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Abstract: The development of information technology leads to several kind of security threats which can 

cause different damages like financial losses. Security threat breaches affect specially the confidentiality, the 

integrity and the availability of a system. Indeed, as the environment continues to become more dynamic the 

process of making good security decisions is becoming more and more challenging. Hence, managers have to 

adopt successful policies and practices to prevent security breaches. They need to evaluate or assess security 

threats breaches. The main contributions of this paper is a new a quantitative analysis of information 

systems based threat classification approach. The proposed approach used threat classification to assess 

and evaluate threat impacts to develop strategies to mitigate the effects of threats classes on the system. The 

idea is to consider an average presence of threats in a class of threats in order to achieve a certain stability of 

this class in time. Then, we propose an approach that estimates the security of information systems. 

 

Key words: Cloud computing, cyber security metrics, information security, mean failure cost (MFC), security 

threats assessment, threat, threat classification. 

 
 

1. Introduction 

With the development of Information and Communication Technologies and increasing accessibility to the 

Internet, organizations become vulnerable to many threats. In fact, their information becomes also exposed 

to cyber attacks risks. Managers need to know the level of the damage that a cyber attack can cause and the 

possibility of occurrence, so they can determine what they need to do to prevent the attack by selecting 

appropriate safeguards or repairing damage. In addition to that, information systems security risks are a 

topic that has become increasingly significant in recent years. Its impacts of information system security 

violations have become more and more costly [1], [2]. In [3], the 2008 survey from the Computer Security 

Institute reported losses averaging $345.000 among the 39% of respondents who are able to estimate the 

losses caused by various types of computer security incidents. The survey reported, as well, that the 

percentage of attacks comes especially from inside an organization versus those from outside. In fact, the 

percentage of losses attributed to outsiders attacks jumped from 36% in 2007 to just 53% in 2008 from total 

losses [3]. Another survey in 2010 presented on 738 organizations by the Computer Security Institute 

reported a total estimated annual loss of $190 million caused by information systems security incidents [4]. 

Besides, it reported that, 67.1% of the total losses are caused by malware infection (like viruses).  

Moreover, threats have several characteristics that help to better study threats and its risks. In fact, they 

come from diverse sources, like internal or external hackers and then classify in different ways like source. It 
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may be manifested via a threat agent using a particular penetration technique to cause undesired effects 

[5]-[8]. Security threats classification allows identifying and evaluating threats to propose appropriate 

security solutions.  

We propose in this paper, to quantify security breaches, a quantitative security risk model based on threat 

classifications to identify critical security threats classes and assess accurately threats risks. Our solution 

focuses on quantifying security threats in order to find countermeasures per threats class. The proposed 

approach lead to a security assessment model illustrates how a quantitative risk analysis of an information 

system can be carried. 

The rest of our article is organized as follows. In the next section, we discuss how to assess security threats 

using the mean failure cost (MFC) model. Then, we introduce a security risk assessment model, which we 

name MFC Extension, in order to quantify threats based on a threats classification. In addition to that, we 

illustrate the use of the MFCE model on Cloud Computing. Finally, we propose a method to validate our 

quantitative security risk model. 

2. Related Work 

To make effective security decisions, managers need to assess or estimate the security of the system and 

well characterize it. There are many measures in literature to support the analysis of how well a system 

meets its security objectives. There are several quantitative security risk assessment models that estimate the 

dependability of a system which can be assessed according to the reliability, availability, maintainability and 

security metrics 

2.1. Risk analysis Model for Cloud Computing System 

In [7], a risk assessment approach from the perspective of a cloud user is presented to analyze the data 

security risks before putting his confidential data into a cloud computing environment. This work allows 

helping cloud computing users to evaluate the risk of their data security. It allows users to perform risk 

analysis before putting their critical data in a security sensitive cloud. The method used trust matrix to 

evaluate the trust degree of data location. It contains two parameters: data cost and provider’s history. Data 

cost is assigned by the users based on the criticality of the data and history includes a provider’s profile of 

past services. This approach is easy to be adopted; however, it is not a structured an analysis approach that 

can be used for a deep risk analysis in cloud computing environments. 

