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Abstract: Graph clustering is an important technique in data mining and network analysis, and it is widely 

used in chemistry, physics, biology, communication, and computer science. Similarities between vertices of a 

graph are the fundamental conditions for many hierarchical clustering algorithms. In the paper, we propose 

a new similarity measure based on microblock density, which computes the similarity between a pair of 

vertices by calculating the densities of their common adjacent microblock. This measure extends the scope 

and improves the discrimination of traditional measure, thus significantly improving the performance and 

stability of the similarity-based clustering algorithms. Experiments on synthetic data and real networks show 

that the density-based similarity approach accurately reflects the local structure of the graph and provides 

higher accuracy similarities for clustering and community structural detection algorithms than other 

state-of-the-art methods. 
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1. Introduction 

In an information age, clustering analysis is becoming an ever more important daily tool for us to utilize 

useful information, and it attracts attentions from researchers and experts in such disciplines as 

mathematics, physics, sociology, biology, communications, and computer science. It is used to explore the 

underlying relationships among a collection of data by organizing them into homogeneous clusters. However, 

clustering analysis is an intractable subject because it is hard to reach consensuses on the definition of 

cluster itself and many problems remain to be solved, with some problems even proving to be NP-hard [1], 

[2]. Therefore, many heuristic clustering algorithms based on various techniques are developed, such as the 

hierarchical methods, partitioning methods, density-based methods, grid-based methods and other fitness 

optimizing methods. The surveys of clustering techniques are now available in literature [3]-[7]. 

There are many traditional clustering algorithms based on vertex similarity, and it is natural to assume 

that the vertices with high similarity should be grouped in the same cluster. Although there is no universal 

definition up-to-now, vertex similarity is an essential factor in the description of a cluster by most clustering 

algorithms. For a metric measure, the similarity function should typically satisfy the conditions of symmetry, 

positivity and triangle inequality: 

1) The similarity of each pair vertices should be symmetrical with ( , ) ( , )i j j iS v v S v v , 

2) All the similarity should be positive with 0 ( , ) 1i jS v v  , and 

3) The distance (dissimilarity) among vertices should satisfy triangle inequality with 
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( , ) ( , ) ( , ), ( , ) 1/ ( , )i j i k k j i j i jD v v D v v D v v D v v S v v   . 

 
Furthermore, the similarity between two vertices with identical neighborhoods should be equal to 1. All 

these conditions make the computation of such a similarity complicated, and in some cases it is more 

complex than the clustering. For data represented as a graph, there is no additional feature to measure other 

than the structural property of a graph, which makes the task very difficult.  

In the paper, we discuss existing vertex similarity measures for graph clustering and propose a novel one 

which assesses the similarity between two vertices by fractioning their neighborhoods vertices into different 

densely connected blocks and measuring their connection strength to the common blocks, including the scale 

and density of the bocks. The new measure puts particular emphasis on the density of two vertices’ common 

adjacent block, which catches the nature of a cluster that is a densely connected vertex subset. It overcomes 

the low discrimination of local structure based measures and the high time complexity of global connectivity 

based measures. Experiments on real networks show that the density-based measure can reflect more 

accurately the local structure and provide higher accuracy similarities for graph clustering and community 

structural detection algorithms than other state-of-the-art methods. 

The rest of this paper is organized as follows. Section 2 gives a brief overview of related similarity 

measures, with the necessary background given. Section 3 describes the proposed similarity measure in 

detail. In Section 4, a comparative analysis of the experimental results is made. Finally, Section 5 provides 

some concluding remarks and further research suggestions. 

2. Related Work 

During the past decades, many vertex similarity measures based on various techniques have been 

developed, including spacial, structural, connective, physical and probabilistic measures [8-30]. Since no 

other features can be used to measure vertex similarity in the setting of graphs, all methods try to extract 

useful information from graph topology structure that underlies the vertex adjacency relationships. In this 

subsection, several most popular measures in graph clustering are introduced. More information about 

similarity techniques may be found in [6], [7]. 

