
Complexity Metrics for Component Based Software — A
Comparative Study

Sonal Gehlot1, PoojaRana1, Rajender Singh2*

1 Maharshi Dayanand University, Rohtak, Haryana, India.
2Department of Computer Science & Application, Maharshi Dayanand University, Rohtak, Haryana, India.

*Corresponding author: Tel. 08199023624, email: chhillar02@gmail.com
Manuscript submitted March 10, 2019; accepted May 20, 2019.
doi: 10.17706/jcp.14.6 389-396.

Abstract: The Component Based Software Development (CBSD) approach is becoming the trend for software

development and is based on developing the software from existing components instead of developing

software from the scratch level. Measuring the software complexity is an important aspect during software

development as it is an important determinant of software development effort, testing effort, cost,

maintainability etc. Interactions/interfaces among components play an important role in contributing

complexity to a component based software. In this paper a comparison between different complexity metrics

developed by different authors is performed. These metrics are performed by taking different factors to

calculate the complexity of the components based software, these factors are instance variables, instance

methods, control flow and interface methods etc.. The comparison is performed by taking some quality

factors into consideration like maintainability, Integrity, complexity, testability, customizability etc.

Key words: CBAD, coupling, weighted assignment technique, complexity metrics, cyclometric complexity,

and black box component.

1. Introduction

Software metrics play a very important role in assessing and predicting various attributes of software such

as complexity, reusability, maintainability, testability etc. Among these attributes complexity affects all other

attributes of the software [1]. Software Complexity measures have great importance because it indicates

scope of further improvement in software development. Higher value of complexity increases efforts of

testing, maintenance and also difficult to reuse.

The component based software development (CBAD) is one of the most important paradigms. CBAD

approach is increasingly being adopted for software development. This approach uses reusable components

as building blocks for constructing software application. The main aim of this approach is to minimize the

development cost, time and efforts by mean of reuse [1].

The major problem faced in Component development is its complexity. So it is necessary to measure the

software complexity and reduced it to achieve the maximum benefits of CBAD with minimum cost and efforts.

There are several metrics which are available for measuring software complexity but they are not suitable for

CBAD.

Software complexity cannot be removed completely but can be controlled only. For controlling of

complexity, from time to time many researchers have proposed various metrics for evaluating, predicting and

controlling software complexity. Traditional software metrics are usually applicable to small programs,

389 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

whereas the metrics for object-oriented and component based software applications should depend mainly

on the granularity and interoperability aspects of the classes and components. The major factor influencing

the CBAD is the dependency among software components, which is necessary and desirable because one

component may provide the services to another component. Then there should be an interface between the

components.

The following figure (Fig. 1) shows the technique for developing software application from existing

components (cp).

 -

 -

 -

 -

 -

Components Shelf Selection Assembling Software

Fig. 1. Component based software development technique.

The paper is divided into sections. First section is introduction; second section has comparison of different

complexity metrics. Section 3 has key observation and Section 4 concludes the paper.

2. Complexity Metrics for Component Based Application

The dependency among components may be defined as the reliance of a component on others to support

a specific functionality or configuration. In CBSE application the components interact with other components

by sharing information in order to provide application functionalities. This composition creates interaction

that promotes dependencies among components. Application functionalities cannot solely encapsulate

within one component. Therefore changing a component may affect that composite functionality, which is

reflected in different components. In addition, replacing a new version of a specific component might involve

replacing the component on which it depends, in order to preserve a specific application‘s functionality.

The component complexity closely depends on what contributes to develop the components. Thus there

are four elements that affect the component complexity. First element is Variable factor that tells complexity

of the variables defined in the component. The variables may consist of member variables of a class having

scope for the entire class and the parameters, which are local to a particular method. The second element is

interfaces, which are the access points of component, through which a component can request a service

declared in an interface of the service providing component.

Interface complexity is defined as sum of complexity of the interface methods of the class. Third element is

coupling factor that tells rate of coupling of the methods in the component. Fourth element is cyclometic

complexity of the methods of the component.

In this paper we will review the different types of complexity metrics and compare them.

Nael SALMAN ÅÔ ÁÌȢ [2] 2006 author in this paper developed several complexity metrics for component based

system. The main focus of the author is to find out the strength of the software, by defining metrics on its structural

complexity [2]. The main factors that determine the complexity are components, connectors and composition tree.

cp1

cp5

cpn-1

cp1 cp2

 cp3

cp4

cp5 cp6

cpn

 New

 Application

390 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

For components three metrics are defined such as TNC, ANMC and TNIC, for connectors three metrics are

developed like TNL, ANLC, ANLI [2]. the author defined a suite of metrics for component based software and the

definition of component based software is adopted by author which is given by Szyperski (1999) [2].

