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Abstract— One problem of classical phase shifting for optical
3D surface reconstruction is the occurrence of ambiguities
due to the use of fringe projection. We generally derive
a number-theoretical approach to calculate absolute phase
measurements which can be used as a base for a reliable
surface reconstruction without any ambiguity. The essence
of our method is the application of pattern sequences with
different periods whereby we homogeneously use all pictures
which were taken for the measurement. This leads to a
higher average accuracy in the surface reconstruction. Fur-
thermore we propose a technique to avoid typical calculation
errors that are produced in classical phase shifting caused
by discontinuities, occlusions and reflections on the surface.

Index Terms — surface reconstruction, phase shifting, 3D
shape measurement, structured light, fringe projection

I. INTRODUCTION

The reconstruction of 3D surfaces is one of the most
important tasks in computer vision. Due to the fast devel-
opment of the computer technique and the high relevance
for industrial applications a multitude of different methods
were investigated in the last years. The method which is
used for a specific application depends on requirements
concerning the measurement accuracy as well as on the
resolution in time and space. Overviews are given in
[1], [2]. Some examples of industrial applications are
range sensoring, industrial inspection of manufactured
parts (e.g. in [3]) and reverse engineering [4].

The high accuracy reconstruction of smooth and non-
textured surfaces usually requires methods with projection
of structured light [5], [6]. Moreover, if non-moving
objects are measured, the accuracy can be substantially in-
creased by the use of pattern sequences [7]. An overview
and classification of pattern codification strategies is pre-
sented in [8].

An important representative of methods based on coded
light is phase shifting. There are a lot of papers (e.g. [9]–
[12]) presenting different approaches for 3D measurement
based on this technique. The basic idea of the phase
shift method consists of capturing several images of
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phase shifted sinusoidal fringe patterns projected on the
measuring object. The images are processed pixel by
pixel, whereby for each pixel exactly one phase value
is computed. That phase value is used as a measure for
the calculation of the height information of the object.

The surface reconstruction can take place via triangu-
lation methods [13], [14]. In classical phase shifting one
uses a setup with one fringe projector and one matrix
camera. But because of errors due to inaccuracies of the
sinusoidal fringe patterns and difficulties in calibrating the
projector a setup with a projector and two cameras leads
to more exact 3D results. In case of two cameras the phase
values are used to solve the correspondence problem [15],
which is the basis to apply stereo vision.

However, the periodicity of the fringe pattern leads
directly to the periodicity of the computed phase values.
This entails ambiguities with the reconstruction of the
object surface. So far, either approximate values of the
object surface have been used or additional methods like
the Gray code technique have been applied [16], [17] in
order to tackle this problem in practice. A disadvantage
of combined solutions based on an additional method is
loss of information. Generally, additional pictures must
be taken, which increase the measuring time, but not the
measuring accuracy. Besides, a second method is always
a source for additional errors.

An alternative is the calculation of absolute phase
measurements. The easiest method, called spatial phase
unwrapping [18], [19], removes discontinuities in neigh-
bouring phase values by addition or subtraction of suitable
multiples of 2π. It works well, but only on smooth
surfaces. A more general method is the projection of
several phase shift sequences, which differ in their local
period. There are two approaches, the hierarchical and the
number-theoretical approach. The hierarchical approach
[20] leads similarly to the gray code solution to loss of
information, because the phase shift sequences with low
frequency do not increase the accuracy of the measure-
ment. The number-theoretical approaches [21]–[23] avoid
this problem through the use of equivalent frequencies.
However, the number-theoretical algorithms are complex
and not generally accepted to solve the ambiguities in
phase shifting. As far as we know, there is only one
industrial application using this approach [24].
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In this paper we present a new number-theoretical
approach, which is the basis for a simple implementation
of a multi-period phase shift algorithm. Moreover, we
investigate the proposed method concerning a stereo vi-
sion application in 3D surface reconstruction. Preliminary
results of our work can be found in [25].

The paper is structured as follows: firstly, the basics
for phase shifting and for optical 3D measurement with
stereo photogrammetry are presented in section II and
section III respectively. Secondly, in section IV, we
derive and explain our approach for the calculation of
absolute phase measurements. Next, in section V, we
explain the implementation of the suggested theory and
we present experimental results obtained with the new
technique. Finally, in section VI, the conclusion contains
an overview about the advantages and problems of the
proposed method.

II. PHASE SHIFTING

Basic principle for the classical phase shifting is the
computation of a phase value ϕ(u, v) on the pixel (u, v)
from the phase shifting sequence G1, G2, . . . , Gm of grey
tone images. For constant numbers m of images different
computation methods were suggested in [26]–[28]. A
general approach for arbitrary numbers of images is given
by Surrel in [29]. In our work we use a similar approach
with

ϕ(u, v) =
1
2π

arctan2(x, y) + 0.5 (1)

and

x =
m∑

i=1

cos
(

2πi
m

)
Gi(u, v),

y =
m∑

i=1

sin
(

2πi
m

)
Gi(u, v),

whereby arctan2(x, y) calculates the arc tangent angle
of x/y in the correct quadrant and without undefined
(singular) values. In contrast to the actual classical phase
value within the borders between −π and π we have a
range of values in the interval [ 0, 1). Thereby, the use
of the phase value is simplified significantly, which is
important for the derivation of our theory.