2.1. Euclidean Distance 

For a graph, the most straightforward manner of measuring the similarity between two vertices is to treat 

vertices as points embedded in an n-dimensional space and compute the Euclidean distance as the 

dissimilarity, which is the L2-norm: 
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  .                                    (1) 

Another popular distance is the Manhatan distance (L1-norm): 
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Commonly, the cosine similarity is used to convert the distance into angle in the spatial measure: 
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These distance measures are generally used to measure continuous features, while the graph adjacency 

matrix is binary high-dimensional data, which greatly decrease the discrimination of the similarity. Therefore, 

Journal of Computers

91 Volume 10, Number 2, March 2015



spectral clustering is widely used to project the data into low dimensional spectral space, which greatly 

reduces the dimension and improves the discrimination. 

2.2. Structural Measure 

In some algorithms, the similarities between vertices are computed directly according to the local 

structure. Hennig and Hausdorf [9] suggest measuring only the intersection of their neighborhoods, which is 

based on the jaccard index [8]. It takes value from zero to one. The measure takes only their occurrence into 

consideration and overlooks their absence: 

| ( ) ( ) |
( , )

| ( ) ( ) |

i j
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N v N v
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                                    (4) 

Pearson correlation coefficient [10] is another commonly used structural measure, which measures the 

similarity by computing the Pearson correlation between the vectors of the adjacency matrix (L=I+A): 

, ,

1

( ) deg( )deg( )

deg( )deg( )( deg( ))( deg( ))

n

i k j k i j

k

ij

i j i j

n l l v v

C
v v n v n v



 
 

 


 


                           (5) 

These measures have a low discrimination because only similarities between neighborhoods are calculated 

with others being zero. Furthermore, the fundament properties of local structure, such as connectivity and 

density, are not taken into account. 

2.3. Connectivity Measure 

The length of the shortest paths between a pair of vertices is a natural dissimilarity measure, but low 

discrimination restricts its application in practice, because all the neighbors have short distance without 

distinguishing inter or extra ones. Based on the Flow-theory, Hartuv and Shamir [12] propose a measure of 

vertex similarity by calculating the number of distinct paths between two vertices, based on the facts that all 

vertices of the same cluster are highly connected. This method is very successful when the cluster structure 

is neat with few inter-links. With increasing edges of inter-clusters, the similarity becomes degree dependent 

because each pair of vertices can get at least the distinct paths that equal their smaller degree. 

2.4. Resistance Measure 

Suppose each edge of a graph carries a unit resistor, and then the graph becomes a simple resistance 

network, as shown in Fig. 1. Many clustering algorithms [13], [23] are based on the potential differences of 

the vertices by placing a battery between a source vertex and a sink vertex. However the selection of the 

source and sink vertices may greatly influence the clustering results. Once the source and sink vertices are 

selected, the potential differences can be easily analyzed by solving Kirchoff’s equations. 

 
Fig. 1. Graph and Circuit: A sample graph becomes an electric circuit by adding a unit resistor to each edge 

and a battery to the net. 

2.5. Random Walk Measure 

Random walk is a finite Markov chain that is a time-reversible chance process in probability. Doyle and 
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Laurie Snell [14] show that its properties are closely related to the resistance network. Based on some 

properties of random walks on graph, several important vertex similarities have been developed. Saerens and 

Coworkers [15] study and use the commute-time between a pair of vertices as the dissimilar measure, which 

is the average time for a random walker to run a reiteration trip between two vertices. White and Smyth[16] 

use the average steps for a walker to get a single trip from the source to the target. Palmer and Faloutsos [17] 

define a similarity measure based on the escape probability, which means the probability of the walker’s 

failure to come back after having reached the target vertex. 

3. Proposed Similarity Measure 

Although graph clustering has a long history, there is no universal definition. In graph representation, the 

definition of a cluster should have the following factors:  

1) It is a connected component; 

2) The internal density is notably higher than that of the external clusters; 

3) The similarity between each pair of vertices is “surprisingly” higher than that to external vertices, 

whether they are adjacent or not; and 

4) All the vertices lie in a “local” area, where the shortest distance between any pair of vertices is very small.  