Gill and Balkishan ÅÔ ÁÌȢ [3] 2008 their attempt was to identify the impact of dependency among components

on software complexity. They proposed two metrics CDM and CIDM. Both the metrics can be applied once the

directed graph and adjacency matrix of the design is found [3]. The result of these metrics is analyzed in order to

determine as how the interaction among components and number of components affect the complexity of

component based application. These metric shows higher interaction between components increases the

complexity because of more coupling among component. Higher complexity means more expensive software and

less maintainability [3].

Gui Gui and Paul. D. Scott ÅÔ ÁÌ. [4] 2009 in this paper the author develop new metrics for coupling and

cohesion to measure the reusability of a component. These metrics are different from other metrics in three aspects,

first is degree of resemblance of one component with other component, degree of coupling, direct coupling and

cohesion relationship. Author measures quantitatively measure the complexity by taking these factors into

consideration [4]. A comparative analysis is performed between new metrics and existing metrics and found that

new metrics are much superior then existing metrics [4].

Narasimhan and Hendradjaya’s metric suite ÅÔ ÁÌȢ [5] 2009 in this paper author defined a metric suite for

component based software. Author defined two sets of metrics for measuring complexity and criticality. First set

of metrics are Component Packing Density (CPD) which describe the binding of the components. These metrics

relate all component constituents to the number of integrated component. Another set of metrics are Component

Interaction Density (CID), these metrics relates interaction between components and available number of

interaction in the system [5].

Kumari and Bhasin ÅÔ ÁÌȢ [6] 2011 the authors aimed to design a composite complexity measure to quantify

important aspects of complexity of a component based application. Two major complexity metric of CBS are one

due to individual component named as TC (CBS) and other due to its interaction with other component named as

IACC [6]. They take different factors like size, type of variables, nesting level of control structure to calculate the

individual component complexity. Graph theoretic notions and concept of weights have been used for interface

component complexity. The result shows that the effect of these parameters (Size, Nesting Structure, Control

Structure etc.) on complexity of a CBS is quite significant. The results also show that higher interaction between

components increases the complexity because of more coupling among the components [6].

Table 1. Metrics of Different Authors and Comparisons
Sr.No Metric Formula Used Description Author/s External

Quality
Attributes

1. Total No of
Components
(TNC) [2]

TNC= Count of all components
in the system [2]

The count of all components
in the system that appear in
different levels of
abstractions [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

2. Average no of
methods per
component(A
NMC) [2]

ANMC=total no of methods/
total no of component [2]

This metrics is estimated by
dividing the total number of
methods by the total number
of components [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

3. Total no of
links (TNI) [2]

TNI= count of all links [2] Count of all links appearing
in the system design model
in all levels [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

Sr.No Metric Formula Used Description Author/s External
Quality

Attributes

391 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

4. Average
number of
links between
components
(ANLC) [2]

ANLC= Total no of links/ Total
no of components [2]

Total number of links
divided by the total number
of components [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

5. Average
number of
links per
interface
(ANLI) [2]

ANLI= Total no of links
between interfaces/ Total no
of interfaces [2]

Total number of links
between interfaces divided
by the total number of
interfaces [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

6. Total number
of interfaces
(TNI) [2]

TNI=count of all interfaces in
all components [2]

Count of all interfaces of all
Components in the system
[2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

7. Average
number of
interfaces per
component
(ANIC) [2]

ANIC= Total no of interfaces/
Total no of components [2]

Total number of interfaces
divided by the total number
of components [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

8. Depth of the
composition
tree (DCT) [2]

DCT= Count of the number of
levels [2]

Count the number of levels
of the composition tree [2].

SALMAN et.al.
(2006) [2]

Integrability
and
maintainability

9. Component
Dependency
Metric (CDM)
[3]

CDM=В ὈὮ [3]

Dj=В ὴὥὸὬ Ὥȟ Ὦ [3]

The complexity results from
dependencies among
application components.
Dependency of a component
Ci to other component is the
number of all the paths in the
graph from Ci to the other
component [3].

Gill and
Balkishan et.
al. (2008) [3]

Complexity
Maintainability

10. Component
Interaction
Density
Metric
(CIDM)[3]

CIDM = [3]

This Metric computes the
ratio of total number of
direct interactions between
the components to the total
number of components [3].

