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Abstract: This paper proposes a simple intersection algorithm for two sorted integer sequences . Our 

algorithm is designed based on x-fast trie since it provides efficient find and successor operators. We present 

that our algorithm outperforms skip list based algorithm when one of the sets to be intersected is relatively 

ȬÄÅÎÓÅȭ ×ÈÉÌÅ ÔÈÅ ÏÔÈÅÒ ÏÎÅ ÉÓ ɉÒÅÌÁÔÉÖÅÌÙɊ ȬÓÐÁÒÓÅȭȢ &ÉÎÁÌly, we propose some possible approaches which may 

optimize our algorithm further. 
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1. Introduction 

Fast set intersection is a key operation in the context of several fields when it comes to big data era [1], [2]. 

For example, modern search engines use the set intersection for inverted posting list which is a standard data 

structure in information retrieval to return relevant documents. So it has been studied in many domains and 

fields [3]-[8]. One of the most typical situations is Boolean query which is required to retrieval the documents 

that contains all the terms in the query. Besides, set intersection is naturally a key component of calculating 

the Jaccard coefficient of two sets, which is defined by the fraction of size of intersection and union. 

In this paper, we propose a new algorithm via x-fast trie which is a kind of advanced data structure. We 

focus on intersection for two sets due to its fundamental status. Experiments show that when one of the sets 

ÔÏ ÂÅ ÉÎÔÅÒÓÅÃÔÅÄ ÉÓ ÒÅÌÁÔÉÖÅÌÙ ȬÄÅÎÓÅȭ ×ÈÉÌÅ ÔÈÅ ÏÔÈÅÒ ÏÎÅ ÉÓ ɉÒÅÌÁÔÉÖÅÌÙɊ ȬÓÐÁÒÓÅȭȟ ÏÕÒ ÁÌÇÏÒÉÔÈÍ ÏÕÔÐÅÒÆÏÒÍÓ 
skip list based algorithm. 

2. Related Work and Motivation 

2.1. Related Work 

Suppose that the two sets intersected are denoted as S and T, with size n and m, respectively (m<n). 

Most of the algorithms suppose that the elements in the set are stored in arrays. One obvious way is to 

lookup each element of one set in the other one. There are many possible search algorithms can be used here 

[9]. If the array is ordered, we can run m times binary search over the larger set whose size is n, with O(mlgn) 

time cost. When m=O(n/lgn), it is better than linear merge algorithm which takes O(m+n).  

Ref. [10]-[13] propose some adaptive algorithms which use the total number of comparisons as measure 

to evaluate the performance. However, experiment result in [14] shows that such kind of algorithms does 

not always reduce the time cost in practice. 

There are many algorithms that take use of advanced data structures rather than array to accelerate the 
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processing of set intersection [15]-[17]. One classical approach is skip-list based algorithm [18], [19]. With 

the help of skip pointers, skipɀlist based intersection algorithm can avoid some unnecessary comparisons. 

Apparently, it may not widely used in reality due to the required space-overhead.  

Another intuitive approach is to store the larger set whose size is m in a hash table, and lookup all elements 

of smaller set in the hash table. It takes O(n) time. However, this approach performs poorly in practice. In 

order to get a better performance, a new algorithm is proposed in [20]. Firstly, it uses a hash function to map 

the elements in two sets into two relatively smaller presentations, denoted as Hash(S) and Hash(T) 

respectively. Secondly, the Hash(S) and Hash(T) will be intersected. Lastly, the false positives will be removed. 

In terms of intersection for two sets, this algorithm takes in expected time O((m+n)(logw)^2/w+2r), in which 

r stands for the size of the intersection and w denotes the length of machine word. Obviously, this bound 

relies on a large value of w. In [21], set is presented by linear-space data structure which allows to compute 

the intersection in O((m+n)/sqrt(w)+2r).This algorithm performs better in practice. 

Experiments in [22], [23] compare several intersection algorithms and show that the complexity of 

intersections relies heavily on the distributions of the elements in the sets. 

Ref. [24] focus on the situation where multi-cores CPU are available and does study how to improve the 

performance of list intersection.  