Generally speaking, a feasible similarity measure for graph cluster should catch these properties of a 

cluster. Unfortunately, no measures available meet all the requirements. Furthermore, density is also a critical 

factor for an applicable measure, which is the motivation behind our measure. 

3.1. Theory 

As mentioned above, the similarity measure based on the neighborhoods of two vertices usually calculates 

only the number of common vertices and union size, and ignores the connectivity of the common vertices, as 

the left diagram in Fig. 2(A) shows. However, the two vertices are not necessarily directly connected in most 

situations, and such neglect might lead to similarity distortion and miss of the true cluster structure because 

there are no common vertices that can be counted at all. For a pair of vertices in a cluster, since they are in a 

local dense area, dense common blocks must exist in their direct or indirect neighborhoods, as the right 

diagram in Fig. 2(A) shows. When the two vertices are tightly connected to the same densely connected 

block, they are apt to turn up in the same cluster that the block belongs to, so they should have a higher 

similarity. It is the underlying principle of our similarity measure. 

For each pair of vertices, there are three situations about their direct and indirect neighborhoods, as Fig. 

2(B) illustrates. Firstly, two vertices belong to the same cluster with common adjacent vertices in their 

neighborhoods regardless of being directly connected or not. This situation is somewhat similar to that of 

the traditional structural measure and the similarity depends mainly on the joint vertices ratio. But we adopt 

the similarity function by taking the density of their common blocks into account. Furthermore, since two 

vertices lie near, there are many overlapping vertices in their l-neighborhoods, which may improve the 

similarity. For convenience, we refer to the neighborhoods of a vertex vi according to the length of the 

shortest path between vertices and vi as direct, second, third and so on, Abbr. as l-neighborhoods. 

Secondly, two vertices lie far apart without common direct adjacent vertices but with common blocks in 

their l-neighborhoods. It is the most important and common situation in calculating the similarity, which is 

the main extension to the traditional adjacent vertices based measure. It aims to find the densely connected 

common blocks nearby that are the potential cores of clusters. Although they are not directly connected, the 

similarity between them would be high if they are all tightly connected to the same dense common block. The 

higher the similarity is, the more eager they are to join the same cluster. 

Lastly, the two vertices belong to different clusters without common block at all in their l-neighborhoods, 

or just loosely link to each other. The similarity between two vertices should gain a relatively small value. 
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When l takes a large value, the distance between two vertices are so great that they often lie in different 

clusters, even all vertices of the graph are included in their l-neighborhoods. In practice, a large l value does 

no good but increasing computational complexity. 

 

 
Fig. 2. Vertex neighborhoods and Clusters: (A). Direct and indirect neighborhoods of a pair of vertices and 

their common vertices and blocks (green dots). (B). Three situations about two vertices in the clusters and 

their relationship to the common blocks (red rectangles). 

 

3.2. Definition 

Based on the above concept, we define first a density coefficient of degree and recalculate the strength 

between a vertex and its blocked-neighborhoods, which is proportional to the links and the density of blocks, 

Abbr. as c-Degree and written as: 
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,                                        (6) 

where ki is the number of links between the vertex and the i-th block, and di is the density of the i-th block. A 

sample of the c-Degree computation is given in Fig. 3. As the block of a 3 vertices clique decomposes, the 

c-Degree of green vertex increases sharply, a proof that it is density dependant. 
 

 
Fig. 3. Variation of c-Degree while the block with 3 vertices decomposing. 

 

Suppose vertices vi and vj have m common blocks in their l-neighborhoods, and then the new similarity 

function can be defined as: 

, ,
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 ,                                 (7) 
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The density-based measure extends the traditional adjacent vertices based method by enlarging the scale 

of neighborhoods to l-step and introducing the density factor of common blocks, which may catch more 

properties of cluster. It takes values from zero to 1. Only when two vertices are connected to the same clique 

does the similarity between them get the maximum value 1. Since the cluster usually is a local component of 

a graph, a global similarity matrix is unnecessary and a local similarity matrix suffices for graph clustering. 

