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Abstract: For autonomously driving cars and intelligent vehicles it is crucial to understand the scene 

context including objects in the surrounding. A fundamental technique accomplishing this is scene labeling. 

That is, assigning a semantic class to each pixel in a scene image. This task is commonly tackled quite well 

by fully convolutional neural networks (FCN). Crucial factors are a small model size and a low execution 

time. This work presents the first method that exploits depth cues together with confidence estimates in a 

CNN. To this end, novel experimentally grounded network architecture is proposed to perform robust scene 

labeling that does not require costly preprocessing like CRFs or LSTMs as commonly used in related work. 

The effectiveness of this approach is demonstrated in an extensive evaluation on a challenging real-world 

dataset. The new architecture is highly optimized for high accuracy and low execution time.  

 
Key words: CNN architecture, deep convolutional neural networks, depth information, semantic pixel-wise 
segmentation. 

 
 

1. Introduction 

In the automobile sector, understanding the scene context is important for autonomously driving cars 

and assistance systems. Scene labeling—assigning a semantic label to every pixel in the image—can 

therefore serve as foundation for higher level abstract applications [1]. Most works in the computer vision 

community focus on scene labeling on RGB images. In applications like autonomous cars however, 

additional depth information is often available, obtained e.g. using depth sensors, laser scanners, structure 

from motion or via stereo vision. This is the first paper, to the best knowledge of the authors, where both 

depth as well as confidence measurements are exploited for a deep learning based scene labeling system. 

Stereo vision is used in this paper, however the proposed method is independent of the actual method for 

obtaining those depth and confidence measures. Fig. 1 illustrates input and output of the presented method. 

The RGB image is provided for interpretability. 

 

 
Fig. 1. Exemplary scene labeling output, where colors encode semantic classes. Depth and confidence, 

where white encodes high confidence, serve as input to the CNN. 
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Fully convolutional networks (FCN) [2] a specific variant of convolutional neural networks (CNN) have 

been applied to scene labeling with great success. These are trained end-to-end on manually annotated data 

to perform a classification of each individual pixel into a predefined set of classes, e.g. car, pedestrian or 

road. FCNs are optimized to form convolutional filters, like edge and blob detectors as well as to exploit 

contextual information. However, state-of-the-art FCNs like the GoogLeNet [3] tend to erroneously segment 

large objects into several individual classes [4]. One reason for that is the absence of the absolute scale of 

objects in the world, which is not available in one individual RGB image. Depth, on the other hand, contains 

exactly this missing ingredient. In order to exploit the depth information using FCNs, several problems have 

to be addressed. First, FCN architectures are well studied in the RGB domain, however this is not the case 

for depth data. In this work, we propose to use a specifically adapted variant of the Network-in-Network [5] 

architecture. Second, initialization of CNN parameters requires large amounts of costly labeled data which 

is not available for depth data. We address this problem by using parameters of a network trained on RGB 

data and by adapting them to the depth domain. 

2. Related Work 

The first group of related work is formed by the methods that were used to obtain depth measurements 

together with confidence estimates using a stereo vision system. The Cityscapes dataset comes with 

disparity values for each RGB image pixel. Disparity is the displacement of the same world point between 

the left and right stereo image, which is inverse to the depth. It is obtained from stereo images via semi 

global matching (SGM) [6]. This algorithm is highly optimized for execution time and power consumption 

on FPGAs [7]. The additional confidence estimates are obtained subsequently and reflect the certainty of 

individual depth measurements [8]. 

The second line of related work contains methods that use depth information in CNNs or specifically for 

scene labeling [9], [10]-[12]. In most cases, additional features are calculated from depth, e.g. plane 

detection [13], direction of gravity [14], height above ground, or orientation of gradient [9], [15]. In doing 

so, additional computational power is required. We rely directly on the outputs of the stereo algorithm 

without the need of post-processing of any kind. Despite CNNs, support vector machines (SVM) [16], [17] or 

conditional random fields (CRF) [10]-[12], [18] are commonly used. CNNs outperform SVMs in many tasks 

and applications. Further, our application specific real-time demands forbid the use of costly LSTMs [19] or 

CRFs [20]. Thus, we opt for pure CNN based depth and confidence processing: an efficient 

Network-in-Network [5]variant. Furthermore, we focus on the development of a system that successfully 

exploits depth jointly with confidence data. In the automobile context, the Cityscapes dataset [4], a 

real-world dataset containing a large number of manually labeled images in challenging inner-city driving 

scenarios, is well suited for our approach. 