2.2. SecAgreement Security Assessment Framework 

In [9], a framework called SecAgreement (SecAg) is presented, that extends the current SLA negotiation 

standard, to allow security metrics to be expressed on service description terms. It enables cloud service 

providers to include increasing the likelihood that their services will be used. The approach defines a cloud 

service matchmaking algorithm to assess and rank SecAg enhanced SLA by their risk, allowing organizations 

to quantify risk, identify any policy compliance gaps that might exist, and thus select the cloud services that 

best meet their security needs. This framework can be used just to compare between cloud providers to 

select the best one basing on calculation of risk factor of each one. 

2.3. Quantitative Risk and Impact Assessment Framework (QUIRC) 

In [10], a quantitative risk and impact assessment framework (QUIRC) is presented to assess the security 

risks associated six key categories of security objectives (SO) (such confidentiality, integrity and auditability) 

in a Cloud computing platform. To assess security risk, this approach used the probability of threat 

occurrence event, and its potential impact or consequence. The overall platform security risk for the given 

application under a given SO category would be the, average over the cumulative, weighted sum of n threats 
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which map to that SO category.  

The advantage of this quantitative approach of risk assessment is that it enables providers and customers 

to comparatively assess the relative robustness of different Cloud vendor offerings and approaches in a 

defensible manner. However, this approach is the collection of historical data for threat events probability 

calculation, which requires data input from those to be assessed Cloud computing platforms and their 

vendors. 

2.4. MTTF-Like Metrics 

The Center for Internet Security [11] proposed a set of MTTF-like metrics that capture the concept of 

cyber security. These include: the mean time to failure (MTTF) the mean time to incident discovery, the 

incident rate and mean time between security incidents.  

 The mean time to failure (MTTF) is a quantity that reflects the failure rate of a system. It describes the 

expected time that a system will operate before the first failure occurs. It is the number of total hours of 

service of all devices divided by the number of devices [10]. 

 The mean time between failures (MTTB) is a measure of reliability for repairable product and MTTF 

(Mean Time To Failure) for non repairable product. It describes the expected time between two 

consecutive failures for a repairable system. These values are calculated by the following equation. These 

models present several shortcomings. In fact, they reveal the failure rate of the whole system and ignore 

the variance stakes amongst different stakeholders. 

2.5. The MFC Model 

Ben Aissa et al. introduced, in [12], the concept of mean failure cost (MFC) as a measure of dependability in 

general, and a measure of cyber security in particular. The MFC represents a stochastic model that quantifies 

this random variable in terms of financial loss per unit of operation time (e.g. $/h) due to security threats.  

The MFC provides a measure of security that depends on security requirements, stakeholder’s interest and 

architectural component of a system. In fact, it varies by stakeholder and takes into account the variance of 

the stakes that a stakeholder has in meeting each security requirement, the variance in failure cost from one 

requirement to another, the variance in failure probability from one component to another and the variance 

in failure impact from one stakeholder to another. 

The mean failure cost is defined by the following formula [12]: 

 

MFC ST DP IM PT                                      (1) 

 

where: 

 MFC is a vector with as many entries as there are system stakeholders, and MFCi is a random variable 

that represents the cost to stakeholder Hi that may result from a security failure. 

 ST is the stakes matrix: a matrix where rows represent stakeholders, columns represent security 

requirements and the cell ST(H, R) is the stake that stakeholder H has in satisfying requirement R. A stake 

is a financial interest that can be lost by a stakeholder when R fails. The stakes matrix is filled, row by row, 

by the corresponding stakeholders. 

 DP is the dependability matrix: a matrix where rows represent security requirements of the system, 

columns represent system components and DP(R, C) is the probability that the system fails to meet 

requirement R if component C is compromised. DP matrix is filled by the architect of the system who 

knows the role that each component plays in achieving each requirement. 

 IM is the impact matrix: a matrix where rows are system components, columns are security threats under 

consideration and IM(C, T) is the probability that component C is compromised if a threat T is 
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materialized. IM is filled by the Verification and Validation team, who know how the various security 

threats compromise system components. 

