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Abstract: Mining of frequent patterns in databases has been studied for several years. However, real-world 

databases contain noise and frequent pattern mining which extracts patterns that are absolutely matched is 

not enough. Therefore, a research field called fault-tolerant frequent pattern (FT-pattern) mining is proposed 

to deal with this problem. In this paper, we consider the problem of mining proportional FT-patterns. That is, 

the number of faults tolerable in a pattern is proportional to the length of the pattern. To reduce the disk I/O 

times, a depth-first mining approach is proposed to mine proportional FT-patterns efficiently in large 

database. Moreover, a set of experiments is performed to show the advantage of the approach. Experimental 

results indicate that the proposed algorithm outperforms the other existing approach when the database size 

is large. 
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1. Introduction 

Data mining has become a progressively important technology in recent year, especially association-rule 

mining which was first investigated in [1]. It explores the relationships among data items. For example, 

when analyzing market-basket database by association-rule mining, one may find such a rule: “Milk → 

Bread, support = 8%, confidence = 80%”; where the support of 8% means that milk and bread are 

purchased together in 8% of all transactions, and the confidence of 80% means that 80% of the customers 

who purchased milk also bought bread. The approaches used to find association rules can be roughly 

categorized into two categories. The first category is the Apriori-based algorithms. The most influential 

algorithm generates candidate patterns according to the anti-monotonicity is proposed in [2]. And 

thereafter, there are various techniques have been proposed to overcome these problems [3]-[7]. The 

second category is the tree-based algorithms. [8] was the first to propose the FP-tree (frequent-pattern 

tree) structure to mine frequent patterns. This algorithm scans the database to find all frequent items, and 

compresses the database by representing the frequent items in an FP-tree. Finally, all frequent patterns can 

be obtained by searching the tree. When the data-base is large, it is sometimes unrealistic to construct an 

FP-tree that resides in main memory. This leads to the proposed extension of the pattern-growth concept, 

H-mine [9]. H-mine designs a dynamic structure to adjust links dynamically, instead of requiring an FP-tree 

to be maintained or a physical database to be created. The motivation of this method is to preserve space, 

and initially involves loading transactions into memory. However, H-mine has to maintain a head table at 
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each level of the tree, and modify the links to build a queue of the collection of transactions containing the 

same prefix before the pattern support is counted. Since each of the above approaches exhibits specific 

advantages and limitations, [10] suggests opportunistically choosing between two structures, array-based 

or tree-based, to represent projected transaction subsets, and heuristically decides to build an unfiltered 

pseudo projection or to make a filtered copy according to features of the subsets. Basically, the algorithm 

grows the FP-tree by a depth-first search, whereas a breadth-first search is used to build the upper portion 

of the tree if necessary. 

Traditional association-rule mining can only extracts patterns that are absolutely matched. However, 

real-world databases contain noise that can make important information ambiguous; resulting in it will not 

appear in the mining result. Therefore, we need a method that copes with such variations in an association 

pattern, which is called a fault-tolerant pattern (FT-pattern). Discovering frequent FT-patterns in 

muti-dimensional database is first proposed in [11]. However, this approach may generate sparse patterns, 

which may contain subpatterns that do not appear frequently. Another milestone of FT-pattern mining is 

[12], in which extending Apriori and developing FT-Apriori for frequent FT-pattern mining allows the 

mining out of a complete set of FT-patterns. However, [12] still has the drawbacks of Apriori-based 

algorithms. In response, [13] developed FTP-mine, which finds FT-patterns by the concept of pattern 

growth. [14] uses bit vector representation to represent data and developed a vector-based mining 

algorithm. [15] generalized the problem of mining fixed-value FT-patterns into relaxation criteria and 

constraints and proposed to mine only statistical information of the corresponding FT-patterns. [16] 

considers a constraint-based mining approach for relevant fault-tolerant formal concept mining. The main 

defect of previous approaches is their definition of the number of faults tolerable in a pattern as a fixed 

number. Defining the number of faults tolerable in the patterns as a fixed number of items is not objective. 

For example, the function of a protein is determined by its structure but not sequence. It is possible that 

two proteins of similar function have different sequence lengths, e.g., the family of heat shock proteins. In 

this case, it is hard to mine them together using FT pattern mining with fixed number of tolerable faults.  