Therefore, the max depth of l-neighborhoods is no more than 5, typically being 2 or 3. 

3.3. Algorithm 

The main procedure of the density based similarity measure is described in Fig. 4. For each pair of 

vertices of a graph, it finds their l-neighborhoods, and then discomposes them into densely connected blocks 

and marks their common blocks. Once the blocks are marked, it is easy to recalculate their c-Degree 

respectively. Naturally, the similarity is computed according to the c-Degrees between the two vertices and 

the common blocks. Finally, the program outputs the similarity matrix S. 

Density_Similarity()

input :G  a simple graph

             l   the depth of vertex neighborhoods

output:S  the similarity matrix

begin

       Initialize S with zero;

       for each vertex vi in graph do

   Find l-neighborhoods and put into set A, 2l-neighborhoods put into set N;

       for each vertex vj in N do

           Find l-neighborhoods and put into set B;

           C ←A∪B;

           dFractioning(C);

           Count the common block;

           Calculate the c-Degrees of vi and vj;

           Compute the similarity between vi and vj;

           Output s(vi , vj) to S;

           Rest B and C;

       end for

       Rest A and N;

    end for

    return S;

end

 
Fig. 4. The algorithm for density based similarity measure. 

 

In the algorithm, the function dFractioning() is a key step, which implements the decomposition of the 

l-neighborhoods for each pair vertices. Although the size of the connected subset is generally very small, to 

partition the subgraph based on density is a hard task because both the problems of partitioning and 

density optimizing in a graph are NP-hard. Hence, the heuristic partition algorithm FM [18] is used to 

repeatedly partition the subgraph into dense blocks until the average density of the blocks does not 

increase further. 

4. Experimental Results 

The proposed similarity measure is tested on the computer synthetic graphs and real complex networks, 

including the GN benchmark [19], Zachary’s network [20] and the PPI network of yeast [21]. A comparison 

of the similarity and clustering results by affinity propagation algorithm (AP) [22] is made with results given. 

4.1. Similarity Comparison 

Firstly, a simple graph with 20 vertices and 26 edges in 4 groups is used to test the similarity measure, and 

its vertices have only three types, as Fig. 5 shows. The similarity matrix of density measure is computed on 

the direct neighborhoods (1-neighborhoods). For comparison with the traditional similarity measure, the 

similarity matrix of Jaccard measure is also calculated. The hot maps of two similarity matrixes are displayed 
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in Fig. 5. From the comparison follows an intuitional conclusion that the differences of vertex similarities 

between inter-cluster and intra-cluster are enlarged and the discrimination of the similarity measure is 

improved. For example, the green dotted vertices have a common similarity in Jaccard measure, while they 

are classified by cluster ownership in density measure.  
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Fig. 5. Comparison of the similarities of a simple graph between the density based measure and the Jaccard 

index measure. 

 

 
Fig. 6. Comparison of clustering results with AP algorithm based on different similarity measures. 

4.2. Clustering Comparison 

For further test on the performance for graph clustering, the affinity propagation algorithm (AP), a classic 

similarity based clustering algorithm, is employed to cluster the vertices. Furthermore, a comparison 

between several similarity measures on the GN graphs is performed. 

4.2.1. GN benchmark 

Girvan and Newman [19], [28] specially consider a group of known clusters (partitions) data in testing the 

performance of community detection algorithms, referred to as the GN benchmarks. In the standard GN 

benchmarks, each graph has 128 vertices formed in four groups (each group with 32 vertices) and each 

vertex has a fixed degree of 16. However, the probabilities of vertices linking to each other in a same cluster 

pin and to vertices in different clusters pout can be adjusted according to test requirements. Here, the average 

degree linked to external vertices for each vertex kout varies greatly from 4 to 12 and each group has 100 

samples. The similarities of vertices for each graph are calculated based on betweenness, Jaccard, spectral and 

density measures respectively. 