 PT is the threat vector: a vector that has as many entries as there are threats in our threat model, and 

PT(T) is the probability that threat T. PT is filled the security team, which knows the threat configuration 

(i.e. the probability of occurrence of each threat per unit of operation time) within which the system 

operates. 

The MFC model is used to evaluate security breaches in many real word applications like: An Ecommerce 

system [12] and a Cloud Computing (CC) system [13]-[15]. We will present in the next section a new threat 

assessment model which extends the MFC metrics. 

3. The MFC Extension (MFCE) Model 

In this section, we propose a new cyber security metric, extension of the mean failure cost (MFC) metric, 

based on threats classification and especially on our proposed threat classification model [7]. We illustrate, 

then, this infrastructure by means of a cloud computing application. 

3.1. Motivation  

Security threats may be originating from within or from outside threats that may be manifested, as well, via 

a threat agent using a particular penetration technique to cause dangerous effects [13]-[17],. Thus, managers 

need to know and find threats that influence their assets and identify their impact to determine what they 

need to do to prevent attacks by selecting appropriate countermeasure. Then, they need to evaluate the 

extent of the damage caused by these threats.  

Therefore, it is necessary to have an understanding of the threats and the vulnerabilities. Security threat 

classification allows detecting, understanding, and evaluating threats in order to propose appropriate security 

solutions and it helps, as well, to assess accurately and evaluate threat impacts. In fact, security threats can 

be observed and classified in different ways by considering different dimensions or classes of the system like 

its source code, attacker’s motivation or its users or their roles. Based on the obtained assessment, we will 

propose a quantitative risk analysis of an information system based on a threat classification model to 

estimate security breaches. We aim at the following to amend the MFC model to obtain a more 

comprehensive model. Based on several threats classes, we propose a new cyber security metric, extension 

of the mean failure cost (MFC) metric. After the study and analysis of security threats and the MFC metric, we 

noticed the following MFC limits: 

 Security threats are evolutive and variable over time and have several characteristics and in PT vector, 

there is no logical or hierarchical structure between the different catalogued threats as they are not based 

on a particular attribute to classify them. 

 Underestimation of the MFC. In fact, in the presented threat vector PT, the term used to define the threat 

can be ambiguous; this can lead to an overlap between the various threats i.e each threat may belong to 

several classes at once and thus it is computed many times, so we have an underestimation of the mean 

failure cost. 

 Users who may use this method to derive threats may have completely different results. 

Because of that, we propose an extension of the MFC model in which we focus on refining the estimation 

of the impact matrix IM and the threat vector PT. We call this model the MFC Extension model (MFCE). 

3.2. The New Cyber Security Model  

Te basic idea behind this security assessment model is to include threat dimensions or classes in order to 

refine the definition of the MFC model. For this purpose we will refine the estimation of the impact matrix IM 

and the threat vector PT. the proposed model is named as the Mean Failure Cost Extension model (MFCE). 
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Our cyber security model allows studying the impact of a class of threats rather than a threat. Indeed, 

threats are variables in time and security solutions change over time. The basic idea is to consider a class of 

threats and tries to find solutions to this class and consider the probability that a class is present, will be the 

average of the probabilities of present threats in this class threats in order to achieve a certain stability of this 

class in time. This allows converging towards a stability of existence of a class. 

For the impact matrix IM, we generate two matrices: the new impact matrix IMC and the threat classes 

Matrix CM, as shown in Fig. 1. Thus, the MFC Extension (MFCE) has the following new formula: 

 

MFCE ST DP ICM CM PT                                     (2) 

 

where: 

 MFCE is a vector that represents the mean loss that the stakeholder may experience due to security 

failure. 

 ICM is the impact class matrix: a matrix where rows are system components, columns are security threats 

classes that we consider and ICM (C, Cl) is the probability that component C fails once threat Class Cl has 

is materialized.  

 CM is the class matrix: A matrix where rows are threats classes, columns are security threats under 

consideration and CM (Cl, T) is the probability of having Class Cl once Threat T has materialized.  

