

Weak Consistency Model in Distributed Systems Using
Hierarchical Colored Petri Net

Mortaza Abbaszadeh1*, Saeed Saeedvand2
1 Departement of Computer Science, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran.
2 Computer Engineering Department, Faculty of Electrical and Computer Engineering, University of Tabriz,
Tabriz, Iran.

*Corresponding author. Email: abbaszadeh@iauil.ac.ir
Manuscript submitted January 10, 2017; accepted April 25, 2017.
doi: 10.17706/jcp.13.2.236-243

Abstract: With regard to recent developments and wide application of distributed systems, keeping
consistency of data has been considered as a serious challenge in these systems. Colored Petri Net (CPN) has
high capacity in terms of modeling various algorithms and proving them mathematically. Also proving the
presented models has great importance. The importance of keeping consistency at distributed systems at
different levels always has been known. Therefore in this research, for first time a hierarchical model for
weak consistency along with UTC global time in CPN tools has been presented. The presented model is
proved and implemented by using a simulator presented in the CPN tools. In this study, it has been shown
that how our method modeled and coded by ML language for distributed systems so that an acceptable level
of the weak consistency at distributed systems is obtained.

Key words: Weak consistency, colored petri net, distributed systems, CPN tools.

1. Introduction
In distributed systems, services are considered as a structure and base in various computer systems. We

know that, with regard to distributed systems, transferring transactions among systems with various
distances is time-consuming in a distributed system. Therefore, keeping consistency in the databases and the
order of transactions execution in each distributed execution of the processing are important issues
investigated and studied. Although there are some constraints and challenges in distributed systems, they
should be consistent. The most ideal mode for distributed systems is data consistency. In reading and writing
operations of all data, all distributed systems must be considered similarly (Strict Consistency)[1], but
executing strict consistency is impossible due to data delay in transferring and sending items. Therefore,
various methods have been presented to keep the data consistency in distributed systems such as causal
consistency [2]-[5], which previously we provided a model for causal consistency at distributed systems
using hierarchical coloured petri net [6]. In this algorithm, operations executed in distributed systems are
followed with a special order such as sequential consistency model [7], weak consistency model [8], FIFO or
PRAM [7]. Weak consistency model is one of the most important algorithms among mentioned algorithms
[9]. Weak consistency algorithm is taken into account as a model for consistency of database. This
consistency method presents the concept of database synchronization and a set of reading and writing
operations by locating distributed processes in a uniform execution unit. Since there are various
requirements in consistency in distributed systems, weak consistency provides an appropriate level of

Journal of Computers

236 Volume 13, Number 2, February 2018

consistency. It should be mentioned that latency must be taken into account with consistency [10].
Petri nets [11]-[13] are graphical tools to formally describe concurrent activities and to analyze them in

terms of mathematical proof. Petri nets have capability of advance simulation for modeling algorithms by
using programming written into ML artificial intelligence language [14]. Hence, in this study, a hierarchical
model has been presented for modeling weak consistency operations, and then it has been proved and
implemented in CPN-TOOLS modeling environment. In a research, Gregor and his colleagues presented a
distributed model for B-tree algorithm with weak consistency [15]. In the presented model, indexing data
structure has been considered to obtain it by using B-tree method, so they presented a model for distributed
and parallel execution in cloud computing. In their presented algorithm, weak consistency has been used to
update data in decentralized B-tree structure. In this research, it has been shown that many distributed
processors can be managed with trivial repetition of internal nodes by using weak consistency. Zhenhai and
his colleague presented weak consistency of wavelet estimator for p-mixing errors [16]. In this study,
estimation of semi-parametric regression model continuously used in statistical models has been modeled.
Weak consistency has been used in p-mixing position to obtain estimations. In another research, Peter Bailis
and his colleagues considered data management [17]. In this study, the features of data consistency have been
investigated in storing distributed data, and weak consistency has been taken into account in this study.

The structure of this study is as follows. In the first section, colored petri net has been investigated and
studied. In the second section, weak consistency has been reviewed by presenting a simple example. The
model presented for weak consistency is investigated in the third section. In the fourth section, the pages of
distributed systems have been explained. Processors synchronization is explained in the fifth section. In the
sixth section, analyzing state space is demonstrated. Finally and in the seventh section, conclusion is
presented.

