
  

SQL Injection Attack Scanner Using Boyer-Moore String 
Matching Algorithm 

 

Teh Faradilla Abdul Rahman*, Alya Geogiana Buja, Kamarularifin Abd. Jalil, Fakariah Mohd Ali 

Department of Computer, Technology and Network, Universiti Teknologi MARA, Malaysia. 
 
* Corresponding author. Tel.: +60129186831; email: tehfaradilla@salam.uitm.edu.my 
Manuscript submitted October 26, 2015; accepted December 26, 2015. 
doi: 10.17706/jcp.12.2.183-189 
 

Abstract: In this day and age, the proliferation of fast Internet and advanced technology, have contributed to 

the development of millions of web applications and the number is going to continue to increase every day. 

With their various purposes such as business promotions, online shopping, e-learning and social media, it 

has increased the possibility of privacy violation, information leakage, unauthorized access and some other 

security aspects. These attacks can be launched by using several methods; one of them is through a 

Structured Query Language (SQL) injection. Even though there are several approaches that have been 

introduced to detect SQL injections such as Brute Force and Knuth-Morris-Pratt, there are still some 

weaknesses encountered. Therefore in this paper, we studied about the SQL injection methodology and 

detection models for web vulnerabilities. Apart from that, we proposed a detection model to scan SQL 

injection on the web environment, based on the defined and identified criteria using the Boyer-Moore String 

Matching Algorithm. From several tests that had been done, the results showed that the proposed model is 

able to detect vulnerable web applications with the defined criteria of the SQL Injection. In conclusion, this 

proposed model can be used by web application developer and system admin to secure the application from 

being attacked and compromised. 

 
Key words: Boyer-Moore, security attack, SQL injection, string matching.  

 
 

1. Introduction 

The beauty of web is that it is on the Internet, which connects billions of people around the world in 

multiple mediums. Through the web, people started to give their personal information to organizations 

they subscribed with and this sensitive information could be highly exposed to identity-theft, privacy 

violation, as well as other cyber threats [1]. These cyber-crime attacks can be launched by using several 

methods; one of them is through a Structured Query Language (SQL) injection [2]. SQL injection is an attack 

in which the attacker inserts SQL commands into forms or parameter values [3]. By using SQL injection, the 

attacker could gain unauthorized access to the web application that is linked with the organizations 

database and would be able to modify, update or steal the critically important information in the database. 

Unfortunately, a great number of web developers are unaware of the weaknesses of the security of their 

web application and this is normal as there are thousands of lines of code which makes it difficult for them 

to identify the loopholes. Even though an SQL injection is easy to prevent with the help of web vulnerability 

scanners that exist on the market, most of the scanners have the possibility to produce false negative and 

false positive results. A false negative is referring to a result which indicates the web application is not 

vulnerable to the attack when it actually is, whereas the false positive is indicating the web application is 

Journal of Computers

183 Volume 12, Number 2, March 2017



  

vulnerable to the attack while it actually isn't. There is a lot of significant research that has been done to 

study SQL injection attacks and a number of models have been introduced to prevent this type of attack. 

However, not a single model can ensure an adequate level of security to protect the web application, which 

may be because of its diversity and large scope [4]. Our research focuses on the SQL injection methodology, 

to develop a web vulnerability scanner using the Boyer-Moore String Matching algorithm and to evaluate 

the efficiency and accuracy of the scanner. 

2. SQL Injection 

2.1. SQL Injection Attack 

An SQL injection is one of the vulnerabilities of web applications, which makes use of the user input field 

in a web application to create the SQL statement used to penetrate the back-end database. This attack 

happens when a web application uses user’s input data without encryption or proper validation in the 

query command [4]. As an SQL injection attack can gain unauthorized access to the database, it is 

considered very critical as the attacker can modify, update, read and delete the database. Even though an 

SQL injection is easy to protect against, there is still a large numbers of web applications exposed to this 

type of attack. In order to prevent it, the web application developer should provide sufficient input 

validation for each field area in the form. 

2.2. SQL Injection Methodology 

Fig. 1 shows an example of a web application that is vulnerable to an SQL injection whereas Fig. 2 shows 

a web application that is not vulnerable to an SQL injection. In Fig. 1(a), it shows a web page before the SQL 

injection attack with the user ID 258 and it looks like everything is alright. In order to determine the web 

page vulnerable to the SQL injection, a symbol is added after the ID 258. Fig. 1(b) shows the result returned 

by the application server which contains error messages. The error messages resulted from an incorrect 

query, with some error details telling specifically at which line the error occurs and even provide the table 

name of the database. Based on this detailed result, the attacker will then regenerate the query to launch 

the injection correctly. However, if the error details are hidden, the attacker will have to use other logical 

queries to get into the database.  