2.2. Motivation 

Suppose that the two sets to be intersected are S and T whose size are n and m respectively. Our approach 

leverages a key observation: Currently, we are comparing S[i] and T[j] and S[i]<T[j]. If We can determine that 

S[i+1],S[iϹςɎȣS[m] are all less than T[j], we can skip the elements from S[i+1] to S[m] and continue 

comparing from S[m+1] and T[j].  

For example: 

SЀɑρȟςȟσȟτȟυȟφȣρπππππππɒȟ TЀɑρππππȟςππππȟσππππȣρπππππππɒ 

We start comparing 1 in S and 10000 in T. 1<10000 means that firstly we search 10000 in S to check 

whether 10000 is one of the elements in intersection or not. After that, we try to locate the next element 

should be compared in S. It is 10001.Hence the elements from [1, 9999] in S are all skipped since they are 

absolutely not the answers. We implement search (find) and locate (successor) operations efficiently via 

x-fast trie and hope that one locate operation could skip as many elements as possible although it relies 

heavily on the distributions of the two sets. 

3. Our Methods 

3.1. Notation 

Suppose that the two sets to be intersected are denoted as S and T, with size n and m, respectively (m<n). 

The elements in the two sets are integers and all belong to [1, U](S[1]<S[2]<SɍσɎЃȣЃS[n]; 

T[1]<T[2]<TɍσɎЃȣЃT[m]). The key operators of our algorithms are Find and Successor: 

Find(S, x): lookup x in S to check S contains x or not. If it does, return true; otherwise return false. 

Successor(S, x): return the successor of x in S. When x equals to the maximum of S, it just returns + inf. 

3.2. Data Structure 

X-fast trie [25] was proposed by Dan Willard in 1982 [26]. It is a bitwise trie. If an internal node has no left 

child, it stores a descendant pointer to the smallest leaf in its right subtree. Likewise, if it has no right child, it 

stores a descendant pointer to the largest leaf in its left subtree as shown in Fig. 1 [27]. Each leaf node 

contains a key, a pointer to its predecessor and a pointer to its successor. All leaf nodes are structed by a 

doÕÂÌÅ ÌÉÎËÅÄ ÌÉÓÔȢ !ÌÌ ÎÏÄÅÓ ÁÒÅ ÓÔÏÒÅÄ ÉÎ ÈÁÓÈ ÔÁÂÌÅÓ 4ÁÂÌÅɍρɎȟ4ÁÂÌÅɍςɎȣ4ÁÂÌÅɍh] where h is the height of the 
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tree and h=O(lgU). Each level corresponds to one hash table. Typically, hash tables are implemented by cuckoo 

hashing or dynamic perfect hashing [28], [29].  

The space usage of an x-fast trie containing n integers is O(nlgU), since each element has a root-to-leaf path 

of length O(lgU). 

It takes O(1) to find a key and the time for finding the successor of an element takes O(lglgU) in an x-fast 

trie. 

Find: 

In order to check whether an x-fast trie contains key x or not, we can look up the Table[1] which 

corresponds to the leaf nodes., this takes O(1) time. 

Successor: 

In order to find the successor of x, firstly, we run a binary search algorithm to locate the node which has 

the longest common prefix with x, denoted as lcp(x). Once we find the lcp(x), it is either an internal node or 

leaf node. If it is an internal node , we can get the successor of x via its descendant pointer with constant time. 

If it is a leaf node, which means that the trie contains x, we can get the successor of x via the pointer which 

pointed to its successor, which also takes constant time. Since the height of an x-fast trie is at most O(lgU), the 

total time for finding the successor of an element takes O(lglgU). 

Suppose that at one time, the content in the hash tables of an x-fast trie which contains elements which 

range from 1-256 are:  
 

Table[1]:00101011̆01010011̆10110101 

Table[2]: 0010101, 0101001, 1011010 

Table[3]: 001010, 010100, 101101 

Table[4]:00101,01010,10110 

Table[5]:0010,0101,1011 

Table[6]:001,010,101 

Table[7]:00,01,10 

Table[8]:0,1 
 

We can know that the x-fast trie contains 43(00101011b), 83(1010011b) and 181(10110101b). In order 

to get the successor of 49, firstly we find the node which has the longest common prefix of 00110001. We 

run binary search over the 8 hash tables and get 001 in Table[6]. After that, we can find the successor via its 

right pointer which pointed to the successor node at the leaf level. 