As an example figure 1 shows the phase measurements
of a test object composed of some spheres. On the left side
we see one original grey tone image with a fringe pattern
from the phase shifting sequence. The phase values which
we computed of this sequence are shown as a so-called
phase image on the right side.

The phase image contains for each pixel of the camera
sensor a phase value, which is illustrated in figure 1
by a normalized grey tone value between 0 (white) and
1 (black). In contrast to the original grey tone images
the phase image does not directly depend on textures or
shading effects on the surface of the measurement object.
Thus, the phase image is a well-suited basis for surface
reconstruction by photogrammetric methods.

Figure 1. Sphere objects: original gray tone images (left) and the
computed phase image (right)

III. 3D SURFACE RECONSTRUCTION

For optical 3D measurement of surfaces many different
procedures exist. The focus of this paper is phase shifting.
Thus, for surface reconstruction we limit our treatment
to photogrammetry and a common stereo vision setup.
Fundamentals can be found amongst others in [30]–[32].

Our experimental setup for taking measurements is
shown in figure 2. The surface coordinates of the measure-
ment object are determined from the images recorded by
two cameras which are mounted at different locations. A
projector situated between the cameras projects the phase
shifted fringe patterns onto the surface of the body.

Figure 2. Experimental setup for the 3D measurement

A requirement for getting exact 3D surface points from
the calculated phase images by photogrammetry is the
geometric calibration of the measurement system. Due
to the use of two cameras the system calibration does
not include a projector calibration. Hence, we are not
constrained to an accurate sinusoidal fringe projection.
Our calibration method is based on a photogrammetric
technique known as bundle adjustment [33]. It yields the
parameter of a pinhole camera model [34] augmented
with a lens distortion model. A world coordinate system
is defined by a calibration chart and gives a relationship
between the images of both cameras and the 3D object
coordinates.

Our algorithm to reconstruct the surface is object based.
The pinhole camera model leads to a mapping θ : R3 →
R2 which is a projection from 3D object points (x, y, z) ∈
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R3 to subpixel image coordinates (u, v) ∈ R2. Based on
bilinear interpolation in the phase image we get for a
subpixel coordinate (u, v) a phase value ϕ(u, v) and we
define for the 3D object point ϕ(x, y, z) = ϕ(θ(x, y, z)).
By projecting an assumed 3D surface point (x∗, y∗, z∗) in
the left and in the right camera we get two phase values
ϕl(x∗, y∗, z∗) and ϕr(x∗, y∗, z∗). The assumed surface
point is true if

ϕl(x∗, y∗, z∗) = ϕr(x∗, y∗, z∗). (2)

This is a simple conclusion of the well known correspon-
dence problem.

To compute the complete surface we define an equidis-
tant grid of measuring points in the xy-plane. Then, for
each grid point (x∗, y∗) we search the proper surface point
by varying the z-coordinate. A schematic representation
is shown in figure 3. The upper part shows the mapping
of the 3D measurement point to the left and right phase
image. The lower part shows the computation of the z-
coordinate z∗ near an approximate value z̄.

grid point (x∗, y∗)

z

left phase image right phase image

u

v

u

v

0

1

z̄ − ε z̄ + ε

ϕr(x∗, y∗, z)

ϕl(x∗, y∗, z)

z∗ z

Figure 3. Schematic representation of the 3D measurement algorithm

Because the discontinuity of the phase value functions
ϕl(z) and ϕr(z) the algorithm works only if we know an
approximate value of each measuring point. To avoid the
problem of getting approximate values we need continu-
ous phase values, which are absolute phase measurements.

IV. ABSOLUTE PHASE MEASUREMENTS

A. Function of projector coordinates

A way to acquire absolute phase measurements in
fringe pattern images is to find out the origin of a
measured fringe. However, the patterns that we are using
are sent from the projector. Hence, we consider the fringe
patterns from the projector view first.

A fringe pattern is characterized by a one-dimensional
brightness function which we define with g(ξ). The
parameter ξ ∈ R we call projector coordinate. Due to
the projection of the fringe pattern the brightness in a
surface point of the measured object is always determined
by exactly one projector coordinate. This of course also
applies to the pixel of the camera, which ”sees” this point

of surface. Thus we can define ξ(u, v), which gives the
projector coordinate as a function of the image coordinate.
Figure 4 gives a representation of this relationship.