 

 

(a) Before SQL injection attack 

 
(b) After SQL injection attack 

 

Fig. 1. Vulnerable Web page. 
 

3. Exact String Matching Algorithms 

Exact string matching is one of the string matching techniques which conduct searching on a string by 

matching it exactly to the pattern specified. Some of examples of Exact Pattern Matching are Brute Force, 

Journal of Computers

184 Volume 12, Number 2, March 2017



  

Knuth-Morris-Pratt (KMP) and Boyer-Moore.  

3.1. Brute-Force 

Brute Force string matching algorithm, also known as Naïve string matching algorithm, is a very 

straightforward approach. This algorithm works by searching and comparing the characters in the pattern 

from left to right, character by character until match is found [5], [6]. The benefit of the Brute Force 

algorithm is that it is widely applicable and simple. In addition, it can be used to solve some problems such 

as searching, string matching and matrix multiplication. On the other hand, the weakness of the Brute Force 

algorithm is that it rarely produces efficient performance and it is intolerably slow as it compares one 

character with another. In other words, longer time will be taken to scan a longer string [7]. 

3.2. Knuth-Morris-Pratt 

Knuth-Morris-Pratt is another example of a string matching algorithm that is similar to the brute force 

algorithm, moving from left to right, except it has a pre-processing phase where the window can be shifted 

more than one [5]. As a result, this algorithm can shorten the searching time. The Knuth Morris-Pratt 

algorithm uses a pattern to determine how far to skip, for example if the first three characters of the 

pattern and text are a match, the next search will make the window shift 3, as there are 3 character that 

already matched. The benefit of this algorithm is that it has an optimal running time; the algorithm never 

has to reverse back in the searched text. However, the weakness of this algorithm is that it is not efficient 

enough in dealing with a large number of characters as a higher possibility of mismatch could occur [7]. 

3.3. Boyer-Moore 

The Boyer-Moore string matching algorithm is usually used for searching large amounts of data in a short 

period of time such as searching for virus patterns and databases [5], [6]. This algorithm is one of the 

fastest string searching algorithms as it searches the string for the pattern but not each character of the 

string. As the pattern length increases, the algorithm will run faster. Boyer-Moore arranges the text to be 

compared and the keyword so that the keyword can be checked from left to right along the text. The check 

begins with the last character of the keyword and ending with the first [8]. In order to determine the 

number of shifts required to slide the window on the text, a Boyer-Moore good suffix and a Boyer-Moore 

bad character were used. 

4. The Proposed Model 

In order to detect some pattern, especially in the URL, the scan process should start from right to left. In 

addition, the algorithm to be selected must be able scan the string using a pattern, in order to save time in 

searching. Therefore, the proposed model is implementing the Boyer-Moore algorithm, since it scans the 

string using a pattern, from right to left until the pattern is found and it is proved to be the most useful for 

scanning for vulnerabilities as well as for viruses. Brute Force and Knuth-Morris-Pratt were not selected 

because these algorithms do not fulfil the requirements needed. Moreover, these two algorithms took a 

longer time to complete the search. 

4.1. Overview of the Proposed Model 

Fig. 2 shows the flow chart of how the proposed model will work. The module will scan for the attribute 

or criteria of the web application vulnerabilities. Firstly, the user will enter an input string or files. The 

string can be the URL of the site or web application, while the file can be the stream of source code for each 

web application. The next step is to launch the SQL Injection Attack Detection Module and perform each of 

their functions. 

Journal of Computers

185 Volume 12, Number 2, March 2017



  

Based on the chosen string matching algorithm, each of the string or input files will be scanned for the 

defined attributes of the SQL Injection attack detection. Then the input is passed to the four panel reference 

detection modules which are made up of crawler, parameter testing, exploit and report. The crawler will 

move from one page to another page of the website for parameter identification. The captured parameters 

are then tested to determine whether it is vulnerable to an SQL injection attack, and, if yes, the exploit panel 

is recommended. This panel will use the same parameters to penetrate the database and will be able to 

show the names of the table columns and rows affected. Finally, the report panel will generate a report 

which consists of a description about vulnerabilities found, tested pages and solutions to the problems. In 

addition, the proposed model was evaluated in terms of efficiency; the total time taken to crawl, and 

accuracy; the pertinence to detect vulnerable web applications. 

 

Fig. 2. SQL injection attack detection model. 