 

0 1

00 10

001 101100Table[1]

Table[2]

Table[3]

Table[4]

 
Fig. 1. An x-fast trie containing the integers 1(001b), 4(100b) and 5(101b). 

3.3. Algorithm 
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We design an algorithm based on x- fast trie, as shown in Table 1. The elements in S and T are stored at two 

x- fast tries. 

We start comparing the elements of S and T from S[1] and T[1]. When x or y equals +inf, it means that 

there are no candidates any more. So the loop finished. 

Since the loop runs min(n, m) times at most, X Intersection algorithm needs O(min(m, n)lglgU) time. 
 

Table 1. X Intersection Algorithm 

 
 

4. Experiment 

We evaluate the performance of our algorithm and skip-list based intersection algorithm which also aimed 

to skip the elements that absolutely can not be the candidates efficiently in this paper. 

Implementation: For each Algorithm, we try our best to optimize its performance. The skip list based 

algorithm is implemented according to [9]. We firstly load the data into memory, store the elements into 

x-fast trie and skip list respectively. After that we run the core code for intersection algorithm and start 

counting time. The codes are implemented by C++ in Visual Studio 2013 with no optimization options 

enabled. 

4.1. Experiments on Synthetic Data 

The elements in two sets are generated from a universe in which the elements range from 1 to 10,000,000. 

In order to make set S ÔÏ ÂÅ ȬÄÅÎÓÅȭȟ S is selected from those candidates as below: 

S1={1, 2, 3, 4, 5, 6, ȣ 10000000} 

S2={2, 3, 4, 5, 6, 7, ȣ 10000000} 

X Intersection Algorithm 

Input: Two sets S and T. Both are presented via x-fast trie 

Output: The intersection of S and T 

x= S[1]    y=L[1] 

While(x!=+inf  &&  y!=+inf) do 

if(x==y) 

add x to the intersection set 

x=Successor(S, x) 

y=Successor(T, y) 

else if(x>y) 

if(Find(T, x)) 

add x to the intersection set 

y=Successor(T, x) 

else 

if(Find(S, y)) 

add y to the intersection set 

x=Successor(S, y) 
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ŀ 

S100={100, 101, 102, 103, 104, 105, ȣ 10000000} 

We varies the gap of T from 10 to 1,000,000, which makes T ÍÏÒÅ ÁÎÄ ÍÏÒÅ ȬÓÐÁÒÓÅȭȢ )Î ÏÔÈÅÒ ×ÏÒÄÓȟ T is 

one of those candidates as below: 

T1={10, 20, 30, 40, 50, ȣ 10000000} 

T100={100, 200, 300, ȣȟ 10000000} 

ŀ 

T1000000={1000000, 2000000, ȣȟ 10000000} 

In jth (j=1, 2, 3 ȣ 100) iteration, we fix S to be Sj and compute intersection of Sj and T1, T100 ȣ T1000000 

respectively. 

After 100 iteration (responds to S1, S2 ȣ S100) are completed, the average times are reported in Fig. 2. 
 

 
Fig. 2. Experimental results on synthetic data. 

4.2. Experiments on Real Data 

In experiments on real data, we use a set of 945,147 Chinese news documents which are crawled from 

several news site including news.163.com, news.sina.com, and news.fenghuang.com .We extract the plain 

text using Tika and Jsoup ,and construct the posting lists in memory both by x-fast trie and skip list. All 

terms except for stop words are reserved. 

 
Fig. 3. Experimental results on real data. 

We are more interested in the situations that one of the sets to be intersected is relatively small while the 

other one is large, since the larger set which contains more elements tends to be dense. One successor 

operations on this set will skip (expectedly) many elements in order to avoid the unnecessary comparisons. 

