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Abstract: The concept of discernibility thresholds in the variable precision model (VP-model) is presented 

to classify sets in a nonempty finite universe. Analysis of inconsistent decision table is obtained by using the 

tools in VP-model. The tools are obtained by the interplay among inclusion error, discernibility threshold 

dependency and consistency as well as lower and upper approximation with thresholds. We also provide 

the relationships between the inclusion errors and lower approximations with threshold. 
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1. Introduction 

Pawlak proposed rough set theory (RST) [1] which is based on fundamental set theory and has been 

applied and extended in many different aspects of theoretical and applied research areas [2], [3], [4]. Using 

a table to represent some collection of data in the real world, on the other hand, considering the concepts of 

lower and upper approximations in rough set theory, one can derive some decision rules of the knowledge 

system which is described in an information table by using the tools obtained from RST. In order to analyze 

or classify the data more effectively and correctly, we use the concept of variable precision which was 

introduced by Ziarko [5]. In this paper, we first recall some background in RST and the concept of variable 

precision. We then use the notion of discernibility thresholds to classify sets in a given nonempty finite 

universe. We further improve a result of Ziarko [5], and conclude with formulas for approximate 

dependency of attributes of inconsistent decision tables. 

2. Preliminaries 

Let U denote a nonempty finite set, called the universe, and     the collection of all subsets of U, 

including the whole set U and the empty set Ø. The Cartesian product     is the set of all ordered pairs 

of elements of U. Set inclusion is denoted by  , and strict set inclusion by  ⊂. The cardinality of a set    , 

denoted    , is the number of elements in  .  

The greatest lower bound (infimum) and least upper bound (supremum) of a set   of real numbers are 

denoted by inf   and sup    respectively. By convention,  

                      inf    + ∞    and    sup     ∞.                              (1) 
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If inf     (respectively, sup    ), then we also denote it by min   (respectively, max  ) and call it 

the minimum (respectively, the maximum) of    

Let       be an equivalence relation. If        , we say that x and y are equivalent to each other. 

The  -equivalence class of an element    , denoted     , is the subset of all elements in U which are 

equivalent to x. The collection     of all distinct  -equivalence classes, called the quotient set of   by  , 

forms a partition of U.  

For nonempty subsets X and Y of U, according to Ziarko [5], the inclusion error of X in Y, denoted by 

      , which is defined as 

                                        
     

   
 .                                    (2) 

For             Ziarko [5] defined      by 

      if and only if             

Lemma 1 [5] 

Let          . If       and      then it is not true that     . 

This gives rise to a natural description of inclusion by using inclusion error with a threshold. 

2.1. Variable Precision of Rough Sets 

Let       be a given equivalence relation. For any    , according to Pawlak [1], [2], a pair of 

lower and upper approximations,      and     , respectively, of X are defined as follows. 

 

                                                ,                                   (3) 

 

                                                                                 (4) 
 

By replacing          with         , Ziarko [5] obtained the following generalized notion of  -lower 

approximation or  -positive region of X,  
 

                                                

                                           
     

   
                                 (5) 

 

The  -upper approximation of X is defined as 
 

    
 
                                        

     

   
                    (6) 

 

Rough set theory with such approximations is referred to as the variable precision rough set model 

(VP-model) [5]. The β-boundary region          of X, in the VP-model, is defined by  
 

                 
 
                                                           (7) 

 

The set X is said to be β-discernable if          = Ø, or equivalently, if          
 
     The least 

value of inclusion error   which makes X discernable will be referred to as discernibility threshold. 

A set which is not β-discernable for every             will be called absolutely indiscernible. There are 

several properties of lower approximation, upper approximation of certain thresholds and discernibility 

which are described as follows. 

Lemma 2 [5] 
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Let       be an equivalence relation, and let              Then 

i)         
 
              

 
     . 

ii)  
 
                    . 

iii) for           , we have 

         
     

  

     
 
            

iv)                
 
               .     

2.2. Decision Tables 

An information table is a 4-tuple (U, A, V, f), where U is a nonempty finite universe, A is a nonempty finite 

set of attributes, V is the union of attribute domains, and           is an information function defined 

for every        and      , such that           , where     is a domain of the attribute a. 

Each nonempty     determines an equivalence relation    on U as follows. 
 

                                                    .                        (8) 
 

If we distinguish in an information table, two disjoint classes of attributes, called condition and decision 

attributes, respectively, then the information table will be called a decision table and denoted by (U, C  , V, 

f), where C and D are disjoint sets of condition and decision attributes, respectively. The    -equivalence 

classes will be called decision classes. 