1D pattern 2D image

projector
u

vξ

g(ξ)

ξ(u, v)

Figure 4. Function to get the projector coordinate

Because this function is not periodic, the projector
coordinate is the very value we are looking for. In the fol-
lowing subsections we will develop a number-theoretical
approach to get a powerful and efficient method for
acquiring projector coordinates as a form of absolute
measurements.

B. Unambiguous pattern sequences

Because the phase values of classical phase shifting
are periodical and thus not unambiguous, the compu-
tation of projector coordinates normally implies more
information then a single pattern sequence can hold. For
this reason we project in our proposed method a set
S = {M1, M2, . . . , Mn} of different pattern sequences.
The Mi differ in their period, which we appoint with λ i.
We need to clarify, which sets of pattern sequences lead
to unambiguous measurements.

According to the definition of the fringe patterns, a
pattern sequence Mi is given by m brightness functions
gi,1(ξ), gi,2(ξ), . . . , gi,m(ξ). Using these functions in our
phase shift calculation from equation 1 we can define a
phase value function ϕi(ξ) ∈ [0, 1), which depends on the
projector coordinate. In addition, we assign a sequential
natural number to each fringe of a pattern which we call
fringe number and which we write as ηi(ξ) ∈ N. We get
the fringe number of a projector coordinate by simply
counting the fringes of the pattern from left to right.

Mn

...

M2

M1

0 1 2 3 4 5 6 7 . . . ηn(ξ)
ϕn(ξ)

0 1 2 3 4 5 6 . . . η2(ξ)
ϕ2(ξ)

0 1 2 3 4 . . . η1(ξ)
ϕ1(ξ)

0 ξξ∗ ξ∗∗

Figure 5. Interdependence between projector coordinate, phase value
and fringe number for pattern sequences with different periods

Figure 5 shows the interdependence between projector
coordinate, phase value and fringe number. The phase
values ϕ1(ξ), ϕ2(ξ), . . . , ϕn(ξ) are depicted as periodical
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patterns. The fringe numbers η1(ξ), η2(ξ), . . . , ηn(ξ) are
shown as numerals.

Since the phase value is a pure fractional part and the
fringe number is a pure integer part we can recognize
from figure 5 a direct mathematical relation between the
pattern sequences. For each ξ and all i = 1, 2, . . . , n
applies

ξ =
(
ηi(ξ) + ϕi(ξ)

)
λi . (3)

This system of equations obviously becomes ambiguous,
if the projector coordinate and the fringe numbers are
unknown. Because in a real measurement we only receive
the phase values, we have to derive additional constraints
to get unambiguous pattern sequences.

Concerning set S the ambiguity is generated exactly
if two different projector coordinates ξ ∗ �= ξ∗∗ yield
the same phase values ϕi(ξ∗) = ϕi(ξ∗∗) for all pattern
sequences Mi ∈ S. If we solve equation 3 for ϕi(ξ∗) and
ϕi(ξ∗∗) resp., we receive through equating the right sides
for all i = 1, 2, . . . , n

ξ∗

λi
− ηi(ξ∗) =

ξ∗∗

λi
− ηi(ξ∗∗). (4)

and by further transforming we finally obtain

ξ∗ − ξ∗∗ =
(
ηi(ξ∗) − ηi(ξ∗∗)

)
λi . (5)

According to our assumption ξ∗ �= ξ∗∗ the difference
between the projector coordinates ∆ξ = ξ∗ − ξ∗∗ is not
0. Since ∆ξ is constant over all i in equation 5 and the
difference of two fringe numbers always results in an
integer, there must be natural numbers x1, x2, . . . , xn > 0
with

xi = |ηi(ξ∗) − ηi(ξ∗∗)| , (6)

which fulfill the equations

|∆ξ| = x1λ1 = x2λ2 = · · · = xnλn . (7)

These equations form the basis of the computation of
the least common multiples (LCM), which we can apply
w.l.o.g. to the set of rational numbers Q. If we postulate
λi ∈ Q for all periods, then for the set S there is always
a maximum projector coordinate

ξmax(S) = LCM(λ1, λ2, . . . , λn) , (8)

up to which we can exclude ambiguity. Thus, with
the condition ξ < ξmax(S) the system of equation
3 becomes unambiguous. Using this condition we can
generate unambiguous pattern sequences for any kind of
fringe projectors.