Instead of mining patterns of different lengths while tolerating a fixed number of faults, [17] addressed 

the problem of mining proportional FT-patterns in which the number of faults tolerable in the pattern is 

proportional to the pattern length. Moreover, the concept and proposed methods are demonstrated in [18] 

for predicting epitopes of spike proteins of SARS-CoV and concludes that the patterns are more concise 

than that of fixed FT-patterns mining for this application. However, the proposed algorithms are too violent. 

Therefore, [19] presents a framework named PFM to mine proportional FT-patterns efficiently. The PFM 

algorithm for mining proportional FT-patterns can be regarded as a breadth-first mining strategy, and is 

efficient if the entire bitmap of the database can be loaded into memory. However, because PFM generates 

candidates level by level, the bitvectors associated with each candidate should be loaded into memory for 

further checking. Memory swapping is performed when the bitvectors cannot fit into memory, and it makes 

the cost of I/O operations high. Therefore, to reduce the number of disk I/O operations, a depth-first mining 

strategy is proposed in this paper. The remainder of this paper is organized as follows. Section 2 introduces 

the problem definition and preliminaries. Section 3 describes the proposed algorithms in detail. Section 4 

discusses the experimental results and analysis. Conclusions are finally drawn in Section 5.  

2. Preliminaries 

Let pattern X = {i1, …, in} be a set of items and |X| denotes the length of X. X is called a |X|-itemset since it 

contains |X| items. A transaction T = (tid, X) is a 2-tuple, where tid indicates the transaction-id and X is a 

pattern. Transaction T = (tid, X) is said to contain pattern Y iff Y ⊆ X. A transaction database TDB is a set of 

transactions. Extending the problem of mining frequent patterns, the frequent FT-pattern mining problem 
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relaxes the definition of containing to FT-containing. The definition of proportional frequent FT-patterns is 

given as follows. 

Definition 2.1 (Proportional frequent FT-pattern) [8] 

Let P be a pattern. A transaction T = (tid, X) is said to FT-contain pattern P with respect to a given FT 

parameter δ (0.5 < δ < 1) iff there exists P' ⊆ P such that P' ⊆ X and 'P P     . The number of 

transactions in a database FT-containing pattern P is called the FT-support of P, denoted as supFT(P). 

Let B(P) be the set of transactions FT-containing pattern P. Given a frequent item-support threshold 

min_supitem
 
and an FT-support threshold min_supFT, a pattern P is called a frequent FT-pattern iff 

1) supFT(P) ≥ min_supFT*|TDB|; and 
2) for each item p∈P, supitemB(P)(p) ≥ min_supitem*|TDB|, where supitemB(P)(p) denotes the number of 

transactions in B(P) containing item p. 
For example, Table 1 shows a transaction database TDB. Suppose that the minimal item-support 

threshold min_supitem = 3, and the FT-support threshold min_supFT = 5. Let the FT parameter δ = 0.6, i.e., the 

maximal number of allowable mismatches of a pattern P is  1 0.6 P     . For pattern P = abcde, B(P) 

includes transaction 10, 20, 40, 50, 70, 90 since they all FT-contain P, and we have supFT(P) = 6 which is no 

smaller than min_supFT. Moreover, each item of P appears in at least three transactions of B(P). Therefore, 

pattern P is a proportional frequent FT-pattern. 
 

Table 1. Example Database 
 a b c d e 

10 1 1 1 0 0 

20 1 0 1 1 0 
30 0 0 0 1 1 
40 1 1 0 1 1 
50 0 0 1 1 1 
60 1 0 0 0 1 
70 0 1 1 1 1 
80 0 0 0 1 0 
90 1 1 1 0 1 

100 0 0 1 0 1 

 

As discussed in [19], when the value of FT parameter  is smaller than or equal to 0.5, i.e., 0 < δ ≤ 0.5, will 

lead to generate a large number of candidates that are not interesting. For example, as shown in Table 2, let 

δ = 0.5, min_supitem =40%, min_supFT = 50%, and the pattern P = {hammer, nail, pencil, eraser} can be a legal 

FT-pattern. However, it is easily observed that there does not exist any interesting relation between the 

two subpatterns {hammer, nail} and {pencil, eraser}, and P is not an informative pattern. Therefore, 

following the concept proposed in [19], we also focus on the range, 0.5 < δ < 1, to promote the mining 

efficiency. 