2. Colored Petri Net
Petri net is a graphical tool to formally describe activities in concurrent systems and to analyze them

[11]-[13]. Petri net involves four elements; place, transition, arc and token. These elements show various and
possible positions of the system. Transitions are formed in the shape of rectangle, and they show system's
activities. A transition is active when its input places have tokens. When a mighty transition fires, a token is
reduced from input place, and a token is added to output place. A transition is selected randomly. Directional
arcs connect the places to transitions and vice-versa. Colored Petri Nets have been developed from classic
petri nets, and they have capability of programming with ML language. ML is a programming language for
artificial intelligence. Its combination with colored petri net modeling has created much capability to provide
recursive functions and various commands in the edge of model. Multi-set marking and operators can be
executed through using colored petri net [18]. CPN is one of the best developed tools for modeling and
verification of models [18]-[20]. Generally, CPN model is a formal model, and it is considered as a language of
mathematic definition in terms of syntax and semantics.

3. Weak Consistency Model
Weak consistency model [8], [21] is one of the strongest consistency models used in executing parallel and

programming. This model can be executed in all models that are weaker than sequential consistency. In weak
consistency, writings are synchronized by a processor in all processes and other processors by considering
global time like UTC, and they are observed by a process and in each system for reading. In weak consistency
model, when the value of a variable changes in a process, it is not necessary to inform all. In strict consistency
model, change is necessary, but in our model, synchronization is considered to apply changes when it is
necessary. This model locates a set of reading and writing operations in a uniform execution unit, and

Journal of ���‘�•�’�—�–�‡�”�•

�t�u�y Volume 13, Number 2, February �t�r�s�z

provides a level of consistency.
For example, in part (a), P1 continuously performs writes, and then synchronization is performed. In fact,

the last value of x is b. since data synchronization is not required in other processes, they have not
synchronized, and they may observe the written value of x variable in reading data. In section (b), since P1
has firstly performed synchronization after writing, and then P2 has performed synchronization, the latest
changes (b value) are observed. The read value is a, and weak consistency has been contradicted. A model
has been presented in distributed systems for weak consistency, and hypotheses have been considered in
CPN. According to these hypotheses, distributed data and operations are executed. Operations are considered
with a local ID and a global ID to determine the order of executing commands.

Fig. 1. (a) An example for weak mode, and (b) an example for contradicting weak mode.

4. The Presented Model for Weak Consistency
In the presented model, three processes have been designed to demonstrate the related operations in weak

consistency (P1, P2, P3). Since the model is hierarchical, a top page has been designed to create a connection
between them.

Fig. 2. High level of presented hierarchical model.

As it can be observed in Fig. 2, hierarchical transitions of P1, P2 and /p3 have been created to show three

distributed systems. This transition is connected to a place of "global time" (to determine global time). It
should be mentioned that this place is controlled by a timer, and its value increases. Designed processes are

Journal of ���‘�•�’�—�–�‡�”�•

�t�u�z Volume 13, Number 2, February �t�r�s�z

connected to a place called "synchronized vars global" in addition to "global time". All synchronized global
variables are located in that place.

5. Pages Related to Distributed Processors
Since the model has been hierarchically designed, these three processes are similar, and they are separated

by an identification number. In fact, the differences of pages lie in the place of instructions. Each process has
its own commands, so in the presented model, just one of the pages showing a distributed system will be
explained (Fig. 3).

As it can be observed in Fig. 3, there is a transition named run, and it is considered as the basis of model.
Input data are obtained from processes according to input edges, commands and functions. Before detecting
the operations of "read" and "write", the following procedures are considered.
¶ If the operation is related to write, then it binds one of the values of "a" or "b" showing the value by

using "value" place, and adds a list of products to the third field. Then, it writes it in "fire" place (that is, it fires
it). This cursor has been considered as a local memory for processes. "run" transition inserts all write
operations in the place of "writes list", and reads can use it in next steps. If the input command is "read",
then various states will occur.
¶ If a process reads data from other processes, it firstly refers to "synchronized vars global" place. If there

are data in that place, then it reads data (it can be manually determined that whether reading has been
performed in the form of synchronization, or local data written by the process can be read).
¶ If a process reads synchronized data, there will be a state in which all writes are located in

"synchronized vars global" place by all processes. Before synchronizing them, the items that have not been
previously placed in "read list" (or they have not been read) can be read. In the next state, "read process"
command can read data from local memory, and it can read data written by other unsorted processes. "a" or
"b" values can be changed or added. In Fig. 3, commands dedicated to each process have not been
demonstrated.

Fig. 3. Designed CPN model for one of distributed systems.

Journal of ���‘�•�’�—�–�‡�”�•

�t�u�{ Volume 13, Number 2, February �t�r�s�z

In Fig. 4, it has been shown that the example of Fig. 1 has been presented in instructions place related to
processes, and a list of products has been considered.

¶ The first field is considered as ID with local commands orders in the process

¶ The second field is considered as an operation obtaining two values of "read" and "write".

¶ The third field is considered as a variable (for example, x has been considered here).

¶ The fourth field is a place for value of the related variable (here, it can receive the values of "a" or "b"
from "value" place).

