must be made. When SCTP aware DTLS sends
a Change Cipher Spec message, the new Master Secret
must be passed down to the AUTH extension of SCTP
and the key identifier must be incremented. There are no
changes expected in the Alert protocol of DTLS.

B. API considerations for SCTP aware DTLS

There are two APIs involved in the implementation of
DTLS over SCTP, on the one hand the API between the
DTLS layer and the application layer, on the other hand
the API between the DTLS layer and the SCTP layer.

Let us first consider the interface to the upper layer.
One of the goals of our solution is that DTLS/SCTP
provides the same services to the user as SCTP does.
This means in particular that the user can specify the
stream identifier, the payload protocol identifier, the time
to live and possibly other parameters when sending mes-
sages. The existing interface between the user and the
OpenSSL library consists of simple SSL write() and
SSL read() calls as described in [38]. So for sending
messages, one could still use the simple SSL write()
call and specify the above data by using setsockopt()
of the standard SCTP socket API. However, when the
user receives data with SSL write() there is no way to
transfer also the received payload protocol identifier, the
stream identifier, etc. to the user. It is also not possible to
provide any SCTP notifications to the user. This means
that this API, at least for the receiving part, has to be
extended. The simplest way would be to add a function
called SSL sctp write() which has a similar signa-
ture as the sctp sendmsg() function of the standard
SCTP socket API.

Considering the interface between the DTLS library
and the transport layer it is important to note that also
only a very simple one is used which can just send
or receive a message. SCTP, however, uses a far more
complex interface. Not only the received user messages
are delivered from SCTP to the application but also
notifications. These are used, for example, to inform the
user about state changes of the paths. However, these
notifications have to be enabled explicitly by the user, but
they are important for SCTP applications and therefore
the applications running over DTLS/SCTP most likely
want to enable them. Also additional information like
the payload protocol identifier and the stream identifier
are passed from the SCTP layer to the OpenSSL library.
These are important for the application because the appli-
cation might want to use the payload protocol identifier
to demultiplex protocols as it is done in RSerPool. This
means that the API for the receiving side has to be
extended. For the sending side, either the OpenSSL library
could be bypassed by using socket options directly or that
interface has to be extended, too.

When using the socket API for SCTP, a decision has
to be made whether to use the 1-to-1 style API or
the 1-to-many style API. Since the programming model
in OpenSSL is related to the one to one relation of
BIO or SSL objects per TLS connection it seems more
appropriate to use the 1-to-1 style API for SCTP.

VIII. CONCLUSION

Based on a comprehensive set of criteria we have
evaluated the standard security solutions for SCTP and
have identified their limitations. An optimized solution

38 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

solving these issues has been presented and lab tests
based on a prototype implementation have confirmed the
validity of the design choices. Acknowledging issues for
the broad introduction of S-SCTP - which are mainly stan-
dardization related - we have proposed a new alternative.
This ”SCTP aware DTLS” solution preserves the advan-
tages of S-SCTP while using emerging standard protocol
components which hopefully increase the acceptance in
the standardization groups. In addition to describing the
overall concept of SCTP aware DTLS and its features in
detail, we have also discussed the major aspects to be
taken into account for the prototype implementation.

One standard component we use in our solution,
DTLS [18], has already RFC status, the other, SCTP-
AUTH [23], is expected to reach official RFC status
soon. An Internet Draft [27], describing our proposed
SCTP aware DTLS solution in detail is currently being
discussed at the IETF. A prototype implementation using
the OpenSSL library is under development.

REFERENCES

[1] J. Postel, ”Transmission Control Protocol”, STD 7,
RFC 793, September 1981.

[2] T. Dierks and C. Allen, ”The TLS Protocol”, RFC 2246,
January 1999.

[3] A. Heffernan, Protection of BGP Sessions via the TCP
MD5 Signature Option, RFC 2385, August 1998.

[4] L. Ong, I. Rytina, M. Garcia, H. Schwarzbauer, L. Coene,
H. Lin, I. Juhasz, M. Holdrege and C. Sharp, ”Framework
Architecture for Signaling Transport”, RFC 2719, October
1999.

[5] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang and V. Paxson, ”Stream Control Transmission
Protocol”, RFC 2960, October 2000.

[6] D. Mitton, M. St.Johns, S. Barkley, D. Nelson, B. Patil,
M. Stevens and B. Wolff, ”Authentication, Authorization,
and Accounting: Protocol Evaluation”, RFC 3127, June
2001.

[7] M. Tuexen, Q. Xie, R. Stewart, M. Shore, L. Ong,
J. Loughney and M. Stillman, ”Requirements for Reliable
Server Pooling”, RFC 3237, January 2002.

[8] L. Ong and J. Yoakum, ”An Introduction to the Stream
Control Transmission Protocol (SCTP)”, RFC 3286, May
2002.

[9] A. Jungmaier, E. Rescorla and M. Tuexen, ”Transport
Layer Security over Stream Control Transmission Proto-
col”, RFC 3436, December 2002.