Gill and
Balkishan et.
al. (2008) [3]

Complexity
Maintainability

11. Direct
Coupling [4]

[4]

It measures the direct
coupling between
Components [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

12. Transitive
Coupling [4]

[4]

It measures the transitive
coupling between classes Ci
and Cj due to a specific path
P [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

13. Weighted
Transitive
Coupling [4]

[4]

It measures the total
coupling of the software
system [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

14. Transitive
Cohesion of
the class [4]

ὅὰὥίίὅέὬὝ
В ὛὭά Ὥȟ Ὦȟ

ά ά

[4]

It measures the cohesion of
class by summing the
similarities of all methods
and dividing by total number
of methods [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

15. Intransitive
Cohesion of
class [4]

ὅὰὥίίὅέὬὈ
В ȟȟ

[4]

It measures the direct
cohesion between
components [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

16. Weighted
Transitive
Cohesion [4]

ὡὝὅέὬ
В

 [4] It measures weighted
transitive cohesion. The
value of WTCoh should lie
between 0 to 1 [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

17. Weighted
Intransitive
Cohesion [4]

ὡὍὅέὬ
В

 [4] It measures weighted
intransitive cohesion. The
value of WICoh should lie
between 0 to 1 [4].

Gui and Paul
et.al. (2009)
[4]

Complexity
Reusability

Sr.No Metric Formula Used Description Author/s External
Quality

Attributes

392 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

18. Component
Packing
Density [5]

CPDconstituent_type=
Π

Π
 [5]

It is a ratio between Number
of constituents and Number
of components [5].

Narasimhan
et.al. (2009)
[5]

Complexity
Criticality

19. Interaction
Density
Metric [5]

IDC=
Π

Π
 [5] It is a ratio between actual

interaction and available
interaction [5].

Narasimhan
et.al. (2009)
[5]

Complexity
Interdependenc
e
Interface

20. Incoming
Interaction
Density of
Component
[5]

IIDC=
Π

Π
 [5] It is a ratio between number

of incoming interaction used
and available number of
incoming interaction [5].

Narasimhan
et.al. (2009)
[5]

Complexity
Interdependenc
e
Interface

21. Outgoing
Interaction
Density of
Components
[5]

OIDC =
Π

Π
 [5] It is a ratio between number

of outgoing interaction used
and available number of
outgoing interaction [5].

Narasimhan
et.al. (2009)
[5]

Complexity
Interdependenc
e
Interface

22. Average
Interaction
Density
Metric [5]

AIDC=
Ễ

Π
 [5] It is a sum of each

components interaction
density and divided by total
number of components [5].

Narasimhan
et.al. (2009)
[5]

Complexity
Interdependenc
e
Interface

23. Total
Complexity of
a Component
Based System
(TC(CBS)) [6]

TC(CBS)= В Ὅὅὅ Ὦ ᶻ
ὡὸ Ὦ ᶻ Ὅὃὅὅ Ὦ [6]

This composite metric takes
different attributes of
complexity. The result shows
the effect of these
parameters on complexity of
a CBS [6].

Kumari and
Bhasin et.al.
(2011) [6]

Complexity
Testing
Maintainability

24. Interaction
Among
Components
Complexity(I
ACC) [6]

IACC= IIC+OIC [6] This metric shows the
interaction with other
component. The concept of
link is used to quantify
interface aspect of a
component [6].

Kumari and
Bhasin et.al.
(2011) [6]

Complexity
Testing
Maintainability

25. Average
Incoming
Interactions
Complexity
(AIIC) [7]

AIIC=
В

 [7] This metric shows the
average of the incoming
interactions of one
component [7].

Kumari and
Upadhyaya et.
al. (2011) [7]

Complexity
Reliability

26. Average
Outgoing
Interactions
Complexity
(AOIC) [7]

AOIC=
В

 [7] This metric shows the
average of the outgoing
interactions of one
component [7].

Kumari and
Upadhyaya et.
al. (2011) [7]

Complexity
Reliability

27. I
,
j

Average
Interface
Complexity of
a Component
Based System
(AIC(CBS))
[7]

AIC(CBS)=

В

 +
В

 [7]

This Metric shows the
average interface metric by
summation of incoming
interface and outgoing
interface metrics [7].

Kumari and
Upadhyaya
et.al. (2011)
[7]

Complexity
Reliability

28. Complexity of
Interface
Component
(CI) [8]

CI=
CSI+ICC(internal)+ICC(extern
al) [8]

This metric measured in
term of size of interface,
interface coupling with
internal subcomponents and
interface coupling with outer
components [8].

Chillar and
Ahlawat et.al.
(2012) [8]

Complexity
Reusability
Customizability

29. Average
Complexity of
CBS [8]

AC(CBS)=В ὅὍȾὲ [8] This complexity measured
the average complexity of
interface component [8].