Fig. 4. The section related to the processes located in each distributed system and their initial markings.

(Three different distributed systems as a, b, c labels).

6. Synchronization

Fig. 5. Synchronization part of the model.

In this model, a transition named "synchronization" has been created and considered, and synchronization

of other processes data is performed. When a process performs synchronization, it fires all its "writes" to

(a) (b)

(c)

Journal of ���‘�•�’�—�–�‡�”�•

�t�v�r Volume 13, Number 2, February �t�r�s�z

"synchronized vars global" place. These operations are performed according to predetermined time
sequence (TS), or they are updated on the basis of that sequence (global). Also, transition performs
synchronization operations of its own data. In this operation, a place named "synchronized vars global" is
considered in the model. After firing this transition, all writes performed by other processes are placed in
this place according to global time sequence. The main transition of run uses it when it executes read
commands (Fig. 5).

6.1. Describing Functions, Color Sets and Variables
In this model, a recursive function called main has been written into ML language. This function receives

two lists as an input, and adds it to the list as a product on the basis of global ID. In this function, the edge of
transition drawn from "synchronization" to "synchronized vars global" is considered.

fun max ((a,b,c,d,e,f)::L1) []= [(a,b,c,d,e,f)] |
max [] ((a,b,c,d,e,f)::L2) = [(a,b,c,d,e,f)] |
max ((a,b,c,d,e,f)::L1) ((a1,b1,c1,d1,e1,f1)::L2)=
if e>=e1 then
[(a,b,c,d,e,f)] else
[(a1,b1,c1,d1,e1,f1);]

In fact, the task of max function is to sort the commands to execute each one. In the model, a set of closet,
type of int string, has been defined on the basis of defined requirements. Also, a list of products has been
defined for places, and they have been shown in the following sections.

colset ID=INT;
colset OP=STRING;
colset VR=STRING;
colset VL=STRING;
colset GID=INT;
colset PID=INT;
colset INS=product ID*OP*VR*VL*GID*PID;
colset Ins_list=list INS;
var id,id1:ID;
var op1,op1_1:OP;
var vr,vr1:VR;
var vl,vl1:VL;
var gid,gid1:GID;
var L,A,A1,B,C,D:Ins_list;
var S:STRING;
var Times:INT;
var pid,pid1:PID;

It should be mentioned that all closets have been defined to determine data type of values, and to create a
product. They are vars used on the edges.

7. 6BState Space Analysis
After implementing the model to prove it, state space of the model was tested by CPN TOOLS software. The

following summarized results are obtained:
Statistics
--
 State Space
 Nodes: 30768
 Arcs: 135196
 Secs: 300
 Status: Partial
 Scc Graph
 Nodes: 30768
 Arcs: 112309
 Secs: 1
 Boundedness Properties

Journal of ���‘�•�’�—�–�‡�”�•

�t�v�s Volume 13, Number 2, February �t�r�s�z

--
 Best Upper Multi-set Bounds
 P1'Instractions 1 1`[]++ 1`[(1,"write","x","",1,1),(2,"write","x","",2,1)]++1`[(2,"write","x","",2,1)]
 P1'Reads_List 1 1`[]
 P1'Synchronized_vars_Local 1 1`[(0,"","","",0,0)]++
1`[(1,"write","x","a",1,1)]++
1`[(1,"write","x","a",3,3)]++
1`[(1,"write","x","b",1,1)]++
1`[(1,"write","x","b",3,3)]++
1`[(2,"write","x","a",2,1)]++
1`[(2,"write","x","b",2,1)]
 P1'Value 1 1`"a"++ 1`"b"
--
 Dead Markings
 11676 [30768, 30767, 30766, 30765, 30764, ...]
 Dead Transition Instances
 None
 Live Transition Instances
 None
 Fairness Properties
--

No infinite occurrence sequences.

According to the obtained results, state space of the model involves 30768 nodes and 135196 edges. State
space of CPN is a display mode of bottleneck. In this model, it has been shown that bottleneck has not
occurred in nodes. It is obvious, all commands have been appropriately and completely executed, and it
conveys the appropriate performance of the model. It should be mentioned that automatic analysis of the
system modes is performed by CPN TOOLS simulator and on the basis of computational tree log (CLT) [22].

8. Conclusion
CPN TOOLS simulator is a strong simulator for formal modeling of distributed and non-deterministic

systems. In this research, a new hierarchical model has been presented in the CPN-Tools modeling
environment for the first time. In this model, weak consistency has been presented in distributed systems to
keep the consistency of data among several processes of the distributed systems. The presented model has
created a state by using the ML functions, and the weak consistency has been surely followed by all
processes. In this model, the states are not rejected at all. Finally, state space analysis is performed by using
the CLT part and the CPN-Tools simulator. It has been shown that the model lacks any bottleneck, so the
model has been mathematically proved.