Table 2. Transactional Database 
 Hammer Nail Pencil Eraser 

10 1 1 0 0 

20 1 1 0 0 
30 1 1 0 0 
40 1 1 0 0 

50 1 1 0 0 

60 0 0 1 1 

70 0 0 1 1 

80 0 0 1 1 
90 0 0 1 1 

100 0 0 1 1 

 

In [19], a graph structure called FT-association graph is proposed to present the original database. With 
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this structure, PFM algorithm is proposed to mine proportional FT-pattern. In the following, we show the 

three important lemmas proposed in [19] which was used to prune candidates once the FT-association 

graph is constructed. 

Lemma 2.1 If an item y is away from x for the distance greater than 2 in the FT-association graph, then a 

pattern P containing both x and y cannot be a frequent FT-pattern. 

Lemma 2.2. If P is a frequent FT-pattern, for each item x of P, there must exist   × -1δ P  items in P 

which are neighbors of x in the FT-association graph. 

Lemma 2.3. Given a pattern P, the upper bound of supFT(P), denoted as max_supFT(P), is equal to 

    


" , | '|=  

max_sup( ')
P P P δ P

P . Additionally, if max_supFT(P) < min_supFT, then P cannot be a frequent FT-pattern. 

The whole process of PFM can be decomposed into three parts. The first part is data preprocessing. In 

this step, the original database is transformed into a bitmap and FT-association graph is constructed. The 

second part is candidate generation and pruning. Instead of scanning the entire database, PFM only loads 

part of the bitmap according to the items of each candidate in the candidates checking phase. That is, when 

generating candidates containing item x, by Lemma 2.1, only item y such that d(x, y) ≤ 2 is considered to 

compose to a candidate with x. The last part is to check the loaded bitmap to determine whether the 

candidates generated in the second part are frequent FT-patterns. 

3. Depth-First Mining Approach 

PFM algorithm can mine proportional FT-patterns efficiently in the case of bitmap can fit into memory. 

However, in large database mining problem, the bitmap of the database are often too big to fit into memory. 

Because PFM generates candidates level by level, the bitvectors associated with each candidate should be 

loaded into memory again and again for further checking. Memory swapping is performed when the 

bitvectors cannot fit into memory, and it makes the cost of I/O operations high. Therefore, in this paper, a 

Depth-First Proportional FT-pattern Mining algorithm (DFPFM) is proposed to reduce the number of disk 

I/O operations. While generating candidates for item x, only the bitvectors of x and all y where d(x, y) ≤ 2 

(Lemma 2.1) are needed to be loaded into memory. The complete set of candidates of x is generated, rather 

than generating candidates with same length first. For each candidate P, extract bitmap (P) from the loaded 

bitmap. Check P by using the bitmap (P).  

The detail algorithm is listed in Fig. 1. Ci,x denotes the set of candidates generated for x and with length-I, 

and Fi,x denotes the set of frequent FT-patterns checked from the candidates in Ci,x. Lines 1~4 are 

precessing steps. The minimum length of mined out proportional FT-patterns, denoted as MinPattern, 

depends on δ. Since the mined patterns must be able to tolerate at least 1 mismatch, the inequality 

(1 ) 1P       holds, and can be recast as 
1

1
P



 
   

. Hence, the lengths of all mined patterns have to be 

greater than or equal to 
1

1 

 
  

, and candidates are generated from the length 
1

1 

 
  

. Then for each 

frequent 1 itemset x (line 5), we load the bitvectors from the bitmap of the database for those items which 

may form a FT-pattern with x (line 6). After that, we generate all possible FT-pattern candiates associated 

with x (lines 7-10), and check the associated bitmap to determine whether it is a frequent proposional 

FT-pattern (lines 11-26). 

4. Experimental Results 

The test data was generated by an IBM synthetic-data generator. The simulations were implemented in 

JAVA and all the experiments were performed by an Intel Pentium 3.0 GHz computer. Table 3 shows the 
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parameter settings for comparing efficiencies of DFPFM and PFM. Here the maximum bitmap size that can 

be stored in memory is assumed to be 300001000. Bitmaps that exceed this size can only be stored in 

disk. 
 