Chillar and
Ahlawat et. al.
(2012) [8]

Complexity
Reusability
Customizability

393 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

Sr.No Metric Formula Used Description Author/s External
Quality

Attributes
30. Interface

Dependency
Metric (IDM)
[8]

IDM = Functionality obtained
from other
component/functionality of a
component [8]

The dependency of a
component can be as the
functionality obtained from
other components apart
from its own functionality
[8].

Chillar and
Ahlawat et.al.
(2012) [8]

Complexity
Reusability
Customizability

31. Average
interface
dependency
metric of CBS
[8]

AIDM(CBS)=В ὍὈὓȾὲ [8] This metric measured the
average complexity of
interface dependency metric
[8].

Chillar and
Ahlawat et.al.
(2012) [8]

Complexity
Reusability
Customizability

Kumari and Upadhyaya ÅÔ ÁÌȢ [7] 2011 they attempted to design an interface complexity metric for black box

components to quantify an important aspect of complexity of a CBS. In CBAD a component is linked with other

component and has interfaces with them. A link means that a component submits an event and other component

receive it. Interface between two components can be through incoming and outgoing interactions. They proposed

AIIC, AOIC and AIC (CBS) which calculate average incoming interaction complexity, average outgoing interactions

complexity and average interface complexity of a component based application [7]. The result shows that the effect

of interface parameter on complexity of CBS is quite significant. They propose that average no of interaction per

component in CBS should not be greater than five otherwise that CBS would be highly complex and will be more

prone to errors and hence unreliable [7].

Chillar and Ahlawat ÅÔ ÁÌȢ [8] (2012) they proposed two metrics CI and IDM for measuring complexity of

interface and interface dependency of CBS. These metrics are based on different constituents of an interface like

interface methods and interface variables with different weights assigned to them. Strength of proposed metrics is

computed using weighted assignment technique. Interface methods are classified according to data type of return

type and data type of arguments [8]. These metrics shows that higher dependency among components increases

complexity because of more coupling. There is a positive relation between complexity of interface metric and

interface dependency metric. It is clear that complexity of interface and dependency of interface increases with

increase in parameter involved [8].

3. Key Observations

Conducted a systematic study of the literature available for the interface metrics for component based

applications. These included research publications involving validations, proposals and all other studies

related to interface metrics [9]. The search for relevant publications was conducted through various ACM

journals. Reference checking was used to make sure that no relevant work was being left out [9]. The

contribution of different interface metrics based on the mapping level addressed by them was also studied,

which revealed that most of the interface metrics proposed to measure the interdependence of different

component using interface component [9].

Further analysis shows that most of the interface metrics address the maintainability, reusability and

testability quality factors. Hence a lot of work is still left to be done to prove these metrics are good indicators

of the overall software quality.

4. Conclusion and Future Scope of Work

This paper provides a thorough survey of interface metrics for Component Based application. The survey

conducted covers all the aspects of Interface Metrics for CBS and presents them in categorical form. From the

study it was observed that only a limited amount of work has been done in the field [9]. The other main

findings along with the possible future directions are.

394 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

¶ Most of the interface metrics studied lack of validations which limits their usefulness.

¶ The relationship of these metrics with external quality attributes was also studied and it was found that

most of the interface metrics proposed share a relationship with maintainability, testability and

reusability.

¶ Interface Metrics need to be evaluated for a wide range of large scale real world applications for both

metric validation and effective utilization for software quality assessment.

The overall study revealed that the interface complexity metrics domain is still has a scope in the field of

software engineering and faces a number of research challenges in term of empirical validation and

relationship with external software quality attributes. For the future research work, researchers can use these

metrics for indirect coupling measure as well as indicator for predicting the various qualities attributes like

maintainability, testability and reusability of component based software application.

References

[1] Kozaczynski, W., & Booch, G. (1998). Component-based software engineering.)%%% 3ÏÆÔ×ÁÒÅ, υωωȟ 34–36.

[2] Noel, S. (2006). Complexity metrics as predictors of maintainability and integrability of software components.

*ÏÕÒÎÁÌ ÏÆ !ÒÔÓ ÁÎÄ 3ÃÉÅÎÃÅÓȟ ωȟ 39-50.

[3] Gill, N. S. B. (2008). Dependency and interaction oriented complexity metrics of component-based systems.

!#- 3)'3/&4 3ÏÆÔ×ÁÒÅ %ÎÇÉÎÅÅÒÉÎÇ .ÏÔÅÓȟ χχɉφɊȟ 1-5.

[4] Gui, S. (2008). New coupling and cohesion metrics for evaluation of software component reusability.