References
[1] Herlihy, M., & Wing, J. (1987). Axioms for concurrent objects. Proceedings of the 14th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages (pp. 13-26).
[2] Mustaque, A., James, E., Prince, K., & Phillip, W. (1995). Causal memory: Definitions, implementation,

and programming. Distributed Computing, 9, 37-49.
[3] Peter, B., Joseph, M., & Hellerstein, I. (2013). Bolt-on causal consistency. Proceedings of the annual

Symposium on Cloud Computing.
[4] Jiaqing, D., Amitabha, R., & Willy, Z. (2013). Orbe: Scalable causal consistency using dependency matrices

and physical clocks. Proceedings of the 4th annual Symposium on Cloud Computing.
[5] Bailis, P., Fekete, A., & Ghodsi, A. (2012). The potential dangers of causal consistency and an explicit

solution. Proceedings of the 3rd ACM Symposium on Cloud Computing.
[6] Saeedvand, S., Abbaszadeh, M., & Ansaroudi, F. (2015). Modelling causal consistency for distributed

systems using hierarchical coloured petri net. Indian Journal of Science and Technology, 8(35).

Journal of ���‘�•�’�—�–�‡�”�•

�t�v�t Volume 13, Number 2, February �t�r�s�z

[7] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans Comput, 690-691.

[8] Dubois, M., Scheurich, C., & Briggs, F. (1986). Memory access buffering in multiprocessors. Proceedings
of the 13th Annual International Symposium on Computer Architecture (pp. 434-442).

[9] Alglave, J. (2016). Simulation and invariance for weak consistency. Rival X (ed) Static Analysis, 9837.
Berlin: Springer.

[10] Abadi, D. (2012). Consistency tradeoffs in modern distributed database system design: CAP is only part
of the story. Computer, 45(2), 37-42.

[11] Jensen, K. (1992). Coloured petri nets basic concepts, analysis methods and practical use. Basic Concepts
of Monographs in Theoretical Computer Science Springer.

[12] Jensen, K. (1997). Coloured petri nets basic concepts, analysis methods and practical use. Practical Use of
Monographs in Theoretical Computer Science.

[13] Jensen, K. (1994). Coloured petri nets. basic concepts, analysis methods and practical use. Analysis
Methods of Monographs in Theoretical Computer Science.

[14] Paulson, L. (1996). ML for the Working Programmer (2nd ed.). NY, USA: Cambridge University Press.
[15] Gregor, V., & Bochmann, S. (2013). Distributed b-tree with weak consistency. Networked Systems, cture

Notes in Computer Science 7853, 159-174.
[16] Zhen, C. (2010). Weak consistency of wavelet estimator for p-mixing errors. Scientia Magna, 6(4),

70-74.
[17] Bailis, P., Venkataraman, S., Franklin, M., & Hellerstein, J. (2013). Berkeley ISU PBS at work: Advancing

data management with consistency metric. Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (pp. 1113-1116).

[18] Aalst, W., & Stahl, C. (2011). Modeling business processes: A petri net-oriented approach. Information
Systems.

[19] CPN Tools. CPN Tools Download. Retrieved from http://cpntools.org/download
[20] Pashazadeh, S., & Saeedvand, S. (2014). Modelling of walking humanoid robot with capability of floor

detection and dynamic balancing using colored petri net. International Journal in Foundations of
Computer Science & Technology (IJFCST), 4 (2).

[21] Sarita, V., & Adve, M. (1990). Weak ordering-A new definition. Proceedings of the 17th Annual
International Symposium on Computer Architecture.

[22] Baier, C., & Katoen, J-P. (2008). Principles of Model Checking.

Mortaza Abbaszadeh received his BSc degree in computer software engineering from
Shabestar IAU, he received his M.Sc. degree in computer software engineering in Faculty of
Electrical and Computer Engineering in University of Qazvin IAU in Iran. He is working as a
lecturer in Islamic Azad University of Iran since 2004. His research interest includes: robotic,
artificial intelligence and web mining.

Saeed Saeedvand received his BSc degree in computer software engineering from Islamic
Azad University in 2011, he received his M.Sc. in electrical and computer engineering in
Department, University of Tabriz in 2014 and currently, he is Ph.D. student at University of
Tabriz. He is working as a lecturer in University of Tabriz and Islamic Azad University of Iran.
Also he is working in humanoid robotic teams at University of Tabriz and Islamic Azad
University as team leader. He worked on humanoid adult-size and kid-size robots since 2009.

His research interest includes artificial intelligence, robotic, modeling, control and cloud computing.

Journal of ���‘�•�’�—�–�‡�”�•

�t�v�u Volume 13, Number 2, February �t�r�s�z