The MFCE model is a formula in the form of a hierarchical linear system composed of stakeholders, 

security requirements, architectural components of the system, security threats classes, and threats. In fact, 

an information system has its stakeholders who have stakes in meeting some security requirements when a 

security threat occurs. The proper functioning of a system requires certain attributes of dependability named 

as security requirements. Security requirements failures depend on architectural components failures which 

are prone to several threats. Finally, a threat has several criteria like source, users and motivation, intention 

that affect information systems. 

 

 

(a) 

 

(b) 

Fig. 1. (a) the Impact threat classes matrix structure; (b) the Threat Classes matrix structure. 

4. Illustration of the MFC Extension Model: A Cloud Computing System 

We illustrated in previous work the use of the MFC model on Cloud Computing (CC) system [13]-[15]. In 

this section, we show the use of our model (MFCE) on the same case study in order to compare the derived 

results. 

We identify, firstly, the security requirements, the stakeholders and their stakes in meeting these 

requirements, the architectural components and the security threats that affect the cloud computing system. 

Then, we fill the matrixes ST, DP, ICM, CM and PT using empirical data from [18] to obtain the following MFC 

Extension (MFCE) vector.  

As for security requirements, we identify seven generic security requirements classified based on the levels 
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of criticality of data as shown in our previous work [13], namely: Availability of critical data (AVC), availability 

of archival data (AVA), integrity of critical data (INC), integrity of archival data (INA), confidentiality of 

classified data (CC), confidentiality of proprietary Data (CP), and confidentiality of public data (CB). 

 
Table 1. Stakes Matrix 

               
Security Requirements 

AVC AVA INC INA CC CP CB 

Stakeholders 

PR 500 90 800 150 1500 1200 120 

CS 150 40 220 80 250 180 60 

GS 60  20  120  50 2500  30  12  

IS 0,05 0,015  0,3 0,2  0,3  0,1 0,01 

 

We consider, also, four classes of stakeholders in this case study, namely: a cloud computing provider (PR), a 

corporate subscriber (CS), a governmental subscriber (GS), and an individual subscriber (IS). 

Based on a quantification of these stakes in terms of thousands of dollars ($K) per hours of operation, we 

produce the following stakes matrix ST as shown in Table 1. 

Based on the Cloud Computing system architecture defined in our previous work [13], we generate the 

dependency matrix shown in Table 2. We consider that the cloud computing system components includes: a 

browser, a proxy server, a router/firewall, a load balancer, a web server, an application server, a database 

server, a backup server and a storage server [13]. 

 
Table 2. Dependency Matrix 

 

 

Components 

Browser Proxy 
server 

Router/ 
Firewall 

Load 
balancer 

Web 
server 

Application 
server 

Database 
server 

Backup 
server 

Storage 
server 

No 
failure 

Security Requirements 

AVC 0,14 0,14 0,14 0,14 0,06 0,04 0,14 0,06 0,14 0 

AVA 0,16 0,16 0,16 0,16 0,07 0,05 0,05 0,03 0,16 0 

INC 0,03 0,03 0,2 0,2 0,09 0,03 0,2 0,02 0,2 0 

INA 0,04 0,04 0,32 0,32 0,14 0,04 0,04 0,01 0,32 0 

CB 0, 1 0,03 0,23 0,23 0,1 0,1 0,1 0,01 0,1 0 

CP 0, 1 0,03 0,23 0,23 0,1 0,1 0,1 0,01 0,1 0 

CC 0, 1 0,03 0,23 0,23 0,1 0,1 0,1 0,01 0,1 0 

 

4.1. The Impact Threats Classes Matrix 

The following step in our model is to derive the impact threat classes matrix ie, the derivation of the set of 

threat classes that we wish to consider in our system. We applied our hybrid threat classification presented 

in previous work [7] on this case study to generate threat classes. In fact, we proposed in earlier work, [7] a 

dynamic and multidimensional threat classification model that allows better defining and articulating of 

threat characteristics. The model contains the following criteria: 

 Threat source: Origin of threat either internal or external. 

 Threat agents: Agents that cause threats that can be human, accidental environmental or technological. 