A decision table (U, C  , V, f) is consistent, if and only if         ; otherwise, the decision table is 

inconsistent. 

2.3. Approximate Dependency of Attributes  

Let (U, C  , V, f) be an inconsistent decision table. For each nonempty    , Ziarko [5] defined in 

VP-model the  -positive region of the partition       with respect to (in short, w.r.t.) P, denoted POS   (P, 

D), and  -dependency level of decision attributes D w.r.t. P, denoted             by 
 

                       POS   (P, D)                         ,                         (9) 

 

                    
                

   
.                                 (10) 

 

The value           measures the relative size of objects in U for which classification (based on      ) 

is possible within the classification error   [4], [5]. According to Ziarko [5], a  -reduct of the condition 

attributes C w.r.t. to the decision attributes D is a minimal subset     for which                      

3. Remarks on Discernibility Thresholds in the VP-Model 

Consider an equivalence relation R on a nonempty finite universe U. According to (7), a set     is 

absolutely indiscernible if and only if             for some        This suggests the following 

classification of sets in U: 

S(R, X)                           

M(R, X)                           

L(R, X)                            

Lemma 2  
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Let R be an equivalence relation on a nonempty finite set U. For      if  
 

S(R, X)                               
 

then          for every              

Example 1  

Considering a set                         let   be the equivalence relation on   corresponds to the 

partition                                

Let us compute the inclusion errors of the  -equivalence classes                         
 

                                  
 

in the set           . According to (1), we have 
 

                                 
 

 
 

 

 
                

 

 
 

 

 
                                                      

 

which gives S(R, X)   Ø, M(R, X)   Ø, and L        U. Since S(R, X)   Ø, it follows from (5) that for any 

                      This validates Lemma 2. 

Using (6) and (11), we obtain 

                         
 
                              

 

 
                         

which follows that 

                                                   
 
                

 

 
                                                                       

 

Since inclusion errors are between 0 and 1, we normalize (1) as follows. 
 

                       inf    1    and    sup                                 (13) 
 

We now improve Proposition 3.11 in Ziarko [5] as follows:  

Theorem 1 

Let R be an equivalence relation on a nonempty set U. For      let 

S(R, X)                          , 

M(R, X)                            

λ(R, X)      inf                                     and 

μ(R, X)                                         . 

1) If M(R,X) ≠ Ø then X is absolutely indiscernible. Additionally, if S(R, X)   Ø then μ(R, X)  is the least 

value of inclusion error   which results in the largest  -lower approximation       of the set  .  

2) If M(R, X)     then X is discernable and its discernibility threshold is equal to the maximum of 

                , i.e., 

ζ       max                   

Additionally, if S(R, X)    then we have 

         for every              

μ(R, X)     ζ              and 

 
 
       for            
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4. Formulas for Approximate Dependency 

Let (U, C  , V, f) be an inconsistent decision table. The value            measures the relative size of 

objects in U for which classification (based on      ) is possible within the classification error  . 

Accordingly, the value             measures the ability to do the classification (the quality of classification) 

for specific value of   [4], [5].   

We denote 

                         . 

For distinct decision classes    and     in      ,  according to (5) and Lemma 1, we have 
 

                        
            

                                         (14) 

 

Therefore, from (9) and (10), we obtain 
 

                       
               

   
       

    
       

   
         

                                                   

5. VP-Model in Analysis of Inconsistent Decision Tables 

Theorem 1 together with (15) can be effectively applied to analysis of inconsistent decision tables. For a 

given inconsistent information system (U, C   , V, f), the procedure of the VP-model has three main steps 

and they are:  

Step 1 Computing respectively all equivalence classes for     and       

                         ,                           . 

Step 2 For each decision class    ,  

1) computing each   

            for  j = 1,2, …, l. 

2) computing the following in several different cases, 

S       ,   M        and  L         

i) If S(     ,) ≠ Ø, define 

μ         max                                             

otherwise                

ii) If L        ≠ Ø, define  

             min                                             

otherwise              

iii) If M           compute respectively 

ζ(  ,      max                         and                       

iv) If M        ≠ Ø and S(     ,) ≠ Ø, compute                  

v) If M        ≠ Ø and S            we have 

   
          for every              
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6. Concluding Remark 

We have provided with an algorithm in calculating threshold dependency level of decision attributes with 

respect to condition attributes. This helps analyze inconsistent decision tables which would give rise to 

further applications in data analysis. 
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