The main contributions of this paper are: (1) to the best knowledge of the authors, this is the first work 

leveraging disparity and confidence cuesin a CNN. (2) An innovative solution is presented enabling efficient 

and robust scene labeling with depth and confidence information in a lean architecture, ready for use in 

real-world applications. (3) This is achieved using a light-weight CNN architecture that does not require 

costly CRF or LTSM computation. (4) Convincing results are demonstrated in thorough evaluation on a 

challenging dataset.  

3. Method 

CNN architectures have been well studied and experimentally optimized in the computer vision 

community over many years in the recent past. Unfortunately, this is not the case for depth data as it is used 

in this paper, which we address to the fact that extremely large annotated datasets like ImageNet [21] do 
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not exist for depth data. Instead of designing a completely new architecture, we build on the assumption 

that depth and color data are related. In both, structures like blobs and edges need to be detected in order 

to recognize objects in the image. Accordingly, an existing rather simplistic and efficient network is used 

and fine-tuned, which was originally trained on RGB data: a Network in Network (NiN) [5]. 

A NiN consists of multiple network modules. Each is further composed of one convolutional layer with a 

kernel size larger than one that captures spatial information and one or multiple ρ ρ convolutional 

kernels. Note that such a module is equivalent to a multi-layer perceptron (MLP). Finally, a global average 

pooling yields a classification score per image. For more details, the interested reader is referred to [5].The 

authors also propose and deploy a specific NiN architecture consisting of three network modules, each 

formed by a convolutional layer and a two layer MLP. We build on this architecture and the pre-trained 

weights on Image Net. 

For our purposes we apply the following modifications to this network architecture. First, we need to 

address the fact that only a single depth channel serves as input instead of the three channel RGB input. 

Related work mainly eludes this by creating two artificial channels, e.g. angle of gradient and height above 

ground or by simply applying the depth channel three times. Instead, we fuse the weightsύ  for the three 

channels ὧ of the first layer by summation ύ  В ύ  which is equivalent to using the depth input for 

all channels. However, this step removes redundant degree of freedom for the training of the network 

weights. Second, the network is modified to produce one label output per pixel in the image, i.e.it is 

transformed to a fully convolutional network [14]. The global average pooling layer is replaced by multiple 

de-convolutional layers that perform an up-sampling of the semantic labels to the original image resolution. 

Additional skip layers help to retrieve the fine details of the input, which typically get lost in the contracting 

part of the CNN. Finally, we observe that interpreting disparity images requires a lot contextual information. 

However, the network’s contextual awareness is limited by the receptive field, which can be enlarged by 

increasing the number of pooling or spatial convolutional layers. Accordingly, we append an additional 

pooling layer, a NiN module with the corresponding skip layer to the end of the network’s contracting part, 

which allows the network to capture more contextual information. The overall architecture, now consisting 

of four instead of three NiN modules, is illustrated in Fig. 2. The final output of the network is one label per 

input image pixel illustrated on the right. In many applications, confidence information is available in 

addition to the sole depth measurements. This can be leveraged using an additional input channel that is 

added to the network. The corresponding weights of the first layer are initialized equivalently, as described 

above. 
 

 
Fig. 2. Proposed architecture consisting of four NiN[5] modules. Three skip layers refine the output. 

4. Experiments 

In this Section an in-depth analysis of the proposed depth CNN is provided. The details of the training 
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procedure and parameterization are stated and qualitative results are discussed thoroughly. 