As Fig. 6 shows, when kout takes a small value all measures can correctly classify the vertices. As kout 

increases, the structures of clusters become unclear, and almost all measures begin to fail when kout 

approaches 8. At that point, the internal edges and the external edges are approximately equal but the 

density of inter-cluster is still significantly higher than that of intra-cluster. Although the density measure is a 

local measure, it can do a good job until kout approaches ten, as the spectral measure does. Finally, for kout≈12, 
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no measures can work properly because there maybe no cluster at all. 

4.2.2. Zachary’s network 

The Zachary’s network is the members’ relationships of a karate club in the United States, which is a 

well-known test benchmark in community detection. As Fig. 7(a) shows, the club consists of 34 vertices, each 

vertex representing one member and each edge representing the interaction between two members in life. 

Because the club president (vertex of 34) has a conflict in fees with the instructor (vertex of 1), the club is 

separated into two natural groups in the end, one around president (circle points) and the other around 

instructor(square points). To detect the right positions of the two groups is the most interesting thing. Based 

on the density measure, the AP algorithm accurately classifies all the vertices into two groups. When the 

number of clusters reaches 4, two small subgroups of vertices appear as shown in Fig. 7(b), which satisfies 

the best composition in terms of the modularity Q [23]. 

 

 
Fig. 7. Clustering results of the Zachary’s karate club. 
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Fig. 8. Functional annotation of clusters: Each column represents a special functional category and its value 

equals the consistency ratio of a specific function in a cluster. A group of columns forms an ensemble of 

functional categories in a cluster, which indicates multifunction of that module. 
 

4.2.3. PPI network  

To detect community structure in biological networks has been a research hotspot in recent decades, which 

is a new important application of clustering techniques [25]-[27]. Community is a cluster liked densely 

connected group although some people try to distinguish them, and many traditional clustering techniques 

are used to detect community structure in complex networks. In this paper, we try to detect community 

structure by using AP algorithm based on the density similarities in the Protein-Protein Interaction (PPI) 

network of yeast. The datasets are downloaded from the public websites (http://mips.gsf.de/) [29]. The max 
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connected component of the PPI network of Sacchromyces cerevisiae is selected, which contains 1298 

proteins and 3588 interactions. The modularity Q is employed to evaluate the qualities of the clusters in 

order to get a better clustering solution. The occupancy ratios of functional proteins in clusters are computed 

by comparing with the known modules and complexes in the MIPS database [24], which is a functional 

annotation scheme for systematic classification of proteins from whole genomes. 

When the modularity Q reaches the value of 0.67, the algorithm finds 72 clusters. The consistency ratios of 

all functional categories over 50% in the top 30 clusters are shown in Fig. 8. It is difficult to directly compare 

the performance with other similarity measures because of the complexity of functional modules in PPI 

network. However, it is shown that many clusters are functional modules whose proteins have high 

consistency ratios of functional categories, and that many clusters have multiple functional categories, which 

is highly consistent with the facts. The structure of the three clusters is also illustrated in Fig. 9(a) and (b) 

being two smaller cliques with the sizes of 9 and 11 respectively, and (c) being a large cluster with 40 

vertices. The annotation results show that each cluster is a meaningful functional module and its proteins are 

involved in the same functional process. 

 
Fig. 9. Three examples of functional modules in clusters:(a) is a DNA chromatin module with 9 proteins; (b) is 

a proteins functional clique consisting of 11 proteins and all members have the same biological functions: 

mitotic cell cycle control, protein modification and ATP binding; and (c) is a large gene transcription module 

with 40 proteins, whose consistency ratio of functional category (11.04.03.01) reaches 83%. 

5. Conclusions 

We present a similarity measure based on microblock density, which extends the traditional local 

structural based similarity measure by enlarging the scope and introducing local blocks’ density. It 

improves the discrimination of the local measures and decreases the time complexity of the global 

measures. The experimental results show that the density measure performs better than other traditional 

local connectivity based measures, and improves the quality of clustering result and the stability of 

algorithm. Application in community structural detection proves that the similarity based clustering 

algorithm can work well in network analysis, which further expands the researching domain of traditional 

clustering techniques. Therefore, it is promising to bridge the gap in performance between clustering 

analysis and network analysis by combining the advantages of the two. 
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