5. Findings and Discussions 

5.1. SDR Web Vulnerability Scanner 

By using the proposed model, an application to scan web vulnerabilities called Scan-Detect-Report (SDR) 

has been developed and tested. As shown in Fig. 3, at the top of the SDR scanner window, there are four 

panel reference detection modules as stated earlier in the previous section. To begin the crawling process, a 

user needs to enter the target URL in the URL text field and click the Start button. In this example, the total 

of successfully crawled pages is 18 and the time taken is 6.908. 

Next, the process of searching took place at the Parameter Tester Panel to test the parameters that are 

captured during the crawling process in the Crawler Panel.  

For example in Fig. 4, the URL: http://www.dracoders.com/games.php?id=22. 

There are two parameters found in the URL. To use the parameter tester, the user just needs to choose 

the parameter to be tested and click the Initiate Testing button or Stop SQL Injections to stop the testing 

mid-way. 

This panel is recommended only if the page is proved to be vulnerable so that it can further exploit the 

tested page and to initiate an SQL injection attack on the page. The URL, vulnerable parameter and Default 

value will be automatically entered by SDR as we are using the Parameter Tester Panel. In the option panel, 

check all of the three boxes to find information about the database, to identify table or columns name 

(Bruteforce table/col names if necessary) that exist in the website and to get information about the 

Journal of Computers

186 Volume 12, Number 2, March 2017



  

database user and the database version (Retrieve user and database information). All the results are 

displayed in the Results panel as shown in Fig. 5. 
 

     

              Fig. 3. Crawler panel.                     Fig. 4. Parameter tester panel. 
 

    
              Fig. 5. Exploit panel.                           Fig. 6. Report panel. 

 

Lastly, Fig. 6 shows the report panel which is the result from the Parameter Tester panel. This panel 

provides a brief description about the vulnerability found and the tested page. In addition, the 

Vulnerability’s Impact section explains how the vulnerability can affect the website if it is left vulnerable. 

Some suggestions to fix the vulnerability are given in the How to Fix section. In this example, the elapsed 

time label is 21.777s, the time taken to finish the crawling process and the parameter tester process. 

5.2. Efficiency and Accuracy 

The proposed model has been evaluated in terms of efficiency and accuracy. The efficiency of the 

developed model is measured based on the total time taken for the process of crawling and testing the 

parameter while the accuracy of the proposed model is defined as the correctness of the proposed model to 

detect the vulnerable web application successfully based on the identified and defined criteria of the SQL 

Journal of Computers

187 Volume 12, Number 2, March 2017



  

Injection Attack. Table 1 and Fig. 7 show the result of the efficiency based on the tested URL. The results 

obtained shows that most of the secured web application took a longer time to crawl even though it 

contains a small number of pages. In Fig. 7, it can be said that the time taken for the crawler to completely 

crawl all pages was not dependent on the number of pages a web application has, instead it was dependent 

on the speed of the internet connection. If the internet connection is slow, the time taken to complete the 

crawl process will be longer. 

Through several tests, 10 URLs of web applications had been examined and the proposed model has 

successfully detected the first eight URLs as the vulnerable web applications while the last two URLs were 

detected as invulnerable to SQL Injection attacks. 
 

Table 1. Total Time Taken for Detecting SQL Injection Pattern of Attackable Styles 
 URL No of page Crawl (s) Parameter Testing (s) 

1 http://www.dracoders.com/games.php 18 6.99 14.78 
2 http://senesco.com/newsitem.php 117 44.61 24.05 
3 http://www.ath-elite.com.au/trainers.php 22 15.27 22.96 
4 http://www.vivactiv.ru/trainings/trainers.php 105 32.42 27.24 
5 http://www.pushingpetals.com/buy.php 4 10.19 12.90 
6 http://www.suffolkconstruction.com/staffView.php 83 105.41 25.843 
7 http://www.vortexgym.com/trainers.php 31 11.37 18.82 
8 http://www.ureka-sg.com/trainers.php 93 27.71 18.94 
9 http://www.centos.org/modules/tinycontent/index.php 37 64.40 38.19 
10 http://www.rspba.org/html/newsdetail.php 141 145.11 36.06 

 

 
Fig. 7. The efficiency of the proposed model. 

 

6. Conclusion 

The proposed model has been able to detect the vulnerable web application with the defined criteria of the 

SQL Injection Attack. Moreover, the implementation of the Boyer Moore string matching algorithm has 

assisted the proposed model to be more efficient and accurate. In this work, the accuracy of the proposed 

model can be improved by identifying and adding a few parameters into the “Parameter Testing Panel”. In 

addition, the proposed model can help the web application developer or administrator to take any further 

action to secure their application from being hacked or attacked by the unethical person outside the network 

by exploiting and compromising the vulnerabilities of the web application towards an SQL Injection attack. 