In other words, we use the size of sets as a kind of heuristic information. The size of the larger set range from 

400,000 to 760,000 while the smaller one range from 3,000 to 7,000. The average ratioof size of two sets is 
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0.01. 

We run 50000 cases in total. In each case, our algorithm outperforms skip-list based algorithm. The 

average time of XIntersection takes is 2.6ms and the average time of skip-list based algorithm takes is 4.2ms 

as reported in Fig. 3. 

5. Future Work and Discussions 

5.1. Formal Definition and Description 

The performance of our algorithm relies heavily on the distributions of elements in the two sets to be 

intersected. Intuitively, when one of the set whose elements are compacted and consecutive is relatively 

ȬÄÅÎÓÅȭ ÁÎÄ ÔÈÅ ÏÔÈÅÒ ÏÎÅ ÉÓ ȬÓÐÁÓÅȭȟ ÏÕÒ ÁÌÇÏÒÉÔÈÍ ÍÁÙ ×ÏÒË ÂÅÔÔÅr. We just used the size of sets as a kind of 

ÈÅÕÒÉÓÔÉÃ ÉÎÆÏÒÍÁÔÉÏÎ ×ÈÉÌÅ ÄÉÄ ÎÏÔ ÇÉÖÅ ÔÈÅ ÒÉÇÏÒÏÕÓ ÄÅÆÉÎÉÔÉÏÎÓ ÏÆ ȬÄÅÎÓÉÔÙȭ ÁÎÄ ȬÓÐÁÓÉÔÙȭȢ 7Å ÌÅÁÖÅ ÔÈÉÓ ÁÓ Á 
significant part of our future work. 

5.2. Doc Id Reordering 

In our experiments on real data, the doc ids are ordered in terms of urls of documents. The documents of 

same topic will be assigned to consecutive and compact ids. This ordering approach tends to give tight 

clustering throughout the lists. Indeed, there are many ordering methods [30]-[32] such as random 

assignment can be applied here. Whether the Doc id reordering may improve the performance of our 

algorithm needs more experiments and analysis. 

5.3. Space Usage 

In our experiments on real data, the space usage of our algorithm is almost 10 times than skip-list based 

algorithm. Since an x-fast trie takes O(nlgU) spaces for n elements which range from 1-U, it may not very 

useful in reality. To reduce the overhead of space usage, one possible approach is to design an algorithm 

based on y-fast trie [33] which required O(n) space usage for storing n elements which range from 1-U.The 

total time remains min(m, n)lglgU. 

5.4. Hashing Function 

In our implementation, the hashing function we use is murmurhash2 which is a famous and typical choice 

when a hashing function is necessary. Note that the content in the hash table is nodes of x-fast trie. Obviously, 

other hashing functions may be available here. Whether changing the hash function from murmurhash2 to 

another one will bring a better result still remains a question. In order to get a better performance of x-fast 

trie, it is necessary to take a better consideration of hashing functions. 

5.5. A Hybrid Algorithm 

In our experiments, our algorithm outperforms skip-list based algorithm when the sparsity of the two sets 

to be intersected are quite different. Since the state of the art of this situation is look up algorithm based 

hashing table, whether our algorithm outperforms it remains a question. It is possible for us to make a 

hybrid approach which consists of a lot of algorithm to adjust to the different datasets. It means that we call 

different routine when we meet different algorithm. In fact, we can generate a framework of many algorithm 

based x-fast trie. 

6. Conclusions 

In this paper, we propose an intersection algorithm via x-fast trie. We have shown that when one of the 

ÓÅÔÓ ÔÏ ÂÅ ÉÎÔÅÒÓÅÃÔÅÄ ÉÓ ÒÅÌÁÔÉÖÅÌÙ ȬÄÅÎÓÅȭ ÁÎÄ ÔÈÅ ÏÔÈÅÒ ÏÎÅ ÉÓ ȬÓÐÁÒÓÅȭȟ ÏÕÒ ÁÌÇÏÒÉÔÈÍ ÏÕÔÐÅÒÆÏÒÍÓ ÓËÉÐ-list 

based algorithm due to the efficient successor operator which takes O(lglgU) time . 
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