4.1. Training and Dataset 

Evaluation is carried out on the Cityscapes dataset, a highly complex dataset with challenging inner-city 

driving scenarios and dense annotations of 19 classes on 2975 images for training and 500 images for 

validation, which we used for testing. Based on depth information alone, it is extremely hard to distinguish 

some of these classes, e.g. bus, train and truck, or traffic sign and traffic light. For this reason, the Cityscapes 

dataset also provides 7 so called categories, which better reflect the needs of autonomous vehicles, as 

illustrated in Fig. 3. The label accuracy is evaluated in terms of Intersection over Union ὍέὟ Ὕὖ Ⱦ Ὂὖ

Ὂὔ Ὕὖ  with TP, FP, and FN being the number of true positive, false positive and false negative pixel labels. 

In the experiments, results are reported on both tasks: the 19 classes IoU class as well as the 7 categories 

IoU category. 
 

 
(a) Ground truth for 19 classes (b) Ground truth for 7 categories 

Fig. 3. The corresponding ground-truth for Fig.1. Black areas are ignored. 

4.2. Preprocessing 

The depth information in the dataset has several characteristics, which might have negative impact on 

the label accuracy. First, it contains some invalid pixels encoded by a negative value in the disparity image 

obtained via stereo vision, cf. Section 2. In order to evaluate the impact of this invalid measurement, we 

compare to a preceding background interpolation [6]. Second, we use disparities as input to our network, as 

these meet the noise characteristics of standard stereo processing systems. However, disparity is a 

non-linear measure, which might harm the linear convolutional kernels in particular in the first layer. For 

comparison, disparity values Ὠ  are transformed to distance ᾀ via ᾀ ὦ Ͻ Ὢ Ὠϳ , with baseline ὦ and focal 

length Ὢ . Finally, the dataset is captured with different camera systems. Thus the camera calibration is 

inconsistent throughout the training images. In order to evaluate possible effects on the training, disparity 

data is normalized to ὦ ςς ÃÍ and  Ὢ ςςφς ÐÉØÅÌÓ. Normalized disparity values Ὠ  can be computed 

in accordance to Ὠ ὦ Ὢ Ὠ ὦὪϳ  .  
 

Table 1. All Preprocessing Steps, such as Transformation to Distance from Camera, Normalization to a 
Standard Baseline and Interpolation of Invalid Disparity Estimates, Harm the Label Accuracy 

 

 IoU class [%] IoU category [%] 

disparity 39.6 67.6 

normalized 39.2 67.6 

distance 36.1 65.8 

interpolated 36.2 65.0 

 

According to Table 1, the interpolation of invalid measurements leads to a relative performance drop of 

nearly ten percent, compared to the raw disparity input: the invalid measurements actually serve as feature 

for classification, e.g. in the sky or wall regions many invalid stereo estimates occur due to the low texture 
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in the image. Further, the disparity-to-depth-transformation has a similar negative impact on the 

classification performance, which might be due to the noise characteristics of the stereo method. Finally, 

the normalization of the camera system leads do a slight but less significant accuracy drop. Concluding, 

disparity values can be used directly from SGM algorithm output without the need of further costly 

preprocessing steps. 

4.3. Additional Input Features 

Related works commonly exploit different input features in addition to sole depth measurements, cf. 

Section 2. In contrast, we propose to use only the original stereo vision output as input and leave the rest to 

the end-to-end learning. For the purpose of comparison, the label accuracy of our network is also evaluated 

with the commonly used input feature height above ground. The height above ground  ώ   is computed from 

the known disparity  Ὠ ȟ   at position u and v in the image,  ὀ ȟ ό ὺ ρ 4, the known intrinsic camera 

matrix K, baselineὦand focal length Ὢ  by transformation to camera coordinates  ἦ ȟ ὼύ ώύ ᾀύ 4  via 

ἦ ȟ ἕ Ͻ ὀ ȟ ὦ Ὠ ȟϳ . Confidence values are used non-preprocessed and carry textural information, which is not 

available in the disparity domain. We evaluate the impact of the individual cues as well as their 

combinations. 

The results in upper part of Table 2 indicate that depth is the strongest of the three compared cues. In 

combination, it becomes apparent that depth and height above ground contain highly correlated 

information. Thus the combination of both cues in the lower part of the Table does not improve the label 

accuracy. Instead, the additional input modality seems to harm the training process due to the additional 

degree of freedom during parameter optimization. The opposite holds for confidence and depth. Although 

confidence alone yields worse results compared to depth, their combination leads to a significant boost in 

performance. We address this to the fact that confidence and depth contain complementary information 

that the network can exploit. 
 