 Security threat motivation: Goal of attackers on a system which can be malicious or non-malicious. 

 Security threat intention: The intent of the human who caused the threat that is intentional or accidental.  

Thus, we have as classes: Insider human malicious accidental threat (IHMA), insider human malicious 

intentional threat (IHMI), insider human non malicious accidental threat (IHNMA), insider human non 
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malicious intentional threat (IHNMI), outsider human malicious accidental threat (OHMA), outsider human 

malicious intentional threat (OHMI), outsider human non malicious threat (OHNMA), outsider human non 

malicious intentional threat (OHNMI), environmental threat (EV), insider technological threat (IT) and 

outsider technological threat (OT). 

Components in a system may fail to meet security requirements due to malicious activity when a threat 

class is materialized. The ICM matrix represents eleven columns, one for each threat class plus one for the 

absence of threats classes (NoC), and ten rows, one for each component plus one for the event that no 

component has failed during one period of time (NoF). The impact threats classes matrix is given in Table 3. 

 

Table 3. Impact Threat Classes Matrix 
 Threats classes 

IHMA IHMI IHNMA IHNMI OHMA OHMI OHNMA OHNMI EV IT OT NoC 

Components 

Brws 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

Prox 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

R/FW 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

LB 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

WS 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

AS 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

DBS 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

BS 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

SS 0,011 0,03 0,005 0,015 0,04 0,027 0,02 0,013 0,01 0,03 0,03 0,769 

NoF 0 ,09 0,08 0,09 0 ,09 0,08 0,08 0,09 0,09 0,09 0,08 0,08 0,06 

 
Table 4. Threat Classes Matrix 

 Threats  

MVH CVH VMm VMS MVV VMC VMM DoS FA DL MI ASTH ANU IAI Not 

Threats classes 

IHMA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

IHMI 0 0 0 0 0 0 0 0.33 0 0 0.33 0 0.33 0 0 

IHNMA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

IHNMI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

OHMA 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 

OHMI 0.25 0.25 0 0 0 0 0 0 0 0.25 0 0.25 0 0 0 

OHNMA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

OHNMI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

EV 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

IT 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 

OT 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 

NoC 0,05 0, 083 0,13 0,05 0,05 0,05 0,13 0,08 0 0,083 0,08 0,083 0,08 0,05 0 

 

4.2. The Threat Classes Matrix 

In this step, we derive the threat classes matrix i.e., the identification of the set of threats that we wish to 

consider in cloud computing environments. The threat classes matrix (Table 4) shows that each security 

threat belongs at most to one threat class that is each threat has its proper characteristics. In CM matrix, 

columns represent security threats (the last column represents the absence of threat (NoT)), rows represent 

threat classes and a cell CM(q, s) represents  the probability of having Class Clr once Threat Tq has 
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materialized: f a class defines n threats, then this is 1/n and 0 if it is outside. 

The different possibilities of attacks that can exploit the weaknesses of this case study are presented in 

Table 5. 

 

Table 5. Threat Vector 
Threats Probability 

Monitoring virtual machines from host  (MVM) 8,063 10-4 

Communications between virtual machines and host (CBVH) 8,063 10-4 

Virtual Machine modification (VMm) 8,063 10-4 

Placement of malicious VM images on physical systems (VMS) 8,063 10-4 

Monitoring VMs from other VM (VMM) 40,31 10-4 

Communication between VMs (VMC) 40,31 10-4 

Virtual machine mobility (VMM) 40,31 10-4 

Denial of service (DoS) 14,39 10-4 

Flooding attacks (FA) 56,44 10-4 

Data loss or leakage (DL) 5,75 10-4 

Malicious insiders (MI) 6,623 10-4 

Account, service and traffic hijacking (ASTH) 17,277 10-4 

Abuse and nefarious use of cloud computing (ANU) 17,277 10-4 

Insecure application programming interfaces (IAI) 29,026 10-4 

No Threats  (NoT) 0,9682 

 
We have catalogued fourteen distinct types of threats and eleven threat classes. To compute the MFC 

Extension (MFCE), we need to know the probability of the attack class for each threat during one hour (see 

Table 3). We need also to fill the values in Table 4 and the threat vector values (see Table 5), which comes 

from an empirical study [18]. 