0ÒÏÃÅÅÄÉÎÇÓ ÏÆ ÔÈÅ ύÔÈ)ÎÔÅÒÎÁÔÉÏÎÁÌ #ÏÎÆÅÒÅÎÃÅ &ÏÒ 9ÏÕÎÇ #ÏÍÐÕÔÅÒ 3ÃÉÅÎÔÉÓÔÓȢ
[5] Narasimhan, V. L., Parthasarathy, P. T., & Das, M. (2009). Evaluation of a suite of metrics for component based

software engineering (CBSE).)ÓÓÕÅÓ ÉÎ)ÎÆÏÒÍÉÎÇ 3ÃÉÅÎÃÅ ÁÎÄ)ÎÆÏÒÍÁÔÉÏÎ 4ÅÃÈÎÏÌÏÇÙȟ ϊȢ
[6] UshaChhillar, S. (2011). A journey of software metrics: Traditional to aspect-oriented paradigm. 0ÒÏÃÅÅÄÉÎÇÓ

ÏÆ ÔÈÅ ωÔÈ .ÁÔÉÏÎÁÌ #ÏÎÆÅÒÅÎÃÅ ÏÎ #ÏÍÐÕÔÉÎÇ ÆÏÒ .ÁÔÉÏÎ $ÅÖÅÌÏÐÍÅÎÔ (pp. 289-293). New Delhi.

[7] Usha, K., & Shuchita, U. (2011). An interface complexity measure for component-based software systems.

)ÎÔÅÒÎÁÔÉÏÎÁÌ *ÏÕÒÎÁÌ ÏÆ #ÏÍÐÕÔÅÒ !ÐÐÌÉÃÁÔÉÏÎÓ ɉτύϋωȤόόόϋɊȟ χϊɉυɊȢ
[8] Rajender, S. C., Priyanka, A., & Usha, K. (2012). Measuring complexity of component based system using

weighted assignment technique. 0ÒÏÃÅÅÄÉÎÇÓ ÏÆ ÔÈÅ φÎÄ)ÎÔÅÒÎÁÔÉÏÎÁÌ #ÏÎÆÅÒÅÎÃÅ ÏÎ)ÎÆÏÒÍÁÔÉÏÎ
#ÏÍÍÕÎÉÃÁÔÉÏÎ ÁÎÄ -ÁÎÁÇÅÍÅÎÔ ɉ)#)#- φτυφɊȢ

[9] Rani, G., & Paramvir, S. (2014). Dynamic coupling metrics for object oriented software systems- A survey. !#-
3)'3/&4 3ÏÆÔ×ÁÒÅ %ÎÇÉÎÅÅÒÉÎÇ .ÏÔÅÓȟ χύɉφɊȢ

Sonal Gahlot is an assistant professor in DPG College of Engineering since April 2016. she has

completed her B.E in computer science and engineering from Gurgaon Institute of Technology

 Tech in computer science and technology from ITM

University with First Division in 2011, completed pre-Ph.D course work from MDU, Rohtak

with first division in August 2013 and pursuing Ph.D from MDU, Rohtak. Her areas of interest

are software engineering, component-based software engineering, data structures, computer networks.

DAV Institute of Management, Faridabad, Haryana, India; and pursuing Ph.D in computer

science from Faculty of Computer Science and Applications, M.D. University, Rohtak,

Haryana, India. She holds a master of computer application (MCA) from M.D. University,

395 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

and Management, Gurgaon in 2009.

Pooja Rana is an associate professor in Department of Computer Science and Applications,

Rohtak, India. She obtained her master of technology degree in Information Technology from AAI-DU,

Allahabad, India.

Her research interests include software process reengineering, software engineering, software reuse,

software process customization and automation, and software process metrics. She has presented and

published various papers in international and national journals/conferences.

Rajender Singh Chhillar is working as a professor and head of Department of Computer

Science and Applications, Maharshi Dayanand University (MDU), Rohtak, Haryana, India. He

was the member of monitoring committee of campus wide Networking, M. D. University,

Rohtak. He obtained his Ph.D in computer science from Maharishi Dayanand University,

Rohtak and master degree from Kurukshetra University, Kurukshetra, Haryana.

Dr. Chhillar’s research areas include software engineering, software testing, computer

network security, software metrics, component and aspect based metrics, data warehousing and data mining,

information and network security and IT management. He has published more than 150 publications in

international and national journals/ conferences. Professor Chhillar has also authored two books: Software

Engineering: Metrics, Testing and Faults, Excel Books House, New Delhi, Application of Information Technology

to Business, Ramesh Books House, Jaipur.

396 Volume 14, Number 6, June 2019

Journal of #ÏÍÐÕÔÅÒÓ

