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Abstract: We present an approach to develop algorithms to offer ‘Learning from Demonstration’. Our aim 

is to realize Computer Vision as resource-efficient as possible in applications where people interact with 

computers or -as a special case- with robots. This paper explains the development of a classification 

program which is to be integrated to a robot that will autonomously play chess. The problem is to perform 

a classification on a 12 class data set of chess pieces which works on a real-time video feed. We develop two 

different approaches to solve the problem: A one-step classification is compared to a two-step procedure 

based on accuracy, computational time and robustness. 
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1. Introduction 

Computer Vision (CV) is becoming increasingly important in our everyday lives. From leisure activities 

(3D cinema, Xbox) to device operation (gesture recognition on PC), social media (Facebook facial 

recognition) to traffic (autonomous cars) – in many areas CV technologies are being tested and used. 

Today's standard CV applications are used with machine learning, e.g. in order to detect objects. These 

are usually trained monitored (supervised). If as many objects as possible are to be detected, large amounts 

of data (e.g. images) and a high computing capacity are required. Often, supervised and unsupervised 

approaches are combined [1]. 

"Learning from Demonstration" is a learning method that is used permanently by us humans: The 

teacher demonstrates something, the students imitate it. When robots are used, in addition to object 

recognition, targeted gripping offers an additional challenge: The exact position of objects and optimal 

gripping surfaces are required. Using CV based "Learning from Demonstration" – algorithms can avoid 

dangers that can arise from the direct contact of humans and robots in a learning phase. A first approach to 

this is provided by recent studies of Yezhou [2], which show how individual actions and their combination 

can be learned and executed by automatic analysis of a video clip by a robot .  

The use of this technique is not limited to the use to control a robot: If a computer learns to track objects 

(tracking) and track operations with the help of a camera, this new ability can be used in many scenarios 

for communication between humans and computer. 

Our project investigates methods to realize CV as resource-efficient as possible in applications in which 

people interact with computers (human-computer-interaction HCI) or - as a special case - with robots.  

By analyzing a video, objects and their change of location are to be detected, this information is to be 
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processed by machine learning and an instructions need to be created for the computer/robot. Camera 

images are thus translated into an abstract description of the process. To do this, detection algorithms need 

to be expanded accordingly. We call this approach "CV Learning from Demonstration (CVLfD)." 

The lessons learned are then used to develop CVLfD – algorithms. At the moment there is a variety of 

"learning from demonstration – algorithms." The following variants [3], [4] are particularly established: 

Interactive Reinforcement Learning (Int-RL) , Behavior Networks (BNets), Confidence Based Autonomy 

(CBA) , and  Reinforcement Learning (RL). In our project, different methods are implemented and 

compared with each other. 

Our model project is a chess playing robot [5]. The project is modular, so that the individual modules can 

also be used independently. Our goal is to develop a chess playing robot which uses camera to visually 

sense the chess pieces and the surroundings. The objective is to develop object classification architecture 

with the following key-points: 

Minimum computation time, high classification accuracy, the model should be able to learn new objects. 

In addition, the classification shall be performed from limited number of images that are shot with mobile 

phone camera.  

2. System Architecture 

2.1. Softwaremodel 

The software development for a chess playing robot can be simplified to the tasks given below: 

• Object recognition-: Identifying the different chess pieces, their positions, and the surrounding. 

• Object position estimation: Identifying the coordinates of the chess pieces in 3D space of the chess 

pieces relative to the robot for manipulating the chess pieces. 

• Object tracking: Keeping track of the chess moves from the opponent to identify the changes in the 

game. 

• Chess game: The program would include the game methodology and rules for the execution of a 

well-defined chess game. 

 

 
Fig. 1. Process flow of a chess playing robot. 

. 

2.2. Methodologie 

There are many factors affecting the performance of a Convolutional Neural Network, such as: the weight 

initialization, the activation function, the classifier, and the architecture of the network. 

Weight initialization is the initial assigning of weights to the neurons. Weights are initialized by assigning 

constant values, or at random for example, Gaussian weight filler which uses a fixed standard deviation 

value was introduced. When these techniques were used, the weights were not converging when the 

number of layers in a network increased. 

Thus, Glorot and Bongio [6] suggested a technique, which is called Xavier initialization in the Caffe 

library .This fills the weights based on the number of inputs, and number of outputs in a particular layer. In 
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this project, the weights were initialized using Xavier initialization as it speeds up the training and has a 

higher probability for convergence. 