C. The theoretical approach

We now consider our pattern sequences M i ∈ S from
the view of the camera. For a pixel (u, v) we assume,
that we not only know the phase values ϕi(u, v) but
also the fringe numbers ηi(u, v). According to equation
3, a projector coordinate can be computed from a fringe
number and a phase value. The projector coordinate is
obviously identical over all pattern sequences, because
the camera ”sees” on this pixel always the same point of

surface independently of the projected pattern. Thus we
get a projector coordinate

ξ(u, v) =
(
ηi(u, v) + ϕi(u, v)

)
λi , (9)

which is independent of Mi. If we equate the right
sides from equation 9 for pairs of pattern sequences
(Mi, Mj) ∈ S2, then we obtain for all i and j(

ηi(u, v) + ϕi(u, v)
)
λi =

(
ηj(u, v) + ϕj(u, v)

)
λj (10)

and after rearrangement

λi ηi(u, v) − λj ηj(u, v) = λj ϕj(u, v) − λi ϕi(u, v).
(11)

With reference to the right part of the equation 11 we
introduce a phase difference vector Φ(u, v) = �a with the
components

ai = λ1 ϕ1(u, v) − λi ϕi(u, v) . (12)

Note, for the phase difference vector we use only the
pairs (M1, Mj) of pattern sequences. If we again provide
λi ∈ Q, then we can define a map H : P → T with

H(�a) =


(h1, h2, . . . , hn) : ∀ i {λihi < ξmax(S),

ai = λihi − λ1h1 }
undefined : otherwise

,

(13)
whereby P ⊂ Rn is the set of all phase difference vectors
and T ⊂ Nn is the set of all tuples of fringe numbers.

The map H is well-defined, since ambiguities are
excluded with the constraint

λihi < ξmax(S) (14)

similar as shown for the derivation of the maximum
projector coordinate. Assumed there is an ambiguity for
at least one component ai of the phase difference vector,
it holds true

λih
∗
i − λ1h

∗
1 = λih

∗∗
i − λ1h

∗∗
1 (15)

with h∗
i < h∗∗

i and h∗
1 < h∗∗

1 . Since h∗
1 �= h∗∗

1 equation
15 holds true for all i = 1, 2, . . . , n. After rearrangement
of equation 15 we obtain

(h∗∗
1 − h∗

1)λ1 = (h∗∗
i − h∗

i )λ1 . (16)

Since equation 16 also holds true for all i = 1, 2, . . . , n,
we can conclude

LCM(λ1, λ2, . . . λn) = (h∗∗
i − h∗

i )λi . (17)

Because h∗
i > 0 it follows h∗∗

i > LCM(λ1, λ2, . . . λn)
which is a contradiction to the constraint 14.

By ruling out ambiguities in the projection of the fringe
patterns according to subsection IV-C the correctness of
map H leads with equation 11 to

H
(
Φ(u, v)

)
=

(
η1(u, v), η2(u, v), . . . , ηn(u, v)

)
. (18)

which gives us at least theoretically the possibility to
calculate our unknown fringe numbers. In the following
subsection we will explain how to calculate map H
practically and efficiently.
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D. Calculation of real world measurements

It is clear that on basis of equation 1 we can compute
the phase difference vector Φ(u, v) = �a in a simple way.
For the computation of the fringe number tuples with
map H this is obviously not the case. However, from
the definition of H in equation 13 it follows that both
the range of arguments P and the range of values T
must be a finite set, which depends only on the periods
λ1, λ2, . . . , λn. Thus we can already compute all possible
function values of H before the actual measurement. By
storing H(�a) for all �a ∈ P efficiently we can construct a
lookup table to compute the fringe numbers very fast and
direct.

However, the theory only works with accurate measure-
ments. In real world measurement we always get errors
through noise. This means that in practice equation 11
is only approximately correct and the phase difference
vector yields

Φ(u, v) ≈ �a. (19)

with �a ∈ P is accurately computed from map H accord-
ing to equation 13.

In order to be able to use our lookup table, we need an
additional rule of assignment for mapping the measured
values Φ(u, v) to the accurate values �a ∈ P . For this, we
define λi ∈ N to all i = 1, 2, . . . , n. With the definition
of map H it leads to P ⊂ Zn, where Z is the set of all
integers. For the additional rule we choose rounding from
real numbers to integers.

Practically seen we first compute a real vector
Φ(u, v) = �a ∈ Rn according to equation 1 and 12, and
afterwards we compute an integer vector ΦZ(u, v) = �b ∈
Zn by rounding the components of the real vector with

bi = max{ x |x ∈ Z, x < ai + 0.5 }. (20)

According to equation 18 we are now able to compute
with

H
(
ΦZ(u, v)

)
=

(
η1(u, v), η2(u, v), . . . , ηn(u, v)

)
(21)

the unknown fringe numbers from the measured phase
values only. An example taken by a real measurement of
the sphere objects is given as follows.