Table 2. Results Using Different Input Features as well as Their Combinations. Depth and Confidence 
Information Complement Resulting in Improved Label Accuracy 

 

Input Features IoU class [%] IoU category [%] 

confidence (C) 37.2 67.1 

height above ground (H) 36.7 66.7 

disparity (D) 39.6 67.6 

D+C 43.8 71.6 

D+H 39.3 68.0 

D+H+C 43.7 71.9 

 

4.4. Architecture and Training Procedure 

Network initialization is a major problem when working with CNNs. Learning the network’s 

parameters requires a huge amount of data. In Table 3, label accuracy in terms of IoU is reported for 

different architectures and initialization strategies. Unfortunately, the training data of the Cityscapes 

dataset does not seem to be sufficient to train the full NiN from scratch, i.e. with random weight 

initialization. Significantly reducing the amount of filters per NiN module to one third also does not allow to 

train the NiN from scratch. Additionally reducing the number of channels in the Score 4 layer results in bad 

classification scores. In our experiments, reduced counts of network parameters led to worsened 

performance, which we address to the extremely reduced network capacity. Instead we argue that disparity 

and color information are related, cf. Section 3, and initialize with learned weights on ImageNet, cf. Table 3 

and Fig. 4. 
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Table 3. Learning from Scratch does not Succeed, however Initialization with Weights Trained on the 
ImageNet RGB Data Yields Satisfactory Results, Particularly on the Seven Categories 

 

 IoU class [%] IoU category [%] 

from scratch <5.0 <10.0 

⅓ filters  <5.0 <10.0 

reduced Score 4  29.4 60.9 

ImageNet initialization 39.6 67.6 

 

 
Fig. 4. The learned 96 convolutional filters with sizeρρ ρρ in the first layer after fine-tuning. The 

similarity to the original filters indicates that depth and color information are highly related. 
 

The Network Depth is a decisive factor for the network’s capacity to approximate functions as well as its 

hardware demands, i.e. runtime and memory consumption. For applied systems like autonomous cars, we 

seek a good compromise of both factors. Therefore, label accuracy and run time is evaluated depending on 

the network depth, more precisely, the number of NiN modules. In accordance to Fig. 5 and Table 4, we opt 

for four NiN modules for our purposes, since the fourth layer yields significant improvements in terms of 

label accuracy without considerably harming the runtime.  

 

Table 4. Absolute Runtime of Different Network Modules for up to Seven NiN Modules and the Score Layer. 
Overall Runtime Including Loss Layer and Up-Sampling is 36.0 ms Respectively 14.1 ms without 

 

Network module 1 2 3 4 5 6 7 Score 4 

Processing time [ms] 2.530 4.990 1.800 0.618 0.699 0.695 0.696 1.772 

Relative execution time [%] 17.97 35.50 12.82 4.40 4.97 4.94 4.95 12.61 

 

 
Fig. 5. Impact of the network complexity, i.e. the number NiN modules, on the label accuracy in terms of IoU. 

5. Conclusion 

This paper presented a novel method for processing depth together with confidence cues to perform 

scene labeling — assigning a semantic label to every pixel in the image. An efficient NiN architecture was 

transformed to a FCN and adapted to the depth and confidence domain, enabling the network to exploit a 

wide range of contextual information. The initialization problem was tackled using filters learned on RGB, 

which were fine-tuned for scene labeling on depth and confidence data. This method was superior to 

initialization from scratch, due to the insufficient availability of training data. Existing works neglect the 
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availably of confidence cues and commonly perform several preprocessing steps to boost performance. In 

thorough experiments was shown that such preprocessing steps do not improve the label accuracy. 

Furthermore, exploiting confidence cues as complementary cue led to significant improvements in terms of 

scene labeling accuracy. The proposed method is meant to form a building block in future work that 

combines the highly abstract depth features with those obtained from RGB images. Overall, a real-time and 

memory efficient FCN is presented that shows convincing scene labeling results and is readily applicable 

for many kinds of applications. 
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