[10] S. Bellovin, J. Ioannidis, A. Keromytis and R. Stewart,
”On the use of Stream Control Transmission Protocol
(SCTP) with IPsec”, RFC 3554, July 2003.

[11] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen and P. Conrad,
”Stream Control Transmission Protocol (SCTP) Partial
Reliability Extension”, RFC 3758, May 2004.

[12] J. Loughney, M. Tuexen and J. Pastor-Balbas, ”Security
considerations for signaling Transport (SIGTRAN) Proto-
cols”, RFC 3788, June 2004.

[13] S. Kent and K. Seo, ”Security Architecture for the Internet
Protocol”, RFC 4301, December 2005.

[14] S. Kent, ”IP Authentication Header”, RFC 4302, Decem-
ber 2005.

[15] S. Kent, ”IP Encapsulation Security Payload (ESP)”,
RFC 4303, December 2005.

[16] C. Kaufman, ”Internet Key Exchange (IKEv2) Protocol”,
RFC 4306, December 2005.

[17] E. Kohler, M. Handley, S. Floyd, Datagram Congestion
Control Protocol (DCCP), RFC 4340, March 2006.

[18] E. Resorla and N. Modadugu, ”Datagram Transport Layer
Security”, RFC 4347, April 2006.

[19] R. Stewart, I. Arias-Rodrigues, K. Poon, A. Caro and
M.Tuexen, Stream Control Transmission Protocol (SCTP)
Specification Errata and Issues, RFC 4460, April 2006.

[20] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, S. Maruyama,
and M. Kozuka, ”Stream Control Transmission Proto-
col (SCTP) Dynamic Address Reconfiguration”, draft-ietf-
tsvwg-addip-sctp-20.txt (work in progress), April 2007.

[21] M. Riegel and M. Tuexen, ”Mobile SCTP”, draft-riegel-
tuexen-mobile-sctp-07.txt (work in progress), October
2006.

[22] T. Phelan, Datagram Transport Layer Security (DTLS)
over the Datagram Congestion Control Protocol (DCCP),
draft-ietf-dccp-dtls-00.txt (work in progress), May 2007.

[23] M. Tuexen, R. Stewart, P. Lei and E. Rescorla, ”Au-
thenticated Chunks for Stream Control Transmission Pro-
tocol (SCTP)”, draft-ietf-tsvwg-sctp-auth-08.txt (work in
progress), February 2007.

[24] M. Stillman, R. Gopal, S. Sengodan E. Guttman and
M. Holdrege, ”Threats Introduced by Rserpool and Re-
quirements for Security in response to Threats”, draft-ietf-
rserpool-threats-06.txt (work in progress), November 2006.

[25] R. Stewart, M. Tuexen, G. Camarillo, Security Attacks
Found Against SCTP and Current Countermeasures, draft-
ietf-tsvwg-sctpthreat-03.txt (work in progress), April 2007.

[26] C. Hohendorf, E. Unurkhaan and T. Dreibholz, ”Se-
cure SCTP”, draft-hohendorf-secure-sctp-00.txt (work in
progress), July 2005.

[27] M. Tuexen, C. Hohendorf, E. Rescorla, Datagram Trans-
port Layer Security for Stream Control Transmission Pro-
tocol, draft-tuexen-dtls-for-sctp-01.txt (work in progress),
October 2006.

[28] R. Stewart, Q. Xie, L. Yarroll, K. Poon and M. Tuexen,
Sockets API Extensions for Stream Control Transmission
Protocol (SCTP), draft-ietf-tsvwg-sctpsocket-14.txt (work
in progress), December 2006.

[29] E. Rescorla, Keying Material Extractors for Transport
Layer Security (TLS), draft-rescorla-tls-extractor-00.txt
(work in progress), January 2007.

[30] B. Claise, Specification of the IPFIX Protocol for the
Exchange of IP Traffic Flow Information, draft-ietf-ipfix-
protocol-24.txt (work in progress), November 2006.

[31] E. Unurkhaan, ”Secure End-to-End Transport — A new
security extension for SCTP”, Dissertation, University of
Duisburg-Essen, June 2005.

[32] U. Esbold, E.P. Rathgeb and A. Jungmaier, ”Secure SCTP
- A Versatile Secure Transport Protocol”, Telecommuni-
cations 27:2-4, p.273ff, 2004.

[33] R. Stewart and Q. Xie, ”Stream Control Transmission
Protocol - A Reference Guide”, Addison-Wesley, 2002.

[34] W. R. Stevens, B. Fenner, A. Rudoff, UNIX Network
Programming, Addison Wesley, 2004.

[35] A. Jungmaier, ”SCTP for beginners”,
http://tdrwww.exp-math.uni-
essen.de/inhalt/forschung/sctp fb/, 2003.

[36] L. Rizzo, ”Dummynet”,
http://info.iet.unipi.it/˜luigi/ip dummynet/

[37] N. Modadugu and E. Resorla, ”The Design and Implemen-
tation of Datagram TLS”, Network and Distributed System
Security Symposium, February 2004.