Example 1: By projecting the pattern sequences of set
S = {M1, M2, M3} with the periods λ1 = 7, λ2 = 8
and λ3 = 9 we measured at pixel (u, v) = (591, 401)
the phase values ϕ1(u, v) = 0.369, ϕ2(u, v) = 0.193 and
ϕ3(u, v) = 0.727. According to equation 12 we obtain
the real phase difference vector

Φ(u, v) =


 0

1.040
−3.955


 (22)

and the rounded phase difference vector

ΦZ(u, v) =


 0

1
−4


 . (23)

Concerning the conditions of map H it applies

0 = 25 · λ1 − 25 · λ1 ,
1 = 22 · λ2 − 25 · λ1 ,

−4 = 19 · λ3 − 25 · λ1

(24)

and
19 · λ3 < 25 · λ1 < 22 · λ2 < ξmax(S) (25)

with
ξmax(S) = LCM(λ1, λ2λ3) = 504. (26)

Hence, we get from map H the fringe numbers

H
(
ΦZ(u, v)

)
= (25, 22, 19). (27)

For the computation of the fringe numbers the rounding
of the phase difference vector implicitly gives a cer-
tain signal-to-noise ratio. Measurement errors lower than
signal-to-noise ratio do not have any relevance for the
computation of the fringe numbers, since incorrect phase
vectors are corrected due to rounding. The efficiency of
the signal-to-noise ratio depends on the number of pattern
sequences and their periods λi.

With equation 3 we get for each pattern sequence the
appropriate projector coordinate. To obtain a unique value
over all pattern sequences we define an average projector
coordinate by

ξ(u, v) =
1
n

n∑
i=1

(
ηi(u, v) + ϕi(u, v)

)
λi. (28)

Since the set T of fringe number tuples is completely
contained in the entries of the lookup table, we execute
part of the computations needed in equation 28 before-
hand. For this we define the map

E(h1, h2, . . . , hn) =
1
n

n∑
i=1

λihi (29)

and transform equation 28 to

ξ(u, v) = E
(
H

(
ΦZ(u, v)

))
+

1
n

n∑
i=1

λiϕi(u, v) . (30)

Thereby we have to dynamically compute only the last
part of the equation. The front part can be stored as a
static constant in the lookup table. This results in a very
fast computation of projector coordinates.

E. The lookup table

Basis of the implementation of the represented theory
is the generation of the lookup table. We take a (n− 1)-
dimensional array which is indexed by the components
a2, a3, . . . , an of the phase difference vector �a. The reason
for skipping the first component follows from equation 12,
because a1 = 0 always holds true. With ϕi(u, v) ∈ [ 0, 1)
the expansion of our array is limited in each dimension
by the inequations

−λi < ai < λ1 . (31)

JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007 77

© 2007 ACADEMY PUBLISHER



The memory usage of the lookup table amounts to
n∏

i=2

(λi + λ1 − 1). (32)

This is hardly a problem for small n and λi. For example
for n = 4 and λi < 50, we need not more than 4MB of
memory.

More important is the issue of filling the components
of the lookup table array. A direct method is to try
all possible n-tuples (h1, h2, . . . , hn) of fringe numbers
according to constraint 14 used in the definition of map
H . In each step we have to calculate the inverse of
H being a phase difference vector �a. If all compo-
nents of �a fulfill inequality 31, we accept the n-tuple.
According to equation 29 we calculate the static value
E(h1, h2, . . . , hn) and store it in the lookup table array
at position [a2][a3] . . . [an].

This method is quite inefficient. A better way is to
chose only those n-tuples which fulfill inequality 31
anyway. Our algorithm starts in step 0 with the n-tuple
H(0) = (0, 0, . . . , 0). It results in the phase difference
vector �a(0) = (0, 0, . . . , 0)ᵀ, which obviously fulfills
inequality 31. For the following steps there is an easy iter-
ations scheme. If the tuple H (k) = (h(k)

1 , h
(k)
2 , . . . , h

(k)
n )

is given from step k, we build in step k+1 the new tuple
H(k+1) with

h
(k+1)
i =




h
(k)
i + 1 : λi(h

(k)
i + 1) ≤ λj(h

(k)
j + 1)

∀j with 1 ≤ j ≤ n

h
(k)
i : sonst

.

(33)
The iteration ends if the maximum projector coordinate is
reached with λih

(k)
i ≥ ξmax(S) for at least one i. Through

induction it can be proven, that we get by our proposed
iteration scheme all possible valid n-tuples of the lookup
table. By calculating the phase difference vector �a (k) in
each step k we can store the static value E(H (k)) defined
in equation 29 to the lookup table accordingly.

F. Error recognition

In the field of optical reconstruction of surfaces cor-
rectness is very important. Due to influences like surface
reflections, object movements, external light or camera
noise there are many sources of errors. In this subsection
we will point out some options and properties of our
approach that help to avoid errors.

The simplest case of error reduction is the use of mul-
tiple measurements. Since our proposed method rests on
several independent phase shift measurements we already
utilize that fact in the average operation of equation 28.
But our approach has more potential to reduce errors.

In regions of sharp edges with partial occlusions there
are many problems with phase shifting. Because in real
applications the pixel mapping represents an integral we
get a mixture of different phase measurements on edges
with partial occlusions. That leads to large errors and
outliers. An illustration of this problem is schematically
shown in figure 6.