Algorithm DFPFM 

Input: Transaction database TDB 
Frequent item-support threshold: min_supitem 
Frequent FT support threshold: min_supFT 
FT parameter: δ 

Output: frequent FT-patterns 

Method: 
1. Scan TDB to a. transform TDB to bitmap; 
              b. construct the FT-association graph; 

c. Find F1; 
2. Remove items not in F1 from the bitmap and FT-association graph; 

 
3. MinPattern =  )1/(1  ; 

 
4. MaxPattern = min( /L    , |F1|);  
5. for each node x of FT-association graph { 
6.   Load columns which belong to x and all y where  

d(x, y) ≤ 2 from the bitmap; 
7.   for (i = MinPattern; i ≤ MaxPattern; i++) { 
8.     if (#fault(i) = #fault(i−1)) 

Generate Ci,x from Fi−1,x;  
9.     else  
10.       Ci,x = Ci,x ∪ { | ,  ,  ,  ( , ) 2P x P P i y P d x y     ,  

n(x), n(y) ≥ 1P     , max_supFT(P) ≥ min_supFT}; 

11.     for each candidate P of Ci,x { 
12.       Extract bitmap(P); 
13.       for each transaction T of bitmap(P) { 
14.         if there are P     1s in T 
15.           supFT(P) = supFT(P) + 1; 
16.         else remove T; 
17.       } 
18.       if supFT(P) ≥ min_supFT 
19.         for each column of x of bitmap(P) { 
20.           supitem

B(P)(x)=the number of 1s in the column of x; 
21.           if supitem

B(P)(x) < min_supitem then discard P; 
22.         } 
23.       if P is not discarded, add P to Fi,x; 
24.     } 
25.   } 
26. } 

Fig. 1. DFPFM algorithm. 
 

As shown in Fig. 2, since the size of the transformed bitmap is exactly 30000×1000 so that the bitmap can 

be stored in memory. As a result, PFM performs much better than DFPFM for it have not to perform disk 

I/O operations and generates less candidates than that of DFPFM during the mining process. Fig. 3 indicates 

that PFM still outperforms DFPFM when the bitmap size is less than 30000×1000. Nevertheless, PFM must 

perform one or more bitmap swap to check each candidate when the bitmap size is greater than 30000 

×1000. DFPFM outperforms PFM in this situation. Fig. 3 also shows that a denser dataset (with fewer 

distinct items) leads to poorer performance in both DFPFM and PFM, since fewer distinct items results in 
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more potential candidates. 
 

Table 3. Parameter Settings for FT-Pattern Mining 

Notation Meaning Default Range 

TLEN 
Average length of a 

transaction 
15  

I 
Number of distinct 

items 
1000 500~1500 

N 
Total number of 

transactions 
30000 10000~100000 

δ FT parameter 0.8 0.6~0.9 

min_sup
item

 
Minimum item 

support threshold 
0.04  

min_sup
FT

 
Minimum FT support 

threshold 
0.06  

 

 
Fig. 2. Execution times of PFM and DFPFM vs. δ. 

 

 
Fig. 3. Execution times of PFM and DFPFM vs. number of distinct items. 

 

Finally, Fig. 4 shows the scalabilities of PFM and DFPFM. Due to the limitation of memory size, more data 

leads to more swap process handled by PFM for checking each candidate. Therefore, as shown in Fig. 4, 

PFM scales badly when the dataset is too big to fit into memory. DFPFM, which adopts a depth-first mining 

strategy, successfully reduces a large number of disk I/O operations. Hence, DFPFM is more scalable than 

PFM. 
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Fig. 4. Execution times of PFM and DFPFM vs. number of transactions. 

 

5. Conclusions 

In this paper, we consider the problem of mining proportional FT-patterns. Moreover, we proposed a 

depth-first mining approach to mine proportional FT-patterns efficiently in large database. Unlike PFM 

algorithm which generates candidates level by level, we propose a strategy of generating candidates in a 

depth first manner to reduce the disk I/O times when the bitmap of the database can not fit into the main 

memory. Moreover, a set of experiments is performed to show the advantage of the approach. Experimental 

results indicate that the DFPFM algorithm, by adopting a depth first mining strategy, can substantially 

reduce the number of disk I/O process when the bitmap is too big to fit into memory and is more scalable 

than PFM. 
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