[38] J. Viega, M. Messier and P. Chandra, Network Security
with OpenSSL, O’Reilly, 2002.

JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007 39

© 2007 ACADEMY PUBLISHER

[39] Carsten Hohendorf, Erwin P. Rathgeb, Esbold Unurkhaan,
and Michael Tüxen, “Secure End-to-End Transport over
SCTP”, Proc. Emerging Trends in Information and
Communication Security (ETRICS 2006), LNCS vol.
3995, 2006, 381-395.

Carsten Hohendorf was born in Oberhausen, Germany in 1976.
He studied Computer Science and Communication Engineering
at the University of DuisburgEssen and the University of
Queensland in Brisbane, Australia. His main focus was mobile
communication, especially multiantenna systems and computer
networks. He received his Master degree in 2003 from the
University of DuisburgEssen.

From 2004 to 2006, he was a member of the scientific staff at
the Alfried Krupp von Bohlen und HalbachChair for “Computer
Networking Technology” at the Institute for Experimental
Mathematics, University of DuisburgEssen, Germany. During
this time he worked on a project to secure the endtoend traffic of
SCTP associations, which was founded by the German Research
Foundation.

Since 2007 he is working at polypatent and started his studies
to become a patent attorney.

Erwin P. Rathgeb was born in Ulm/Germany in 1958. He
received his diploma and Ph.D. degrees in Electrical Engineering
from the University of Stuttgart/Germany in 1985 and 1991,
respectively. From 1985 to 1990, he was member of the scientific
staff at the Institute of Communication Networks and Computer
Engineering (Prof. Paul J. K¨uhn) at the University of Stuttgart
where he was head of a research group on design and analysis of
distributed systems.

From 1990 to 1991, he was a member of technical staff at
Bellcore, Morristown, NJ/U.S.A., before joining Bosch Telekom
in Backnang/Germany. In 1993, he joined Siemens in Mu-
nich/Germany. In various positions in systems engineering and
product planning, he contributed to concepts for commercial
ATM nodes and ATMbased multiservice networks. Since
January 1999, he holds the Alfried Krupp von Bohlen und
HalbachChair for “Computer Networking Technology” at the
Institute for Experimental Mathematics, University of
DuisburgEssen/Germany. He is the author of a book on ATM
and has published more than 50 papers in journals and at
international conferences. Professor Rathgeb is a senior member
of IEEE and a member of GI, IFIP and ITG where he is chairman
of the expert group on network security.

His current research interests include network security as well
as concepts and protocols for next generation internets, in
particular the Stream Control Transmission Protocol (SCTP) and
Reliable Server Pooling.

Esbold Unurkhaan was born in Ulaanbaatar, Mongolia in 1975.
He received his Bachelor degree and his Master degree in
Computer Science from the Computer Science and Management
School (CSMS) of the Mongolian University of Science and
Technology (MUST) in 1997 and 1999, respectively. In 2005 he
received his Ph.D. degree in Computer Science from the
University of DuisburgEssen, Germany. From 1997 to 2001, he
was a lecturer at the Computer Science and Management School
of the Mongolian University of Science and Technology
(MUST). From 2001 to 2004, he was member of the scientific
staff at the Alfried Krupp von Bohlen und HalbachChair for
“Computer Networking Technology” at the Institute for Exper-
imental Mathematics, University of DuisburgEssen/Germany.
After finishing his Ph.D., he returned to the CSMS. His current
research interests focus on network security.

Michael Tüxen was born in 1966 in Oldenburg, Germany. He
studied mathematics at the University of G ¨ottingen and
received the Dipl. Math. degree in 1993. From 1993 to 1996 he
was a member of the scientific staff at the
Sonderforschungsbereich ”Geometrie und Analysis” (SFB 170)
in G¨ottingen. He received the Dr. rer. nat. degree in 1996. In
1997 he joined the Systems Engineering group of ICN WN CS of
the Siemens AG in Munich. Since 2003 he is a professor at the
Department for Electrical Engineering and Computer Science of
the M¨unster University of Applied Sciences.

He was working in the Study Group 2 of the International
Telecommunication Union (ITU) on performance analysis of
signaling protocols.

At the Internet Engineering Task Force (IETF) he is active in
the Working Groups Signaling Transport (SIGTRAN), Reliable
Server Pooling (RSerPool), and Transport Area Working Group
(TSVWG), where he is working on the design of protocols for
signaling transport over IPnetworks and architectures for reliable
distributed processing. He is an author of several Request for
Comments (RFCs).

His current research interests include innovative transport
protocol concepts, in particular the Stream Transmission Control
Protocol (SCTP) and its implementation and applications.

40 JOURNAL OF COMPUTERS, VOL. 2, NO. 4, JUNE 2007

© 2007 ACADEMY PUBLISHER

	Text1: With kind permission of Springer Science and business Media.
	Text2: [39]