Camera
Projector

View of
pixel (u, v)

fringe pattern

ϕ(u, v)

Figure 6. Mixed phase values on edges with occlusions

In case of a mixture of phase values on one pixel the
result depends both on the distribution and on the phase
values itself. Because the phase values themselves differ
in each different pattern sequence the result of the mixture
differ also. This means, that the phase difference vector
will be wrong. In most cases the wrong phase difference
vector is not defined by the map H . But if it is defined
at random, then the whole measurement of the pixel is
wrong. A simple method to detect those errors is an outlier
recognition.

A safer method is using equation 11 completely for
all pairs of pattern sequences (Mi, Mj). That means
we get instead of the phase difference vector a phase
difference matrix. Similar to the components of the phase
difference vector defined in equation 12 we can form a
phase difference matrix Ann with the components

aij = λj ϕj(u, v) − λi ϕi(u, v). (34)

By the use of this matrix it is possible to verify the result
of map H , because the phase difference matrix is also
computable from the fringe numbers with

aij = λi ηi(u, v) − λj ηj(u, v). (35)

Since an error due to mixed phase measurements leads
with high probability to a phase difference matrix which
is non-defined by fringe numbers, this method works quite
well. Two examples taken by a real measurement based on
three different pattern sequences with the periods λ1 = 7,
λ2 = 8 and λ3 = 9 are given as follows.

Example 2: We obtained at pixel (u, v) = (774, 348)
correct values. The fringe numbers on this pixel we
calculated through our lookup table are η1(u, v) = 22,
η2(u, v) = 19 and η3(u, v) = 17. The comparison

Aϕ ≈ Aη (36)

between the phase difference matrix

Aϕ =


 0 2.013 1.074

−2.013 0 −0.939
−1.074 0.939 0


 (37)

computed by the phase values and the phase difference
matrix

Aη =


 0 2 1

−2 0 −1
−1 1 0


 (38)

78 JOURNAL OF COMPUTERS, VOL. 2, NO. 2, APRIL 2007

© 2007 ACADEMY PUBLISHER



computed by the fringe numbers shows the correctness of
the measurement.

Example 3: We obtained at pixel (u, v) = (841, 501)
wrong values. The fringe numbers we calculated through
our lookup table are η1(u, v) = 28, η2(u, v) = 24 and
η3(u, v) = 21. The same comparison as in example 1
based on the matrices

Aϕ =


 0 4.292 6.686

−4.292 0 2.393
−6.686 −2.393 0


 (39)

and

Aη =


 0 4 7

−4 0 3
−7 −3 0


 (40)

leads here with
Aϕ �≈ Aη (41)

to a contradiction, which indicates an incorrect measure-
ment.

The reliability of this method is accentuated if the
signal-to-noise ratio is set to a value that is smaller than
the maximal rounding distance of 0.5. But this value
should be set carefully. Due do an incorrect sinusoidal
form of the projector patterns there may be also normal
aberrations.

The validation of the phase difference matrix is not
only usable for errors caused on sharp edges. Similarly
we can recognize errors due to object movements, light
reflections and other reasons. Generally regards, if we
obtain an implausible value in the phase difference matrix
we are able to react.

V. IMPLEMENTATION AND RESULTS

The proposed method is realized in our lab at the Uni-
versity of Magdeburg following the experimental setup
described in section III. The software is modularly imple-
mented in C++. It is structured in the parts ’3D surface
reconstruction’ and ’absolute phase measurement’. The
absolute phase measurement, actually the calculation of
projector coordinates, works independent from the other
part. In principle we also can use the projector coordinates
as an input for any other 3D calculation method. For this
reason the focus of our comments in this section will be
on absolute phase measurements.

First, we have to clarify a practical problem while
using our method. Real measurements show that false
computations can occur caused by measuring noise at the
jumps of the phase value function. It happens in points
where the phase value function of at least two different
pattern sequences have a jump in the same projector
coordinate. To solve this problem on a pixel (u, v) we
virtually shift the measured phase values of all pattern
sequences Mi with

ϕ′
i(u, v) = ϕi(u, v) + ϕi(∆ξ) , (42)

whereby the offset values correspond to a constant shift
∆ξ of the projector coordinate. Through this operation the

position of the phase value jumps shift in different ways.
The effect is that at the problematic point the jumps of
the problematic phase value functions disappear. Hence,
an error free computation can take place, whereby we
obliviously get a modified projector coordinate ξ ′(u, v).
To get the actual projector coordinate we have to undo
the virtual shifting with

ξ(u, v) = ξ′(u, v) − ∆ξ . (43)

The implementation of our method does not demand
sophisticated algorithms. Preliminary, we have to generate
the lookup table according to the iteration scheme given
in equation 33. Regarding the actual measurement we just
have to implement a set of equations. If n is the number
of fringe patterns with different periods, then for each
pixel one has to compute

• n phase values according to equation 1,
• n − 1 components of the phase difference vector

according to equation 12,
• the summation of n addends according to equation

30
• and one access to the lookup table.