Using the 4 Matrices (Stakes, Dependency, Impact threat classes and Threat classes) and the threat classes 

vector we can compute the vector of mean failure costs Extension (see Table 6) for each stakeholder of Cloud 

Computing system using formula 2. 

 
Table 6. Stakeholder Mean Failure Cost Extension 

Stakeholders MFCE ($ K/h) 

PR 280,551 

CS 63,856 

GS 178,863 

IS 0,065 

 

5. Validation of the MFCE Model 

System stakeholders seek secure information systems to reduce cost and protect their assets from damage 

and the confidentiality, availability and the integrity of information. To help stakeholders, the MFC metric 

gives a quantitative value of security system without any qualification of it that is the security quantification 

did not allow deciding whether the system is secured or not. The question for all stakeholders is that the 

system is secure or not? 

For this purpose, we propose to find an interval that classifies the security of information systems. Thus, 

we propose to find lower and upper bounds of this interval which present, respectively, the mean failure cost 

for a 100% secured and a 100% unsecure system. In fact, the lower bound Blow represents a secure system 

with the minimum cost and the upper bound Bupp represents an unsecured system with a maximum cost. 
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Therefore, we say that a system is secure if its MFC is lower than the average between the upper bound and 

the lower bound that is if the MFC<([Blow+Bupp]/2) and the system is not secure if MFC>([Blow+Bupp]/2). 

Finally, we proceed to the classification of our MFCE vector either it is secure or not.  

 

Table 7: MFC Lower Bound 

Stakeholders MFCE ($ K/h) 

PR 8.018 

CS 1.824 

GS 5.111 

IS 0, 001 
 

Table 8. MFC Upper Bound 

Stakeholders MFCE ($ K/h) 

PR 1923.666 

CS 437.846 

GS 1226.416 

IS 0, 449 
 

 

Assuming that the system is secure, the probabilities of failure of system components are low see null. 

For this goal, we modify the matrix IM in this way: we put 0 for lines, 1 at the last column and the last line is 

made complementary to the columns and the equilibrium of the line. For an unsecured system, we make 

the reverse of founded bounds. We compute, finally, the lower bound vector of mean failure costs and the 

upper bound vector of MFC as shown in Tables 7 and 8. 

To validate our MFC Extension vector (MFCE) presented in Table 6 for Cloud Computing system, we 

propose to evaluate the stakeholders’ security costs in order to decide if this system is secure or not. As we 

notice that the MFC values for Cloud Computing system are lower the average of the MFC bounds for each 

stakeholder presented in Tables 7 and 8, so we can say that the considered information system is a secure 

system. 

In addition to this contribution in the application of MFC model, we can say that the new model satisfies 

the Bayesian formula. Furthermore, in certain level of Cloud Computing services like the Infrastructure As A 

Service layer (IaaS), it is very difficult to specify a threat in a system component because we can find a large 

number of components, in this layer, so it can be better to associate for each component a class of threats 

rather than a specific threat. Indeed, as countermeasures, one solution will solve several problems rather 

one problem.  

6. Conclusion  

Information security is a critical problem for individuals and organizations because it leads to great 

financial losses. This work dealt with quantitative security risk analysis problem in order to propose a 

quantitative security metrics that estimates security cost breaches. We propose, in this paper, a cyber 

security metric based on threats classifications model to well estimate security breaches. We have also 

illustrated the use of this metric (MFC Extension (MFCE)), on a cloud computing system. This quantitative 

model enables system’s stakeholders to quantify the risks they take with the security of their assets and to 

make security related decisions on the basis of quantitative analysis. In fact, we propose to qualify security 

breaches costs that are we suggest a cost interval to classify the security quantification for information 

system to decide whether the system is secure or not.  

We develop a cyber security metric as a decision making technique to derive relevant decision making 

security solutions. This quantitative decision making metric allows selecting countermeasures per threats 

class rather than a threat to better studying and identify security threats. 
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