Volume 13 Number 7 (Jul. 2018)
Home > Archive > 2018 > Volume 13 Number 7 (Jul. 2018) >
JCP 2018 Vol.13(7): 771-783 ISSN: 1796-203X
doi: 10.17706/jcp.13.7.771-783

Bioinformatics Image Based Decision Support System for Bone Cancer Detection

Sravanthi Vallaboju1, P. W. C. Prasad1, Abeer Alsadoon1, Manoranjan Paul1, Amr Elchouemi2
1School of Computing and Mathematics, Charles Sturt University, Australia.
2Walden University, USA.

Abstract—Bone cancer which may occur inside or on the bone can be life threatening similar to the other types of cancer. The aim of this paper is to improve the accuracy of the detection process. Currently, the detection process is carried out utilising data mining techniques and image processing methods as part of a medical image analysis process, using a non-automated framework which includes image acquisition, image filtering, image segmentation, the area of interest (intensity of the background or the segmented slices) and classification methods to evaluate the decision. Although these methods are effective to some extent, the existing methods have some limitations through false detection values, an increase in the processing time and accuracy. The result indicates that by using eigenvalues and eigenvectors, the processing time can be decreased by implementing normalization, while improving detection accuracy. This paper investigates the viability of using texture based magnetic resonance imaging (MRI) to locate different clusters and classify areas for determining bone cancer. This segmentation and classification processes are carried out by using eigenvalues and eigenvectors.

Index Terms—Eigenvectors, affinity matrix, clusters, feature extraction, normalized eigenvectors, bone tumour.

[PDF]

Cite:Sravanthi Vallaboju, P. W. C. Prasad, Abeer Alsadoon, Manoranjan Paul, Amr Elchouemi, "Bioinformatics Image Based Decision Support System for Bone Cancer Detection," Journal of Computers vol. 13, no. 7, pp. 771-783, 2018.

General Information

ISSN: 1796-203X
Frequency: Monthly
Editor-in-Chief: Prof. Liansheng Tan
Executive Editor: Ms. Nina Lee
Abstracting/ Indexing: DBLP, EBSCO,  ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat, CNKI,etc
E-mail: jcp@iap.org
  • Sep 13, 2018 News!

    Vol 13, No 10 has been published with online version   [Click]

  • Apr 28, 2019 News!

    Vol 14, No 4 has been published with online version 8 papers are published in this issue after peer review   [Click]

  • Mar 20, 2019 News!

    Vol 14, No 3 has been published with online version   [Click]

  • Feb 22, 2019 News!

    Vol 14, No 2 has been published with online version 8 papers are published in this issue after peer review   [Click]

  • Jan 04, 2019 News!

    Vol 14, No 1 has been published with online version   [Click]

  • Read more>>