The computational cost of the implementation to get the
absolute phase measurements is obviously very good. The
operation to get the phase values (step 1) is the most
expensive. It is the only one that depends on the number
of images. However, all computations are linear. With a
Pentium 4 standard PC the running time for computing
projector coordinates using a one mega pixel camera and
24 images is less than one second. Compared with other
implementations based on phase shifting that is a good
value. An example of a complete computation of projec-
tor coordinates from three different pattern sequences is
shown in figure 7. The projector coordinates are presented
as normalized grey tone values between ξ = 50 (white)
and ξ = 250 (black).

Figure 7. Computation of absolute phase measurements (projector
coordinates) from three different pattern sequences

A more detailed illustration is given in figure 8, which
shows the graphs of the three phase values and the
projector coordinate, respectively, for a constant vertical
image coordinate with y = 816 (in figure 7 tagged with a
dashed line). We can see that the gradient of the projector
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coordinate function is much clearer than the gradients of
the phase value functions. Generally, this leads to very
good results concerning the 3D reconstruction.

��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
�
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
���
��
���
����
����
�������

��

��
�
�

�
�
�
�
�
�
�
��
�
��
�
��
��
��
�
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
���
�
�
�
�
�
�
�
�
�
�
�

��
�
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���
���
���
�

���
����

�
����
�
�
�
�
�
�
�
�
�
�
��
��
�
��
��
�
��
��
�

��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
���
���
���
���
��

��
���
���
����
����
��

0

1
ϕ1(u, 816)

u

�
�
�
�
�
�
�
�
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
���
���
��
���
���
���
����
������

�����
�
�

�

�
�
�
�
�
�
�
�
�
��
�
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
���

��
�
�
�
�
�
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���

��
���
��
��
���
���
��
���
���
���
���
����
���
����
��

�

����
�
�
�
�
��
��
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
��
���
��
��
���
���
��
���

���
���
���
���
���
����
����
����

0

1
ϕ2(u, 816)

u

�
�
�
�
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
��
���
���
�

���
���
���
���
���
���
���
����
����
�����
������������

�
�

��
�
��
�
�
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����

��
�
�
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
��
���
�

���
���
���
���
���
���
���
���
���
����
����
�����
��

�

����
�
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
�

��
���
��
���
��
��
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
����
����
����
�

0

1
ϕ3(u, 816)

u

�����
�������

��������
���������

���������
����������

����������
�����������

������������
������������

�����������������
�������

������
�������

��������
��������

���������
����������

����������
������

������
�������

��������
���������

����������
����������

�����������
������������

�������������
�����������������

������ �������
�������

��������
���������

���������
����������

����������
�����������

�����������
������������

�������������
���������������

����������������

100

200

ξ(u, 816)

u

Figure 8. Graphs of phase value functions versus the calculated
projector coordinate function on a constant vertical image coordinate

Even for tricky surfaces we get usable measurements
without any additional correction. Figure 9 shows on the
right side the surface of a dolly and on the left side the
three applied fringe patterns with different periods. Figure
10 represents the surface measurements of a printer device
and the image view of both cameras. Many holes and
edges with occlusions in at least one of the cameras make
this surface especially difficult. Our method produces only
few measuring errors that were not caused by noise. The
lack of surface points, both in figure 9 and in figure 10,
are due to occlusions and the different view points of the
cameras.

original pattern images

3D-surface

Figure 9. Reconstruction of a dolly

left camera right camera

3D-surface

Figure 10. Reconstruction of a of a printer device

We compared our multi period method with a method
based on the combination of Gray code and phase shifting.
For this we used the same measurement setup with a
projector and two cameras as we already described in
section III. For statistical investigations we used a plane
as a test object and computed the standard derivation
of the measuring error in a volume of 0.3 × 0.3 m2.
For example by using 10 images for Gray code and 6
images for phase shift we get a standard derivation of
10.2 µm. Using all 16 images for phase shifting with
three different pattern sequences we get 8.6 µm. The
increase of the accuracy is due to the equivalent use of all
images and the average operation in equation 28. We can
confirm improvements in that range for other objects and
measurement setups, though. A systematic investigation
we didn’t realize because the support of the research
project was finished.

From our point of view, a more important advantage
of the proposed method is the avoidance of typical phase
shift errors. Discontinuities, occlusions and reflections on
the surface of the object normally lead to large deviations
of the measured phase values. It is difficult to reduce
errors like these automatically through mathematical oper-
ations. Using the lookup table in our method most of these
bad phase values are not computed at all. Additionally,
we can validate the measurements by testing the phase
difference matrix as described in subsection IV-F. For the
absolute phase measurement this leads to a demarcation
in the areas of discontinuity as already shown in figure 7
and figure 8, respectively.