The activation biases in the fully connected layers were initialized with a constant value of zero. Rectified 

Linear Units (ReLU) are the better choice compared to the other available functions like sigmoid or 

hyperbolic tangent, because there is no saturation of weights which would produce dead filters. In addition, 

the ReLU function is computationally cheap and it converges fast. In the report, we have treated the ReLU 

layer as a part of the layer on which the activation function is applied, even though whereas defining the 

architecture the ReLU layers were defined as separate layers. For classification, a Softmax classifier (a feed 

forward network which uses Softmax loss function) was used in all the models. 

This classifier was preferred over the Support Vector Machine (SVM) because of the loss functions nature 

to always reduce the back propagated loss value. This means, that the output could be interpreted as a 

confidence level in the classification. 

This project presents two architectures for classifying the chess pieces: The 1-Step Model which has a 

single classifier and the 2-Step Model has two classifiers. The models are explained in the following 

subsections.  

2.3. 1-Step-Model 

The 1-Step Model works with HSV images. No prior knowledge is used to breakdown the logic. The input 

is a HSV image from which features are learned and then used for classification. 

The neural network consists of 7 layers excluding the input layer and considering the ReLU layers as a 

part of the layer (i.e. convolution layer or fully connected layer) which it activates. The first 5 layers are for 

constructing features and the last two layers are for classifying. 

Fig. 2 presents the architecture of the 1-Step Model. 
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Fig. 2. 1-step-model. 

 

2.4. 2-Step-Model 

The chess pieces can be grouped into 2 classes based on color, and six different classes based on 

geometry. Thus we developed a model which uses the Binary classifier to classify the different colors by 

using the HSV images and the piece-wise classifier on geometry works on the greyscale images.  

The prediction is made depending on the combination of the output of both the classifiers. Fig. 3 shows 

the architecture of the Binary classifier. 
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Fig. 3. Architecture of the binary classifier in the 2-step-model. 

 
Fig. 4 depicts the piece-wise classifier's structure. The network has a depth of six layers excluding the 

input layer and considering the ReLU layers as a part of the layer (i.e. convolution layer or fully connected 

layer) which it activates. The first 4 layers are the feature constructing layers and the last two layers are for 

classifying. 
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Fig. 4. Architecture of the shape-based classifier. 

 

3. Implementation 

3.1. Software 

The software used in the program was C++, python and their libraries. The camera was used to capture 

the necessary video and images for training and testing the network. It was the rear camera of Samsung 

Note II with 8 MP. 

Libraries such as Numpy [7], OpenCV [8], and Caffe [9] were used to ease the process: Numpy was used 

in array operations and for statistical calculations, OpenCV was in the initial phase to develop the feature 

set for ECO-features. OpenCV was used in converting the color space of the image whereas working on 

Convolutional neural networks. 
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3.2. Dataset 

An 8MP rear camera of Samsung Galaxy Note II has been used to take 60 second long videos of frame 

size1920_1080 pixels of all 12 distinct chess pieces from all around to have different orientations. 

Based on this sequences 50 images per class were encoded in JPEG, cropped manually to center the 

objects, converted to a grayscale and a HSV color space image, resized to 256 x256 pixels and encoded with 

labels as LMDB. Fig. 2 shows the chess pieces we used to prepare the data set. 

 

 
Fig. 5. Chess pieces/ data set. 

3.3. Training 

The network learns from examples and regulates its learning by losses passed through the network. The 

learning method, the learning rates, and the required training time are important factor to be considered 

during training. The stochastic gradient method was chosen for weight updates as it converges fast when 

used in networks with ReLU activation. The stochastic gradient descent method is a suitable choice if lower 

training time is necessary. 

Since lower learning rate converges slow and the higher learning rate may settle at a local minimum of 

the loss, the right learning rate for a task is to be found through trial and error [10]. 

4. Experiments and Results 

Experiments were conducted to study the overall accuracy of the model, the accuracy in classifying 

individual classes and the computation time. Further analysis was performed to understand the learned 

features. Further, it provides the results of the experiment to check the robustness of the model to changes 

in size of the object in the image. The data was split into five subsets from which one subset was used for 

testing. 

The remaining four subsets were used for training. This was done in a repetitive fashion by choosing a 

new subset from the initial split as the testing set and the remaining as the training until all the subsets 

were used as a test set. This technique ensures the repeatability of the model for this classification task and 

its performance as an independent testing set. 

The average accuracy of the 1-step model 12 classes is 70%, whereas the overall average accuracy of the 

2-step model is 58%. In the 2-step model, the Binary classifier reached 100% accuracy, and the six class 

classifier processing on gray images reached an average accuracy 58%.her. Table 1 gives the results of the 

fivefold cross validation performed on both models and the average accuracy. 