Acknowledgment 

The authors would like to thank Universiti Teknologi MARA for supporting this work. This work was also 

supported by Ministry of Higher Education Malaysia under Research Acculturation Grant Scheme 2013. 

References 

[1] Trend Micro. Web Application Vulnerabilities How’s Your Business ON The Web? From 

http://www.trendmicro.com/cloud-content/us/pdfs/business/tlp_web_application_vulnerabilities.pd

f 

Journal of Computers

188 Volume 12, Number 2, March 2017

http://senesco.com/newsitem.php
http://www.ath-elite.com.au/trainers.php
http://www.vivactiv.ru/trainings/trainers.php
http://www.pushingpetals.com/buy.php
http://www.suffolkconstruction.com/staffView.php
http://www.vortexgym.com/trainers.php
http://www.ureka-sg.com/trainers.php
http://www.centos.org/modules/tinycontent/index.php
http://www.rspba.org/html/newsdetail.php


  

[2] Anjali, S. K., & Kulkarnai, R. B. (2012). Web vulnerability detection and security mechanism. 

International Journal of Soft Computing and Engineering, 2(4), 2231-2307. 

[3] Benoist, E. (2012). Advanced Web Technology 9) OWASP Top 10 Vulnerabilities & Cross Site Scripting.  

[4] Namdev, M., Hasan, F., & Shrivastav, G. (2012). A novel approach for SQL inection prevention using 

hashing & encryption (SQL-EBCP). International Journal of Computer Science and Information 

Technologies, 3(5), 4981-4987. 

[5] Charras, C., & Lecroq, T. (2004). Handbook of Exact String-Matching Algoritms. King's College London 

Publications. 

[6] Singla, N., & Garg, D. (2012). String matching algorithms and their applicability in various applications. 

International Journal of Soft Computing and Engineering, 2231-2307. 

[7] Wahlstrom, S. (2004). Evaluation of String Searching Algorithm.  

[8] Coit, J. C., Staniford, S., & McAlemey, J. (2001). Towards Faster String Matching for Intrusion Detection or 

Exceeding the Speed of Snor. From http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=932231 

 
Teh Faradilla Abdul Rahman is currently a lecturer of foundation computing at Center of 

Foundation Studies, Universiti Teknologi MARA, Malaysia. She received her B.Sc. in netcentric 

computing from Universiti Teknologi MARA, Shah Alam Malaysia, and a master in education 

(mathematics) from Universiti Teknologi Malaysia, Johor, Malaysia. She involved in a number 

of research works and presented several papers at national and international conferences. 

She also involved with charity work such as Mangroves Conservation Program at Bagan 

Sungai Kajang, Tanjung Karang, Malaysia, which was organized by Centre of Foundation Studies, Universiti 

Teknologi MARA, Malaysia. A Charity Program: One Foster Kid for One Family. Orphanage Teratak Nur 

Barakah, Shah Alam, Malaysia, which was organized by Universiti Teknologi MARA and Modenas Riders 

Group Malaysia. And Science Fun Day Program at Bandar Puncak Alam Secondary School, Malaysia, which 

was organized by Centre of Foundation Studies, Universiti Teknologi MARA, Malaysia.

 

Alya Geogiana Buja received her bachelor’s and master’s degree in Universiti Teknologi 

MARA in 2011. She is a Ph.D. candidate in Universiti Teknikal Malaysia Melaka since 

September 2014. Her current research interests include information retrieval and network 

and information security. 

 
 

 

Kamarularifin Abd Jalil is a lecturer at the Faculty of Computer and Mathematical Sciences 

at the Universiti Teknologi MARA, Malaysia, since 1997. He has a Ph.D. degree in the 

Department of Electronic and Electrical Engineering from the University of Strathclyde, U.K., 

in 2008, an MSc degree in Information Technology for Manufacture in 1997 from University 

of Coventry, U.K. and a BSc degree in computer science in 1995 from Universiti Teknologi 

MARA. His research interests are in computer networking area, including mobile networks & 

protocols.

 
Fakariah Hani Mohd Ali obtained her PhD of security in computing from Universiti Putra 

Malaysia. She is a Senior Lecturer at the Faculty of Computer and Mathematical Sciences, 

Universiti Teknologi MARA, Malaysia. She is a member of the Malaysian Society Cryptology 

Research (MSCR). Her research interest are cryptography, network security and digital 

forensics.  
 

 

 
 

Author’s formal 
photo 

 
 

Author’s formal 
photo 

 
 

Author’s formal 
photo 

Journal of Computers

189 Volume 12, Number 2, March 2017