The advantage of our method becomes obvious, if we
compare our 3D surface measurements with the results
of classical phases shifting without any error correction.
As shown on right side in figure 11 there are a lot of
measurement errors in the surface reconstruction of the
sphere objects computed by the classical method. Figure
12 represents the errors in more detail on a cut parallel
to the xz-plane.
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new method classical method

Figure 11. Comparison of 3D measuring results for the sphere objects
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Figure 12. Surface measurements from the new method (left) and the
classical method (right) on a constant coordinate y = 96.5mm

To consolidate our results in respect of the above men-
tioned avoidance of phase shift errors we present some
statistics. For the sphere objects and the printer device
we consider the error reduction of calculated projector
coordinates of both the left camera view and the right
camera view. Table I shows at first the total number
of measurements with and without a defined entry in
the lookup table, respectively. Thereby, the lookup table
based on the phase difference vector. Secondly, Table I
shows for all defined measurements the standard deviation
between the real values of the measured phase differences
and the expected integer values of the differences cal-
culated by the corresponding fringe numbers. Therefor
we consider all values from the phase difference matrix.
The lower part of table I shows the total number of pixel
measurements, which we can exclude as an error due to
a deviation higher then a fixed value between the real
phase differences and the expected integer differences.
This value we use as a signal-to-noise-ratio to define the
reliability of our measurement.

TABLE I.
EXCLUSION OF ABSOLUTE PHASE MEASUREMENTS

sphere objects printer device
left right left right

defined entries 153894 162329 1736636 1765881
undefined entries 3552 1279 7793 6201
standard deviation 0.117 0.085 0.076 0.079
deviation > 0.5 4101 1433 11015 7989
deviation > 0.4 5521 1995 15864 11996
deviation > 0.3 7504 2933 21149 17761
deviation > 0.2 10912 4695 29062 27722
deviation > 0.1 23343 11728 85087 110879

From table I we can see, that the wrong measurements
are rejected in the first step, because there is no entry in
the lookup table for the phase difference vector calculated
from the measured phase values. But this way we cannot

catch all errors. Using the phase difference matrix with
a signal-noise-to-ratio lower than 0.5 we can extinguish
some more errors. Figure 13 presents the distribution of
detected errors in respect to a measurement of the sphere
objects, which are additional illustrated as a bright image
from the left and the right camera view.

camera views:

detected errors in the left camera image:
undefined entry deviation > 0.3 deviation > 0.1

detected errors in the right camera image:
undefined entry deviation > 0.3 deviation > 0.1

Figure 13. Distribution of detected errors

As already mentioned, a too small signal-to-noise-ratio
leads to the exclusion of correct measurements. This can
be seen well in the left camera with a deviation constraint
of 0.1. The difference between both cameras concerning
the amount of rejected pixels is due to the different points
of view and different optical settings.

A signal-to-noise-ratio lower than 0.3 leads to the
exclusion of weak measurements. It is difficult to say
which of them are actually phase shift errors. However,
weak measurements are due to strong shading effects at
the object boundaries. This means they are bad values
anyway. Important for our method is the fact, that we
exclude nearly all absolute phase measurements, which
are definitely wrong, before the surface reconstruction is
going to start.

VI. CONCLUSION

The proposed method is an improvement over the
classical phase shifting. By the use of several pattern se-
quences with different periods we get absolute phase mea-
surements, which we call projector coordinates. Thereby,
ambiguities in the solution of the correspondence prob-
lem are impossible. Thus no further information like
approximate values or Gray code images are needed. The
3D surface reconstruction accomplished by a setup with
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two cameras and an implementation of our object based
algorithm provides us with very good results even for
tricky objects. By homogeneously using all images which
were taken, the average accuracy of the 3D measurements
can be increased.

Our method rests on a number theoretical approach
which we generally derived in this paper. That means, the
composition of the phase shift sequences we are using are
not limited. Depending on the properties of the projector
and the requirements of the application we can create
optimal pattern sequences. This is an important basis to
achieve a high performance of the 3D measurement.

Furthermore, we introduced new options to avoid er-
roneous phase measurements. This brings us consider-
able advantages for the 3D reconstruction of objects
with surfaces being jagged and less homogenous. We
explained the problem of mixed phase values on edges
with occlusions. Even though this is one of the main
reasons for errors, there are a lot of other sources of
errors, for example surface reflections or unintentional
object movements. To reduce errors we derived a powerful
measurement test by simply comparing the real phase
difference matrix with the integer phase difference matrix.
The results that we obtain are convincing.

The implementation of the proposed theory to calculate
absolute phase measurements is less complex due to the
lack of involved iterations. It is only based on a few equa-
tions which are solvable in linear time. Through the use of
a lookup table the computation is even very fast. Together
with the implementation of our 3D method we receive a
very powerful tool for optical surface reconstruction.
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