It has become clear from the results of the confusion matrix that weights are biased more towards some 

classes compared to the other. Therefore, to understand which regions of the image are mainly learnt as 
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features for the classes we use a simpler version of the technique used by Zeiler and Fergus [11], [12]. The 

technique was deployed on the two multi class classifiers and was fed with images of size [300 x 300] pixels 

for pixel wise classification. The color image classifier classifies using a _filter of size [116 x 116] pixels and 

the grayscale image classifier uses a filter of size [61 x 61]. The output of the classifier is a matrix of size [23 

x 23] with the prediction classes and the confidence of the prediction. This information is used to plot a 

heatmap to visualize the important regions of a picture during classification. 

 

Table 1. Cross Validation Results 
Iteration/ 

Accuracy 

1st 2nd 3rd   4th 5th Average 

1-Step  

classifier 

0.7  0.6 0.75 0.75 0.7 0.7 

Binary 

classifier 

1.0 1.0 1.0 1.0 1.0 1.0 

Piece-wise 

classifier 

0.5 0.8 0.7 0.6 0.3 0.58 

2-Step 

Overall  

0.5 0.8 0.7 0.6 0.3 0.58 

 

 
Fig. 6. Pixel wise classification of a bishop. 

 
The first row contains the input images, the second row the classification heatmaps of the pixel wise 

classifier. 

(a), (b) - HSV image; 
(c), (d) - Intensity image displayed as heatmaps 
(e), (f) - Classification heatmap of the HSV image (a), (b) respectively 
(g), (h) - Classification heatmap of the HSV image (c), (d) respectively 

 

Fig. 6 illustrates exemplary the procedure for the pixel wise classification of the class bishop. The heat 

map of the HSV images shows that the region of interest lies to the side with a cut through at the top. In 

addition, it classifies at least half of the image with the right label which shows that the features learned by 

the network are distributed over the object and not at a point. Thus, even if some part is occluded a right 

classification is possible. The learned features of the grayscale image are bad because it only covers a small 
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region which would result in poor classification performance in situations where the orientation differs or 

the point of interest is occluded. 

Additionally the region of interest in classification of the black bishop is mostly covering the bottom 

shape and the background of the image. The bottom shape of all the chess pieces is similar which may lead 

to wrong classification. It is clear the features extracted for learning in the 2-Step model for bishop is bad. 

It is clear that the Piece-wise classifier in the 2-Step model needs improvement because the features it 

has learned are not suitable and too few. The 1-Step model has learned good features, but in the white 

classes the distribution seems to be too distributed which might be a reason for the poor class wise 

accuracy in the white pieces. 

The total classification time is important as the motion of the robot and the chess game algorithm 

depends on the information it receives from the visual feed. To classify on live video stream without lag, the 

total time from the capture of video till the output of classification should be less than 500 ms to achieve a 

prediction with a frame rate of 2 frames per second. Table 2 gives the average time and the standard 

deviation of the computation. The data was collected from recording the runtime for 60 images. 

 

Table 2. Computation Time of the Different Classifiers 

Process 

1-Step Model 2-Step Model Binary classifier 2-Step Model Piece-wise Classier 

Mean time [s] Std. dev. [s] Mean time [s] Std. dev. [s] Mean time [s] Std. dev. [s] 

Loading the image 0.0284 0.0193 0.0165 0.0037 0.0798 0.0226 

Resizing the image 0.0291 0.0089 0.0130 0.0022 0.0964 0.0133 
Converting the image 

color 0.0018 0.0048 0.0000 0.0000 0.0010 0.0003 
Preprocessing the 

image 0.0046 0.0012 0.0003 0.0000 0.0003 0.0000 

Inputting the image 0.0005 0.0001 0.0003 0.0000 0.0016 0.0003 

Classifying the image 3.7573 0.0227 0.0421 0.0040 1.3273 0.0165 

Total 3.8218 0.0486 0.0722 0.0080 1.5065 0.0401 

 

When compared the total time taken for classification, the 2-Step model performs better than the 1-Step 

model by 2 folds. 

5. Conclusion 

This research has been a first step towards our goal to enable machines to “learn from demonstration” 

and helps to automatically classify objects in a specific application scenario. Two components of this 

toolbox have been demonstrated here: the proposed 1-step model with single classifier and the 2-step 

model with two classifiers. The experiments show that the 1-step model has performed better in most of 

the aspect compared to the 2-step model. However, it still needs a significant improvement of the algorithm 

to reduce the classification time such that it becomes usable for real time application. For this purpose, the 

next step is to verify whether the overall performance of the system run in hardware accelerated systems 

as well as implementation in different programming languages can improve the speed. Moreover, further 

experiments will be conducted which includes altered image selection in the learning process in term of 

number, perspective, exposure, and scales to improve the feature detection. 
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